Thin Film Optical Waveguide Patents (Class 385/130)
  • Patent number: 11175451
    Abstract: Embodiments include apparatuses, methods, and systems including a semiconductor photonic device having a waveguide disposed above a substrate. The waveguide has a first section including amorphous silicon with a first refractive index, and a second section including crystalline silicon with a second refractive index different from the first refractive index. The semiconductor photonic device further includes a heat element at a vicinity of the first section of the waveguide. The heat element is arranged to generate heat to transform the amorphous silicon of the first section of the waveguide to partially or completely crystallized crystalline silicon with a third refractive index. The amorphous silicon in the first section may be formed with silicon lattice defects caused by an element implanted into the first section. Other embodiments may also be described and claimed.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: November 16, 2021
    Assignee: Intel Corporation
    Inventors: Hasitha Jayatilleka, Harel Frish, Ranjeet Kumar, Haisheng Rong, John Heck
  • Patent number: 11156858
    Abstract: An optical device includes an optical modulator on an optical IC chip. The optical modulator includes an optical waveguide, first and second wiring patterns that are formed along the optical waveguide and a polymer pattern. A portion of the polymer pattern is formed on the optical waveguide and located in a region between the first and second wiring patterns. Each of the first and second wiring patterns includes a modulation portion that is formed parallel to the optical waveguide, a pad portion, and a transition portion that connects the modulation portion and the pad portion. A shape of a region between the transition portion of the first wiring pattern and the transition portion of the second wiring pattern is a curve. The polymer pattern has a curved portion in the region between the transition portion of the first wiring pattern and the transition portion of the second wiring pattern.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: October 26, 2021
    Assignee: FUJITSU OPTICL COMPONENTS LIMITED
    Inventor: Masaki Sugiyama
  • Patent number: 11143893
    Abstract: A display device is provided, including a first flexible substrate, a second flexible substrate, a TFT circuit, and a liquid-crystal layer. The TFT circuit is formed on the first flexible substrate. The liquid-crystal layer is sealed between the first flexible substrate and the second flexible substrate. The first flexible substrate has a first light transmission chromaticity coordinates (x1, y1), and the second flexible substrate has a second light transmission chromaticity coordinates (x2, y2), wherein x1-x2?0.002 or y1-y2?0.002.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: October 12, 2021
    Assignee: INNOLUX CORPORATION
    Inventors: Yu-Chia Huang, Yuan-Lin Wu, Kuan-Feng Lee, Tsung-Han Tsai
  • Patent number: 11125943
    Abstract: An optical modulator includes a substrate having a first face and a second face; an input port provided on the first face; a first waveguide provided on the substrate, the waveguide being connected to the input port; a first coupler provided on the substrate, the first coupler being optically connected to the first waveguide; an output port provided on the first face of the substrate, the output port being optically connected to the first coupler; and a first anti-reflection coating provided on the second face. The first face and the second face are arranged along a first direction. The first face and the second face extend in a direction intersecting the first direction. The first coupler extends in the first direction.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 21, 2021
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Kosuke Fujii
  • Patent number: 11105977
    Abstract: An optical coupler device comprises an optical waveguide having a first edge and an opposing second edge that extend in a direction substantially parallel to a propagation direction of an input light beam injected into the optical waveguide. A grating structure is on a portion of the optical waveguide, with the grating structure having a first side and an opposing second side. The first and second sides of the grating structure extend in the same direction as the first and second edges of the optical waveguide. An optical slab adjoins with the first side of the grating structure and is in optical communication with an output of the grating structure. The grating structure includes an array of grating lines configured to diffract the input light beam into the slab at an angle with respect to the propagation direction, such that a diffracted light beam is output from the slab.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: August 31, 2021
    Assignee: Honeywell International Inc.
