Organic Patents (Class 385/145)
  • Patent number: 7847017
    Abstract: The present invention has an object to provide a photosensitive resin composition for optical waveguide formation, which has low transmission loss and can form a waveguide pattern with high shape accuracy at low cost; an optical waveguide; and a method for producing an optical waveguide. The present invention provides a photosensitive resin composition for optical waveguide formation comprising at least: a polymer containing at least a (meth)acrylate structure unit having an epoxy structure, and a (meth)acrylate structure unit having a lactone structure and/or a vinyl monomer structure unit having an aromatic structure; and a photoacid generator, of which one or both of a core layer and a cladding layer are formed of a cured product.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: December 7, 2010
    Assignee: NEC Corporation
    Inventors: Katsumi Maeda, Kaichiro Nakano
  • Patent number: 7842243
    Abstract: A chemical sensor based on an indicator dye wherein a light transmissive element containing the indicator dye is made of a hygroscopic polymer. The polymer may be, for example, a polyimide or PMMA or other polymer. In an alternative embodiment the light transmissive element is doped with metal nanocolloidal particles. One embodiment may include a reference photodiode and differential amplifier to compensate for the fluctuations of the intensity of the light source. The light source may be pulse modulated. The sensor may include calibration means comprising a reference sample of the chemical to be detected and a precision delivery means. A method of fabricating the polymer and metal nanocolloid is disclosed wherein the nanocolloid is produced by generating a pulsed laser plasma in a suspension of metal particles and an organic solvent and adding the resulting solvent colloid to a solution containing the polymer.
    Type: Grant
    Filed: February 17, 2007
    Date of Patent: November 30, 2010
    Inventors: Sergey Sergeyevich Sarkisov, Wiaczeslaw Mazuruk
  • Patent number: 7813615
    Abstract: Disclosed herein is a flexible film optical waveguide, which is in flexible film form and includes upper and lower cladding layers, each of which is formed of an organic-inorganic hybrid material, and a core layer provided between the upper and lower cladding layers and formed of an organic-inorganic hybrid material having a refractive index higher than that of the organic-inorganic hybrid material of each of the upper and lower cladding layers. In addition, a method of fabricating such a flexible film optical waveguide is also provided.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: October 12, 2010
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Byeong-Soo Bae, Woo-Soo Kim, Dong-Jun Kang
  • Patent number: 7799424
    Abstract: A resin composition includes an aliphatic polyester resin. The resin has carboxyl groups at the end termini of the molecular chain and at least one compound represented by the general formula (I), the compound being added to the resin to cap a part or all of the carboxyl groups at the end termini of the molecular chain of the resin. A process for producing a fiber includes mixing a pellet comprising an aliphatic polyester resin having carboxyl groups at the end termini of the molecular chain with a compound represented by the general formula (I) so that the content of the compound becomes 0.1 to 8% by weight and then melt-spinning the resulting mixture under the conditions of a spinning temperature of 200 to 250 C.°, a melt residence time of 180 to 1800 sec and a spinning rate of 500 to 10000 m/min.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: September 21, 2010
    Assignee: Toray Industries, Inc.
    Inventors: Katsuhiko Mochiduki, Takaaki Mihara
  • Patent number: 7796855
    Abstract: An electro-optic waveguide device comprising an electro-optic polymer core and at least one crosslinked polymer clad, wherein the crosslinked polymer clad is comprised of a first constitutional unit derived from a compound having the formula wherein, m=0-6; n=0-1; q=1-3; y=0-3; Ar1 is an aryl or heteroaryl group; and independently at each occurrence p=0-1; R is an alkyl, heteroalkyl, aryl, or heteroaryl group; Ar2 is an aryl or heteroaryl group; and X is a crosslinkable group. The R group may be an alkyl or heteroalkyl group with at least 6 atoms in a straight chain. In some embodiments, the R group is an alkoxy capped oligoalkylene group. Other embodiments include a polymer comprising a first constitutional unit derived from a compound having the formula described above.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: September 14, 2010
    Inventors: Lixin Zheng, Danliang Jin
  • Patent number: 7764855
    Abstract: An optical fiber having: a) a glass portion; and b) at least one protective coating layer disposed to surround the glass portion, the protective coating layer having a modulus of elasticity value between ?40° C. and +60° C. between 5 MPa and 600 MPa, preferably not higher than 500 MPa, more preferably not higher than 450 MPa and much more preferably not higher than 300. Preferably the protective coating layer is a single protective coating layer which is disposed in contact with the glass portion.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: July 27, 2010
    Assignee: Prysmian Cavi e Sistemi Energia S.R.L.