    Inventors: Matthew Wade Puckett, Karl D. Nelson
  • Patent number: 11105975
    Abstract: A waveguide optoelectronic device comprising a rib waveguide region, and method of manufacturing a rib waveguide region, the rib waveguide region having: a base of a first material, and a ridge extending from the base, at least a portion of the ridge being formed from a chosen semiconductor material which is different from the material of the base wherein the silicon base includes a first slab region at a first side of the ridge and a second slab region at a second side of the ridge; and wherein: a first doped region extends along: the first slab region and along a first sidewall of the ridge, the first sidewall contacting the first slab region; and a second doped region extends along: the second slab region and along a second sidewall of the ridge, the second sidewall contacting the second slab region.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: August 31, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Hooman Abediasl, Damiana LeRose, Amit Singh Nagra, Guomin Yu
  • Patent number: 11067749
    Abstract: Structures for a waveguide and methods of fabricating a structure for a waveguide. A first layer and a second layer are positioned in a layer stack on a surface of a waveguide core. The first layer is positioned in the layer stack between the second layer and the surface of the waveguide core. The waveguide core is composed of a first material having a first refractive index, the first layer is composed of a second material having a second refractive index that is less than the first refractive index of the first material, and the second layer is composed of a third material having a third refractive index that is less than the second refractive index of the second material.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: July 20, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Yusheng Bian, Ajey Poovannummoottil Jacob
  • Patent number: 11060977
    Abstract: A bio-chip package comprises a substrate a first layer over the substrate comprising an image sensor. The bio-chip package also comprises a second layer over the first layer. The second layer comprises a waveguide system a grating coupler. The bio-chip package also comprises a third layer arranged to accommodate a fluid between a first-third layer portion and a second-third layer portion, and to allow the fluid to pass from a first side of the third layer to a second side of the third layer. The third layer comprises a material having a predetermined transparency with respect to a wavelength of a received source light, the waveguide system is configured to direct the received source light to the grating coupler, and the image sensor is configured to determine a change in the wavelength of the source light caused by a coupling between the source light and the fluid.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: July 13, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui Hsieh Lai, Ying-Hao Kuo
  • Patent number: 11054578
    Abstract: A cross optical waveguide structure includes a first optical waveguide, a second optical waveguide, and an intersection portion positioned in the same plane. The first optical waveguide includes a first fixed-width portion, a second fixed-width portion, a first tapering portion, and a second tapering portion. The second optical waveguide includes a third fixed-width portion, a fourth fixed-width portion, a third tapering portion, and a fourth tapering portion. The intersection portion is linked to the first to the fourth tapering portions having such a tapering shape that a mode field radius of the light input to the first fixed-width portion, the second fixed-width portion, or the third fixed-width portion, and the fourth fixed-width portion is reduced by the first tapering portion, the second tapering portion, the third tapering portion, the fourth tapering portion, respectively, and the light is collected in the intersection portion.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: July 6, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yasuyoshi Uchida, Junichi Hasegawa
  • Patent number: 11036077
    Abstract: Provided are an optical film for improving a contrast ratio, a polarizing plate comprising same, and a liquid crystal display comprising same, the optical film comprising a base layer and a contrast ratio-improving layer formed on the base layer, wherein the contrast ratio-improving layer comprises a first resin layer and a second resin layer directly formed on the first resin layer, wherein the refractive index of the first resin layer is different from that of the second resin layer, wherein the first resin layer comprises: a plurality of embossed first optical patterns formed to be separated in a first direction; a plurality of embossed second optical patterns formed to intersect with the first optical patterns and be separated in a second direction; and dented parts formed by the intersection of the first optical patterns and the second optical patterns, wherein the dented parts have a height lower than that of the first resin layer.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: June 15, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Young Oh, Dong Ho Wee, Young Hyun Ju
  • Patent number: 11022825
    Abstract: A silicon photonics modulator includes a rib that is a PN junction; a slab including a P doped region adjacent to the waveguide core on a first side and an N doped region adjacent to the waveguide core on a second side, opposite the first side; and a first electrode connected to the P-doped region and a second electrode connected to the N-doped region, wherein the rib is dimensioned to support guiding of a Transverse Magnetic (TM) mode with a main lobe that propagates orthogonal to the slab. The rib guides wavelengths in an infrared range in the TM mode.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: June 1, 2021
    Assignee: Ciena Corporation
    Inventors: Alexandre D. Simard, Yves Painchaud
  • Patent number: 11009375
    Abstract: A novel methodology for characterizing and calibrating an entangled photon distribution system is disclosed. The entangled photon distribution system includes at least a source of entangled photon pairs, two photon detectors which detect photons among two channels and a controller. The methodology includes: for at least two different operational setting levels of the source of entangled photon pairs, measuring count rates for photons detected by the two photon detectors, individually and coincidently; fitting the measured individual and coincidence count rate data for the at least two different operational setting levels with theoretical models of detection probability; and determining operational parameters of the system from the fitting.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: May 18, 2021
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Daniel E. Jones, Brian T. Kirby, Michael Brodsky
  • Patent number: 11002679
    Abstract: A method for detecting the presence of or quantification of carbon black and/or black carbon in a sample or carrier medium. The method includes providing the sample or carrier medium without labelling or pre-treatment of the carbon black and/or black carbon particles; illuminating the sample or carrier medium at a temperature below 90° C. by a pulsed light with a pulse duration below 500 femtoseconds, a repetition rate above 1 MHz with an average power below 20 mW, and a wavelength of a femtosecond laser pulse ranging from 700 to 1200 nm, to generate non-incandescence related light emission from the carbon black and/or black carbon particles; and analysis of the light emission.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: May 11, 2021
    Assignees: Katholieke Universiteit Leuven, Universiteit Hasselt
    Inventors: Marcel Ameloot, Hannelore Bové, Tim Nawrot, Maarten Roeffaers, Christian Steuwe, Martin Vandeven
  • Patent number: 10996400
    Abstract: An optical waveguide interferometer that includes a first optical section, a second optical section, and a set of optical waveguides configured to connect the first and second optical sections, such that light propagating between the first optical section and the second optical section passes through each optical waveguide in the set, wherein the set of optical waveguides includes a first optical waveguide having a first length and a first width and a second optical waveguide having a second length and a second width, wherein the second length is greater than the first length, and the second width is greater than the first width.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: May 4, 2021
    Assignees: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Keisuke Kojima, Bingnan Wang, Toshiaki Koike-Akino, Koichi Akiyama, Eiji Yagyu, Satoshi Nishikawa, Kosuke Shinohara
  • Patent number: 10996539
    Abstract: Provided is a SIS-type electro-optic modulator capable of realizing highly efficient optical coupling with a rib-type Si waveguide, improving modulation efficiency, realizing reduction of electric capacity and lead-out resistance in stacked semiconductor layers. The modulator includes a SIS junction constituted by first and second semiconductor layers having different type of conductivity and a dielectric layer interposed therebetween, wherein an electrical signal from electrodes coupled to the first and second semiconductor layers causes free carriers accumulate, deplete or invert on both sides of the dielectric layer, thereby modulating a free carrier concentration felt by an optical signal electric filed, light having a polarization component orthogonal to the width direction of the SIS junction is incident on the dielectric layer, and the width of the SIS junction is ?/neff or less (? is the wavelength of the incident light and neff is an effective refractive index of the modulator to the incident light).
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: May 4, 2021
    Assignees: NEC CORPORATION, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Shigeki Takahashi, Junichi Fujikata
  • Patent number: 10967917
    Abstract: The independent Y-shaped bead 10 is provided on the panel P with a planar shape. The bead 10 includes the plurality of branching portions 10a, 10b, and 10c radially extending from the intersection R3 at an equal interval.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: April 6, 2021
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yuki Muramatsu
  • Patent number: 10962710
    Abstract: Aspects of the present disclosure disclose apparatuses, systems, and methods for providing an electromagnetic wave from one layer of a photonic circuit structure to another layer of the photonic circuit structure in at least one of the x-direction, the y-direction, and the z-direction. In so doing, aspects of the present disclosure enable the fabrication and use of multi-dimensional photonic circuit structures, and thus improve the capacity, power, weight, size, and/or cost of the circuits implemented by such multi-dimensional photonic circuit structures.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: March 30, 2021
    Assignee: The Boeing Company
    Inventor: Nathan D. Hiller
  • Patent number: 10935820
    Abstract: A system for integrated power combiners is disclosed and may include receiving optical signals in input optical waveguides and phase-modulating the signals to configure a phase offset between signals received at a first optical coupler, where the first optical coupler may generate output signals having substantially equal optical powers. Output signals of the first optical coupler may be phase-modulated to configure a phase offset between signals received at a second optical coupler, which may generate an output signal having an optical power of essentially zero and a second output signal having a maximized optical power. Optical signals received by the input optical waveguides may be generated utilizing a polarization-splitting grating coupler to enable polarization-insensitive combining of optical signals. Optical power may be monitored using optical detectors. The monitoring of optical power may be used to determine a desired phase offset between the signals received at the first optical coupler.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: March 2, 2021
    Assignee: Luxtera LLC
    Inventors: Attila Mekis, Adithyaram Narasimha, Jeremy Witzens
  • Patent number: 10923613
    Abstract: An energy harvesting apparatus including light collecting particles is provided. The energy harvesting apparatus includes a light collecting layer for collecting light incident thereon from the outside, a first charging member on a first surface of the light collecting layer, a second charging member on a surface of the light collecting layer opposite the first surface, and solar cells on opposite light exit surfaces between the first and second surfaces of the light collecting layer.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: February 16, 2021
    Assignees: Samsung Electronics Co., Ltd., RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Young-jun Park, Sang-woo Kim, Yun-kwon Park, Hong-joon Yoon, TaeYun Kim, Hyoungtaek Kim, Hye-jeong Park, Youngin Son, Wanchul Seung, Hanjun Ryu, Jeong Hwan Lee
  • Patent number: 10908359
    Abstract: An adjustable wide-spectrum wavelength-insensitive directional coupler, comprising a substrate (100). A first-stage directional coupling structure (1), a phase-shifting structure (2), and a second-stage directional coupling structure (3) are sequentially connected and disposed on the substrate (100). The phase-shifting structure (2) comprises a phase-shifting curved waveguide, a phase-shifting straight waveguide (22), and a third modulation component (26), wherein the third modulation component (26) is disposed on the phase-shifting curved waveguide. One end of the phase-shifting curved waveguide is connected to an output end of a directional coupled waveguide I (16) of the first-stage directional coupling structure (1), and the other end of the phase-shifting curved waveguide is connected to an input end of a directional coupled waveguide III (30) of the second-stage directional coupling structure (3).