    Inventors: Giacomo Stefano Roba, Lidia Terruzzi, Sabrina Fogliani, Luca Castellani, Emiliano Resmini, Raffaella Donetti, Lisa Grassi
  • Publication number: 20100172623
    Abstract: A compound containing a crosslinkable moiety, a curable prepolymer, a blend, and a polymer sheet obtained therefrom, and an optical waveguide for optical interconnection. The compound is represented by the formula below: Ar—H wherein Ar includes a crosslinkable moiety at one end, a moiety selected from the group consisting of —O—, —S—, —COO—, —CO—, —COS—, —SO2—, and —NH—, and one or two repeating units selected from the group consisting of the following repeating units: wherein A in the repeating unit is carbon or nitrogen, and X is hydrogen or halogen. At least one of the core and the cladding in the optical waveguide includes the polymer sheet.
    Type: Application
    Filed: December 9, 2009
    Publication date: July 8, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Seung Koo PARK, Jung Jin Ju, Suntak Park, Jong-Moo Lee, Min-Su Kim, Jin Tae Kim, Joong-Seon Choe
  • Publication number: 20100166380
    Abstract: A polymer optical waveguide includes: at least one core through which light propagates; a cladding which surrounds the core and has a refractive index less than that of the core; at least one conductive wire being provided on at least one side of the cladding, the polymer optical waveguide having a sheet shape, the conductive wire including a conductive layer which is provided on the at least one side of the cladding and being partitioned by a first groove, and the core being formed between second grooves each of which is formed in at least a part of the first groove.
    Type: Application
    Filed: August 18, 2009
    Publication date: July 1, 2010
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Akira FUJII, Shigemi OHTSU, Keishi SHIMIZU, Kazutoshi YATSUDA, Toshihiko SUZUKI, Masahiro IGUSA
  • Publication number: 20100158441
    Abstract: A slow light optical dye doped polymer device for slowing the group velocity of an optical signal. In an embodiment, the slow light dye doped polymer device is a slow group velocity optical/near infrared (NIR) device formed of a substrate supporting a dye doped polymer waveguide layer sandwiched between two optically constraining polymer cladding layers. The waveguide layer includes at least one waveguide which supports Moiré grating slow light structures for slowing the group velocity of an optical signal traveling therein. In another embodiment, the slow light optical polymer device includes the slow group velocity optical portion and a slow phase velocity electrical portion. The slow phase velocity electrical portion is formed of a series cascade of combined inductive and capacitive elements generating an electrical field in a field region for transmitting encoded information between the optical portion and the electrical portion.
    Type: Application
    Filed: February 12, 2010
    Publication date: June 24, 2010
    Inventors: Alan R. Mickelson, Edward M. McKenna, JR.
  • Publication number: 20100150506
    Abstract: There are provided polymer optical waveguide forming material, a polymer optical waveguide and a manufacturing method of the polymer optical waveguide which reduces transmission loss with good processability. The polymer optical waveguide forming material is comprised of a polymer containing norbornene-based structural units including a hydroxy group; a photoacid generator for generating acid by irradiation of an actinic ray; and a monomer component polymerized by acid generated by said photoacid generator.
    Type: Application
    Filed: February 29, 2008
    Publication date: June 17, 2010
    Applicant: NEC Corporation
    Inventors: Katsumi Maeda, Kaichiro Nakano
  • Patent number: 7729587
    Abstract: Disclosed is a method of producing a planar multimode optical waveguide by direct photo-patterning and, more particularly, to an optical waveguide material and a method of producing the same. It is possible to control the refractive index of the optical waveguide, and the optical waveguide has a desirable refractive index distribution throughout different dielectric regions. In the method, it is unnecessary to conduct processes of forming a clad layer and of etching a core layer, thus a production process is simplified. The method comprises coating a photosensitive hybrid material having a refractive index or a volume changed by light radiation, in a thickness of 10 microns or more, and radiating light having a predetermined wavelength onto the coated photosensitive hybrid material to form the multimode optical waveguide due to a change in refractive index of a portion onto which light is radiated.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: June 1, 2010
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Byeong-Soo Bae, Dong-Jun Kang, Jin-Ki Kim, Woo-Soo Kim
  • Patent number: 7696295
    Abstract: The present invention relates to condensation products of silicic acid derivatives usable especially in optical waveguides and particularly to a condensation product obtained by condensing a silane diol compound (A) of the general formula (1): R12Si(OR2)2 (1) wherein R1 represents a group having at least one aromatic group and having 6 to 20 carbon atoms, and R2 represents hydrogen (H which may also be a heavy hydrogen D), with a modified silane compound (B) of the general formula (2): R3Si(OR4)3 (2) wherein R3 represents an organic group having at least one C?C double bond; and R4 represents a group of CnH2n+1 (n=a number of 1 or 2), in the molar ratio 1.1 to 1.4:1 [(A):(B)], and to a process for producing the same condensation product, as well as to an optical waveguide device fabricated using the same condensation product.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: April 13, 2010
    Assignees: Panasonic Electric Works Co., Ltd., Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V.
    Inventors: Naoyuki Kondo, Takao Hayashi, Michael Popall, Lothar Froehlich, Ruth Houbertz, Sebastien Cochet
  • Patent number: 7697809
    Abstract: An optical fiber, comprising: (i) a core having a core center and a radius or a width a, (ii) a cladding surrounding the core, and (iii) at least one stress member situated proximate to the fiber core within the cladding, said stress member comprising silica co-doped with F and at least one dopant selected from the list consisting of: GeO2, P2O5, Y2O3, TiO2 and Al2O3, wherein distance b between the stress member and the core center satisfies the following equation: 1?b/a<2.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: April 13, 2010
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Xin Chen, Joohyun Koh, Ming-Jun Li, Daniel Aloysius Nolan
  • Patent number: 7693383
    Abstract: Provided are polymers comprising the condensation product of silicon-containing reactants. Also provided are compositions suitable for use in forming optical waveguides which include such polymers, as well as optical waveguides formed from such polymers. The polymers, compositions and optical waveguides have particular use in the formation of printed wiring boards having electrical and optical functionality.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: April 6, 2010
    Assignee: Rohm and Haas Electronics Materials
    Inventors: Hai Bin Zheng, Philip D. Knudsen, James G. Shelnut
  • Patent number: 7693382
    Abstract: A device for optical communication includes an organic optical waveguide having a core part and a cladding part. The core part and the cladding part comprise a polymer material, and the cladding part includes particles.
    Type: Grant
    Filed: April 8, 2005
    Date of Patent: April 6, 2010
    Assignee: Ibiden Co., Ltd.
    Inventor: Motoo Asai
  • Patent number: 7660505
    Abstract: An optical fiber comprising a flame retardant UV light-curable tight-buffer coating coated onto the fiber, wherein said tight-buffer coating is substantially halogen-free, and has a limiting oxygen index of at least about 22%, and wherein said tight-buffer coating is removable from said fiber with a strip-force of less than about 1800 grams when the fiber is upjacketed with said coating at a line speed of at least 300 m/min.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: February 9, 2010
    Assignee: DSM IP Assets, B.V.