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: February 2, 2021
    Inventors: Liangliang Wang, Jiashun Zhang, Junming An, Xiaojie Yin, Jianguang Li, Hongjie Wang, Yuanda Wu, Yue Wang, Xiongwei Hu
  • Patent number: 10901244
    Abstract: Methods and systems for a low-parasitic silicon high-speed phase modulator are disclosed and may include in an optical phase modulator that comprises a PN junction waveguide formed in a silicon layer, wherein the silicon layer may be on an oxide layer and the oxide layer may be on a silicon substrate. The PN junction waveguide may have fingers of p-doped and n-doped regions on opposite sides along a length of the PN junction waveguide. Contacts may be formed on the fingers of p-doped and n-doped regions. The fingers of p-doped and n-doped regions may be arranged symmetrically about the PN junction waveguide or staggered along the length of the PN junction waveguide. Etch transition features may be removed along the p-doped and n-doped regions.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: January 26, 2021
    Assignee: Luxtera LLC
    Inventors: Ali Ayazi, Gianlorenzo Masini, Subal Sahni, Attila Mekis, Thierry Pinguet
  • Patent number: 10852479
    Abstract: A novel polymer optical waveguide and method of manufacturing is presented herein. A digitally manufactured process is described which utilizes a micro-dispensed UV optical adhesive as the contour guiding cladding, a fused deposition modeling technology for creating a core, additional optical adhesive to complete the cladding and a subtractive laser process to finish the two ends of the optical interconnect.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: December 1, 2020
    Assignee: University of South Florida
    Inventors: Venkat Rama Bhethanabotla, Thomas M. Weller, Roger Brandon Tipton, John Townsend Bentley, Eduardo Antonio Rojas
  • Patent number: 10774445
    Abstract: A wafer production method for producing a wafer from a lithium tantalate ingot includes a step of irradiating, from an end face of a lithium tantalate ingot which is a 42-degree rotation Y cut ingot having an orientation flat formed in parallel to a Y axis, a laser beam of a wavelength having transparency to lithium tantalate with a focal point of the laser beam positioned in the inside of the ingot to form a modified layer in the inside of the ingot while the ingot is fed for processing, and a step of applying external force to the ingot to peel off a plate-shaped material from the ingot to produce a wafer. At the step of forming a modified layer, the ingot is relatively fed for processing in a direction parallel or perpendicular to the orientation flat.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: September 15, 2020
    Assignee: DISCO CORPROATION
    Inventor: Kazuya Hirata
  • Patent number: 10730208
    Abstract: In accordance with the purpose(s) of the present disclosure, as embodied and broadly described herein, embodiments of the present disclosure, in one aspect, relate to porous polymer membranes, structures including porous polymer membranes, devices including porous polymer membranes, methods of using porous polymer membranes, methods of making porous polymer membranes, and the like.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: August 4, 2020
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Yin Fang, Khalid Askar, Blayne M. Phillips, Peng Jiang
  • Patent number: 10698158
    Abstract: Ion implantation is carried out into a GaN layer of mLEDs to partially or fully convert one or more regions of the crystalline GaN layer to amorphous GaN. As a result, the GaN layer through which light rays propagate have non-uniform refractive indexes that modify propagation paths of some light rays. Ions can be implanted in a region around an active region that emits light to function as an optical waveguide. The ion implanted regions direct light rays that propagate along predetermined directions into predetermined propagation paths thereby to modify the angle of incidence of these light rays. As such, the light extraction efficiency of the mLEDs is increased.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: June 30, 2020
    Assignee: Facebook Technologies, LLC
    Inventors: James Ronald Bonar, James Small, Gareth John Valentine
  • Patent number: 10674239
    Abstract: Optical switches include a phase shifter on a first branch, a first heater on the first branch, and a second heater on a second branch. A hybrid coupler combines the first branch and the second branch. A first photodetector and a second photodetector are at outputs of the second hybrid coupler to measure crosstalk between the outputs of the second hybrid coupler. A controller is configured to activate the first heater or the second heater to reduce the measured crosstalk.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: June 2, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Dupuis, Benjamin G. Lee, Alexander V. Rylyakov, Mehmet Soyuer
  • Patent number: 10651415
    Abstract: An organic EL (electroluminescent) device includes a translucent substrate, a transparent electrode, a luminescent layer, and a cathode placed over one surface of the translucent substrate, and a light extraction film having unevenness placed on the other surface. The surface of the cathode facing the luminescent layer has a plurality of recesses or protrusions. The Fourier transform image of the surface of the cathode facing the luminescent layer has a surface plasmon absorption suppression area including a spatial frequency v obtained from Eq. (I) and a light scattering area not including spatial frequencies equal to or greater than the spatial frequency v.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: May 12, 2020
    Assignee: TOPPAN PRINTING CO., LTD.