    Inventors: David M. Chase, Kenneth Dake, Kelly A. Hawkinson, Jack Kelly, Edward J. Murphy
  • Patent number: 7660503
    Abstract: The present invention relates to a flexible optical waveguide including a core portion and a cladding layer which has an increment of insertion loss of 0.1 dB or less upon subjecting the waveguide to a 360° bending test at a radius of curvature of 2 mm, as well as an optical module using the flexible optical waveguide. There are provided a flexible optical waveguide having high flexing property, heat resistance and transparency, as well as an optical module using the flexible optical waveguide.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: February 9, 2010
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Tatsuya Makino, Atsushi Takahashi, Hiroshi Masuda, Toshihiko Takasaki, Tomoaki Shibata, Masami Ochiai
  • Publication number: 20100003004
    Abstract: A resin composition for an optical waveguide is provided, which comprises: an epoxy compound represented by the following general formula (1): wherein m is 0 or a positive integer, n is 0 or a positive integer, R and R? which may be the same or different are each represented by the following formula (2) or (3), wherein c is a positive integer of 1 to 3 and each one of c may be the same or different, and X is represented by the following formula (4): wherein a is an integer of 0 to 2, and b is a positive integer of 1 to 3, and satisfy a condition of a+b=3, and a is 1 to 3 in the epoxy compound represented by the formula (1); and a photoacid generator. The resin composition has a lower viscosity, and is excellent in flexibility and moisture absorption resistance. An optical waveguide produced by employing the resin composition is also provided.
    Type: Application
    Filed: July 1, 2009
    Publication date: January 7, 2010
    Applicants: NITTO DENKO CORPORATION, TOHTO KASEI CO., LTD.
    Inventors: Takami Hikita, Yusuke Shimizu, Kazuo Ishihara
  • Patent number: 7623751
    Abstract: Using a compound of the following formula (1) makes it possible to provide an optical device having a reduced transmission loss. wherein R1 is an alkyl group having from 1 to 3 carbon atoms and having at least one fluorine atom, and R2 is an alkylene group having 1 or 2 carbon atoms.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: November 24, 2009
    Assignee: FUJIFILM Corporation
    Inventors: Hirokazu Kyota, Hiroki Sasaki
  • Patent number: 7620279
    Abstract: A light guide (1) formed from an unclad flexible polyurethane fiber produces significant side scattering (2) over distances of up to several meters. The polyurethane fiber is in the form of a solid fiber or a tube and may comprise light scattering particles. The polyurethane fiber may comprise a transparent flexible polyurethane UV resistant outer cladding. Embodiments include illuminated shoe laces, a power cord safety indicator, an illuminated dental suction tube and a dental curing tip.
    Type: Grant
    Filed: December 16, 2005
    Date of Patent: November 17, 2009
    Assignee: Poly Optics Australia Pty. Ltd.
    Inventor: Edmond Kenneth Joseph
  • Patent number: 7574097
    Abstract: A polysilane composition characterized as containing a polysilane compound and a silicone compound in the ratio (polysilane compound:silicon compound) by weight of 80:20-5:95, and also containing an organic peroxide in the amount of 1-30 parts by weight, based on 100 parts by weight of the polysilane compound and silicone compound, wherein the silicone compound contains 40-100% by weight of a double bond containing silicon compound.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: August 11, 2009
    Assignee: Nippon Paint Co., Ltd.
    Inventors: Kazunori Aoi, Emi Watanabe, Hiroshi Oda, Yoshifumi Ichinose
  • Patent number: 7539381
    Abstract: An optical fiber includes a core and a cladding, said cladding having a refractive index nc a first coating directly contacting the cladding of said fiber, said coating having a thickness of less than 10 microns, said coating having a refractive index delta %=100×(ni2?nc2)/2ni2 less than ?1 percent. In another aspect, an optical fiber includes a core and a cladding, said cladding having a refractive index nc, a first coating directly contacting the cladding of said fiber, said fiber comprising a glass diameter less than 100 microns, said coating having a thickness of at least 8 microns, said coating having a refractive index delta %=100×(ni2?nc2)/2ni2 less than ?1 percent.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: May 26, 2009
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Joohyun Koh, Ming-Jun Li, Anping Liu, Jianguo Wang
  • Patent number: 7512309
    Abstract: There is provided a polymer composition comprising 5 to 100% by mass of a unit (A) of a lactone compound represented by a general formula (1) and 0 to 95% by mass of a unit (B) of (meth)acrylate as constitutional units, wherein the unit (A) of a lactone compound comprises a unit of an (S) isomer represented by a general formula (2) and a unit of an (R) isomer represented by a general formula (3) at a mass ratio of from 70/30 to 30/70; and wherein the polymer composition has a total light scattering loss of not more than 100 dB/km. The polymer composition is excellent in heat resistance and transparency.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: March 31, 2009
    Assignee: Mitsubishi Rayon Co, Ltd.
    Inventors: Amane Aoyagi, Yoshihiro Tsukamoto, Keiji Iwasaka, Keiichi Sakashita
  • Patent number: 7509018
    Abstract: A cylindrical outer clad section is formed by melt-extrusion molding of polyvinylidene fluoride (PVDF) having a molecular structure in which the number of defect bonds of successive CF2 units and successive CH2 units constitutes not less than 4% with respect to a total number of bonds of CF2 units and CH2 units. Next, an inner clad section forming material is poured into a hollow portion of the outer clad section and polymerized to form a cylindrical inner clad section. A core section forming material is filled in a hollow portion of the inner clad section and polymerized to form a core section. Thus, a preform is fabricated. The preform is heat-drawn to obtain a POF. The POF has an outer clad in which small spherocrystals are formed. Average roughness Ra of an inner wall of the outer clad is less than 0.10 ?m.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: March 24, 2009
    Assignee: FUJIFILM Corporation
    Inventors: Yukio Shirokura, Kousuke Yamaki
  • Patent number: 7499614
    Abstract: A method of producing opto-electronic cards and printed circuit boards which are adapted to provide for passive alignment of VCSELs to waveguides. Also provided are opto-electronic cards and printed circuit boards which incorporate structure providing for the passive alignment of VCSELs to waveguides.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: March 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: Eric A. Johnson, David V. Caletka
  • Publication number: 20090046986
    Abstract: The present invention has an object to provide a photosensitive resin composition for optical waveguide formation, which has low transmission loss and can form a waveguide pattern with high shape accuracy at low cost; an optical waveguide; and a method for producing an optical waveguide. The present invention provides a photosensitive resin composition for optical waveguide formation comprising at least: a polymer containing at least a (meth)acrylate structure unit having an epoxy structure, and a (meth)acrylate structure unit having a lactone structure and/or a vinyl monomer structure unit having an aromatic structure; and a photoacid generator, of which one or both of a core layer and a cladding layer are formed of a cured product.
    Type: Application
    Filed: November 1, 2006
    Publication date: February 19, 2009
    Applicant: NEC CORPORATION
    Inventors: Katsumi Maeda, Kaichiro Nakano
  • Patent number: 7492978
    Abstract: A novel single point leaky waveguide structure and its use as an optical sensor for the detection of particles is disclosed. The waveguide structure is fabricated to increase the overlap of the evanescent field extension from the sensor surface with particles in the bulk solution of a flowing system so as to place most of the volume of the particles within the evanescent field. Increasing the overlap of the evanescent field with the particles and permitting mode propagation along the direction of flow for a few millimetres provides an effective interrogation approach for multiple particle detection in a single flow channel.
    Type: Grant
    Filed: October 7, 2002
    Date of Patent: February 17, 2009
    Assignee: The Secretary of State for Defence
    Inventors: Mohammed Zourob, Stephan Mohr, Bernard James Treves Brown, Peter Robert Fielden, Nicholas John Goddard
  • Publication number: 20090010603
    Abstract: To provide to a resin composition for an optical packaging material having a coefficient of thermal expansion approximately same as that of quartz and Pyrex (registered trade name) and capable of providing an optical packaging material exhibiting excellent flame retardancy and an optical packaging component, and an optical module and its production method. A molded body, an optical packaging component and an optical module having a low coefficient of thermal expansion and excellent flame retardancy can be obtained using a resin composition for an optical packaging material comprising a resin and inorganic fine particles which are made of a hydrolyzed condensate compound of an alkoxide compound and/or a carboxylic acid salt compound and have an average radius of gyration of 50 nm or smaller.