    Inventors: Akihito Kagotani, Toshiki Toda
  • Patent number: 10641955
    Abstract: Methods and systems are presented for heterogeneous integration of photonics and electronics with atomic layer deposition (ALD) bonding. One method includes operations for forming a compound semiconductor and for depositing (e.g., via atomic layer deposition) a continuous film of a protection material (e.g., Al2O3) on a first surface of the compound semiconductor. Further, the method includes an operation for forming a silicon on insulator (SOI) wafer, with the SOI wafer comprising one or more waveguides. The method further includes bonding the compound semiconductor at the first surface to the SOI wafer to form a bonded structure and processing the bonded structure. The protection material protects the compound semiconductor from acid etchants during further processing of the bonded structure.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: May 5, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Gregory Alan Fish, Martin A. Spannagel, Antonio Labaro
  • Patent number: 10620371
    Abstract: A photonic platform includes a substrate, a buried oxide layer on the substrate, a first optical layer on the buried oxide layer, the first optical layer including one or more waveguides shaped as rib waveguides protruding upwardly from a common underlying slab and a second optical layer spaced above the first optical layer, the second optical layer defining an upper waveguide that crosses over the one or more partially etched waveguides. A low-loss photonic switch may be made using a silicon photonic platform implementing this waveguide crossing.
    Type: Grant
    Filed: March 5, 2016
    Date of Patent: April 14, 2020
    Assignees: Huawei Technologies Canada Co., Ltd., The Governing Council of the University of Toronto
    Inventors: Patrick Dumais, Wesley David Sacher
  • Patent number: 10591755
    Abstract: A direct-drive polymer modulator including a platform, a multilayer waveguide formed in/on the platform, the waveguide including a bottom cladding layer, an electro-optic polymer core and a top cladding layer, and at least a portion of the waveguide forming a direct-drive polymer modulator.
    Type: Grant
    Filed: February 19, 2018
    Date of Patent: March 17, 2020
    Assignee: Lightwave Logic Inc.
    Inventors: Richard Becker, Frederick J Leonberger, Michael Lebby
  • Patent number: 10551559
    Abstract: The embodiments of the present disclosure provide an optical assembly and a liquid crystal display device using the optical assembly. The optical assembly has a simple structure and low cost, and can realize a high color gamut display. The optical assembly comprises a first substrate layer, a second substrate layer, and an optical fiber layer arranged between the first substrate layer and the second substrate layer. The optical fiber layer is composed of a plurality of optical fibers arranged closely in a single layer. A plurality of adhesive blocks in contact with the plurality of optical fibers are arranged on a surface of at least one of the first substrate layer and the second substrate layer. At the contact regions between the adhesive blocks and the plurality of optical fibers, total internal reflection in the optical fibers is inhibited by the adhesive blocks.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: February 4, 2020
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE DISPLAY TECHNOLOGY CO., LTD.
    Inventors: Hongyu Zhao, Inho Park, Kai Diao, Yutao Hao, Junjie Guo, Yang Chu
  • Patent number: 10545137
    Abstract: Multiplex polymeric dye devices are provided. Aspects of the devices include a solid support, and first and second dried polymeric dye compositions distinctly positioned relative to a surface of the solid support. Aspects of the invention further include methods of making and using the devices, e.g., in analyte detection applications, as well as kits containing the devices.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: January 28, 2020
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Marybeth Sharkey, Shumeye Mamo
  • Patent number: 10520673
    Abstract: A polymer waveguide/modulator including a lower cladding layer, a polymer core, an upper cladding layer, a first protection/barrier layer sandwiched between the lower cladding layer and the core, and a second protection/barrier layer sandwiched between the core and the upper cladding layer. The protection/barrier layers designed to protect the cladding layers and the core from solvents and gases and to prevent current leakage between the cladding layers and the core. The first protection/barrier layer is optically transparent and designed with a refractive index less than, greater than, or the same as the refractive index of the core and approximately equal to the refractive index of the lower cladding layer. The second protection/barrier layer is optically transparent and designed with a refractive index less than, greater than, or the same as the refractive index of the core and approximately equal to the refractive index of the upper cladding layer.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 31, 2019
    Assignee: Lightwave Logic Inc.
    Inventors: Richard Becker, Michael Lebby, Youngwoo Yi
  • Patent number: 10509144
    Abstract: The present invention discloses a 2D square-lattice PhC based on cross rods and rotated hollow square rods, comprising a high-refractive-index dielectric rod, a cross plate dielectric rod and a low-refractive-index background dielectric rod; the unit cell of the square-lattice PhC includes a high-refractive-index rotated hollow square rod, a cross plate dielectric rod and a background dielectric; the hollow square rod has an outer contour which is a first rotated square rod with the rotated angle ? of 45° to 65° and the side length b of 0.6 a to 0.75 a, and a hollow part with a cross section being a second rotated square rod with the rotated angle ? of 25° to 50° and the side length c of 0.33 a to 0.5 a; the first rotated square rod is connected with the cross plate dielectric rod, plate dielectric rods of which in the horizontal and vertical directions have different widths.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: December 17, 2019
    Assignee: SHENZHEN UNIVERSITY
    Inventor: Zhengbiao Ouyang
  • Patent number: 10473933
    Abstract: A waveguide-based pupil relay for an optical system can comprise a light-transmissive substrate that includes a plurality of internally reflective surfaces to enable light rays of a plurality of different colors to propagate through the substrate by total internal reflection. The pupil relay can further include an input surface to input light rays of the plurality of different colors through an entry pupil of the optical waveguide, and an output surface to output light rays of the plurality of different colors from the substrate through an exit pupil of the optical waveguide. The pupil relay can have optical properties such that the entry pupil and exit pupil have substantially identical size and shape and such that the input light rays and output light rays have substantially identical chromatic properties.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: November 12, 2019
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Richard Andrew Wall, Tuomas Heikki Sakari Vallius
  • Patent number: 10449644
    Abstract: A laser-transmitting machining tool is disclosed. The laser-transmitting machining tool has a plurality of faces including an entrance face, a rake face, a flank face connected to the rake face, a rake side face extending between the entrance face and the rake face, and a flank side face extending between the entrance face and the flank face. The connection of the rake face to the flank face defines a cutting edge. The rake face extends away from the rake side face to define a rake angle. The entrance face is configured to receive and refract a laser beam to the rake face, the flank face, and the cutting edge for causing the laser beam to refract into and heat the workpiece at a compression region extending proximate at least the rake face and a tensile region extending proximate the flank face. A system for machining a workpiece is disclosed. A method for machining a workpiece is also disclosed.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: October 22, 2019
    Assignee: Micro-LAM, Inc.
    Inventors: Deepak V M Ravindra, Sai Kumar Kode
  • Patent number: 10454607
    Abstract: A mode division multiplexing system that includes a transmitter system, a receiver system and an optical link that optically connects the transmitter and receiver systems. The optical link includes a rectangular-core optical fiber having a rectangular core with a short dimension and a long dimension. The rectangular-core optical fiber supports only a single mode in the short dimension and multiple modes in the long dimension. A method of transmitting optical signals includes converting single mode optical signals to respective multimode optical signals each having a select spatial mode as defined by the rectangular-core optical fiber. The multimode optical signals are multiplexed and transmitted from the transmitter system to the receiver system over the rectangular-core optical fiber where the multimode optical signals are demultiplexed and converted back to single mode optical signals, which are then detected by respective receivers. A rectangular-core optical fiber is also disclosed.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 22, 2019
    Assignee: Corning Incorporated
    Inventors: Ming-Jun Li, Gaozhu Peng, Jeffery Scott Stone
  • Patent number: 10442727
    Abstract: Plasma etching processes for forming patterns in high refractive index glass substrates, such as for use as waveguides, are provided herein. The substrates may be formed of glass having a refractive index of greater than or equal to about 1.65 and having less than about 50 wt % SiO2. The plasma etching processes may include both chemical and physical etching components. In some embodiments, the plasma etching processes can include forming a patterned mask layer on at least a portion of the high refractive index glass substrate and exposing the mask layer and high refractive index glass substrate to a plasma to remove high refractive index glass from the exposed portions of the substrate. Any remaining mask layer is subsequently removed from the high refractive index glass substrate. The removal of the glass forms a desired patterned structure, such as a diffractive grating, in the high refractive index glass substrate.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: October 15, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Mauro Melli, Christophe Peroz, Vikramjit Singh
  • Patent number: 10416388
    Abstract: An optical waveguide device includes a substrate in which an optical waveguide is formed. The optical waveguide has a Y-branched structure in which light beams propagating through a main waveguide are branched into two parts, and a three-branched structure in which the optical waveguide is branched into three waveguides including the main waveguide and two sub-waveguides on both sides of the main waveguide at a front stage of the Y-branched structure. The main waveguide includes a linear waveguide portion in which a waveguide width is constant and a tapered waveguide portion in which the waveguide width gradually increases between the three-branched structure and the Y-branched structure.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 17, 2019
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Yuu Kataoka, Yoichi Hosokawa, Norikazu Miyazaki
  • Patent number: 10367590
    Abstract: Examples described herein relate to concurrently performing operations on optical signals. In an example, a method includes providing, to an optical circuit, a first plurality of signals having a first optical property and encoding a first vector. A second plurality of signals is provided to the circuit that encodes a second vector and has a second optical property that is different from the first optical property. A first attribute-dependent operation is performed on the first plurality of signals via the circuit to perform a first matrix multiplication operation on the first vector, and concurrently, a second attribute-dependent operation is performed on the second plurality of signals to perform a second matrix multiplication operation on the second vector. The first matrix multiplication operation and the second matrix multiplication operation are different based on the first optical property being different from the second optical property.
    Type: Grant
    Filed: September 22, 2016
    Date of Patent: July 30, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: David Kielpinski, Jason Pelc, Thomas Van Vaerenbergh, Nikolas Tezak, Gabriel Joe Mendoza, Raymond G. Beausoleil
  • Patent number: 10365534
    Abstract: An optical waveguide device includes a substrate with an electro-optic effect on which an optical waveguide and an electrode for controlling optical waves propagating through the optical waveguide are formed and at least one light source for irradiating ultraviolet light on the substrate.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: July 30, 2019
    Assignee: SUMITMO OSAKA CEMENT CO., LTD.
    Inventors: Yuu Nakata, Katsutoshi Kondou, Tetsuya Fujino, Junichiro Ichikawa
  • Patent number: 10349155
    Abstract: Optical switches include a first hybrid coupler configured to accept an input and to provide two branches. A phase tuner on a first branch includes a phase shifter. A first heater is positioned on the first branch and a second heater is positioned on the second branch, each configured to compensate for phase error. A second hybrid coupler configured to recombine the two branches. A first photodetector and a second photodetector are positioned at outputs of the second hybrid coupler and are configured to measure crosstalk between the outputs of the second hybrid coupler. A controller is configured to activate the first heater or the second heater to reduce the measured crosstalk.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: July 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nicolas Dupuis, Benjamin G. Lee, Alexander V. Rylyakov, Mehmet Soyuer
  • Patent number: 10295742
    Abstract: A guided light source that comprises: at least one quantum box associated with a discoid wave guide to achieve cylindrical propagation of a wave front emitted by the at least one quantum box in the discoid wave guide; an annular wave guide surrounding the discoid wave guide and having a grating coupler formed on its internal periphery to receive the wave front in normal incidence; an output wave guide optically coupled to the annular wave guide, in which the wave front is guided. The invention includes the method of fabrication of such a source, and its use for emission of a sequence of single photons.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: May 21, 2019
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Karim Hassan, Salim Boutami
  • Patent number: 10241265
    Abstract: An apparatus for alleviating a nonlinear temperature effect of an arrayed waveguide grating, comprising an integrated optical circuit base for an arrayed waveguide grating chip and an actuator. The integrated optical circuit base includes a first region, a second region connected by a hinge. The actuator includes two or more actuating rods having a thermal expansion coefficient different from that of the integrated optical circuit base. In different temperature ranges, the first region and the second region are driven by different actuating rods to rotate and/or translate relative to each other, so that the first region and the second region have a nonlinear displacement as the temperature changes, which brings the two parts of the arrayed waveguide grating chip to move relative to each other to accurately compensate drifting of a central wavelength of the arrayed waveguide grating chip in the different temperature ranges.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: March 26, 2019
    Assignee: Accelink Technologies Co., Ltd.
    Inventors: Jiayan Hu, Changan Li, Jiuhong Ling
  • Patent number: 10241274
    Abstract: An optical assembly includes a first grating device configured to: receive a light beam that includes an optical signal with a particular wavelength from a fiber; and change a propagation direction of the optical signal according to the particular wavelength of the optical signal. The optical assembly also includes a second grating device configured to: receive the optical signal outputted from the first grating device; change the propagation direction of the optical signal according to the particular wavelength of the optical signal; and direct the optical signal onto a grating coupler. The first grating device and the second grating device are configured to satisfy a plurality of configuration constraints.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: March 26, 2019
    Assignee: FINISAR CORPORATION
    Inventors: Xiaojie Xu, Thomas W. Mossberg, Tengda Du, Christoph M. Greiner, Dmitri Iazikov
  • Patent number: 10209450
    Abstract: Methods for coupling of waveguides with dissimilar mode field diameters, and related apparatuses, components, and systems are disclosed. In one example, a waveguide coupling assembly includes an input waveguide having a first mode, and a transition waveguide having a first transition waveguide section, a second transition waveguide section, and a tapered section. The first transition waveguide section has a second mode and is disposed proximate to the input waveguide such that a phase matching condition is achieved between the input waveguide and the first transition waveguide section, thereby evanescently coupling the input waveguide to the first transition waveguide section of the transition waveguide. The tapered section is optically connected between the first transition waveguide section and the second transition waveguide section, such that the second mode of the first transition waveguide section is converted to the third mode of the second transition waveguide section by the tapered section.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: February 19, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Andrey Kobyakov, Sergey Anatol'evich Kuchinsky, Xue Liu, Aramais Robert Zakharian
  • Patent number: 10191213
    Abstract: Methods and structures for shielding optical waveguides are provided. A method includes forming a first optical waveguide core and forming a second optical waveguide core adjacent to the first optical waveguide core. The method also includes forming an insulator layer over the first optical waveguide core and the second optical waveguide core. The method further includes forming a shielding structure in the insulator layer between the first optical waveguide core and the second optical waveguide core.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: January 29, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: John J. Ellis-Monaghan, Jeffrey P. Gambino, Mark D. Jaffe, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 10168475
    Abstract: Methods and systems are presented for heterogeneous integration of photonics and electronics with atomic layer deposition (ALD) bonding. One method includes operations for forming a compound semiconductor and for depositing (e.g., via atomic layer deposition) a continuous film of a protection material (e.g., Al2O3) on a first surface of the compound semiconductor. Further, the method includes an operation for forming a silicon on insulator (SOI) wafer, with the SOI wafer comprising one or more waveguides. The method further includes bonding the compound semiconductor at the first surface to the SOI wafer to form a bonded structure and processing the bonded structure. The protection material protects the compound semiconductor from acid etchants during further processing of the bonded structure.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: January 1, 2019
    Assignee: Juniper Networks, Inc.
    Inventors: John Parker, Gregory Alan Fish, Martin A. Spannagel, Antonio Labaro
  • Patent number: 10162110
    Abstract: A semiconductor device is provided with an insulating layer formed on a base substrate, an optical waveguide composed of a semiconductor layer formed on the insulating layer, and an insulating film formed along an upper surface of the insulating layer and a front surface of the optical waveguide. A peripheral edge portion of a lower surface of the optical waveguide is separated from the insulating layer, and the insulating film is buried between the peripheral edge portion and the insulating layer.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: December 25, 2018
    Assignees: RENESAS ELECTRONICS CORPORATION, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Tatsuya Usami, Keiji Sakamoto, Yoshiaki Yamamoto, Shinichi Watanuki, Masaru Wakabayashi, Tohru Mogami, Tsuyoshi Horikawa, Keizo Kinoshita
  • Patent number: 10142711
    Abstract: Optical switches and methods of switching include a first hybrid coupler configured to accept an input and to provide two branches. A phase tuner on a first branch includes a Mach-Zehnder phase shifter configured to shift a signal on the first branch by a selected phase. A loss compensator on a second branch is configured to match a loss incurred on the first branch. A second hybrid coupler is configured to recombine the two branches such that the phase shift generated by the phase tuner determines which output of the second hybrid coupler is used.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: November 27, 2018
    Assignee: International Business Machines Corporation
    Inventors: Nicolas Dupuis, Benjamin G. Lee, Alexander V. Rylyakov, Mehmet Soyuer