    Type: Application
    Filed: October 7, 2005
    Publication date: January 8, 2009
    Inventors: Takuo Sugioka, Yasunori Tsujino, Kozo Tajiri, Yoshinobu Asako
  • Patent number: 7466893
    Abstract: Disclosed is an optical waveguide-forming curable resin composition and optical waveguide-forming curable dry film which are capable of forming cured resin articles that have high heat resistance, excellent mechanical strength and high transparency, and possess properties required for forming optical waveguides, such as low thermal expansion, low transmission loss, etc. The present invention provides a curable resin composition for forming an optical waveguide, the composition comprising a hydrolyzable silyl-containing silane-modified epoxy resin (A) having an average of at least one hydrolyzable silyl group and an average of at least one epoxy group per molecule; and a resin (B) having, per molecule, an average of at least one functional group that is reactive with an epoxy group; and an optical waveguide-forming curable dry film formed using the resin composition.
    Type: Grant
    Filed: February 24, 2005
    Date of Patent: December 16, 2008
    Assignee: Kansai Paint Co., Ltd.
    Inventors: Takahiro Higuchi, Genji Imai
  • Patent number: 7457507
    Abstract: An organometallic polymer material is obtained which excels in translucency, shows improved hardness after it is cured and exhibits high reliability at high temperature and high humidity. Characteristically, the organometallic polymer material contains an organometallic polymer having an —M—O—M— bond (M indicates a metal atom), a metal alkoxide having a single hydrolyzable group and/or its hydrolysate and an organic polymer having a urethane bond and a methacryloxy or acryloxy group, and preferably further contains an organic anhydride and/or an organic acid.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: November 25, 2008
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Keiichi Kuramoto, Hitoshi Hirano, Nobuhiko Hayashi, Mitsuaki Matsumoto
  • Publication number: 20080284320
    Abstract: The invention is based on the idea of providing a light emitting diode (OLED) device which contains a substrate with a photonic crystal, whereby the formed film structure induces enhancement of the liberation of photons trapped inside the light emitting device structure. The photonic crystal structure is a film structure on a substrate produced using a combination of high and low refractive index materials, at least one of the materials being based on a liquid phase deposited metal-oxide or metalloid oxide material. By means of the invention light trapped due to total internal reflection in a waveguide acting light emitting structure can be extracted efficiently from the device by introducing the photonic crystal device structure between the substrate and conductive anode layer.
    Type: Application
    Filed: June 15, 2006
    Publication date: November 20, 2008
    Applicant: BRAGGONE OY
    Inventor: Ari Karkkainen
  • Patent number: 7447391
    Abstract: A biological or chemical optical sensing device comprises at least one planar micro-resonator structure included in a light emitting waveguide, and at least one biological or chemical probe bound to at least a part of the micro-resonator structure, the probe operative to bind specifically and selectively to a respective target substance, whereby the specific and selective binding results in a parameter change in light emitted from the waveguide. In one embodiment, the micro-resonator is linear. In some embodiments, the sensing device is active, the waveguide including at least one photoluminescent material operative to be remotely pumped by a remote optical source, and the parameter change, which may include a spectral change or a quality-factor change, may be remotely read by an optical reader.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: November 4, 2008
    Assignee: Tel Aviv University Future Technology Ltd.
    Inventors: Asher Peled, Menachem Nathan, Shlomo Ruschin, Tali Zohar
  • Patent number: 7440671
    Abstract: Materials transparent to terahertz waves are very limited, and it is difficult to obtain the required performance by selecting the material. Further, it is also difficult to search for a novel material. Therefore, by letting a known material transparent to terahertz waves have a photonic crystal structure and controlling the structure, an optical waveguide having the required properties is provided. An optical waveguide for propagation of far-infrared radiation in the terahertz region, which optical waveguide is made of a fluorinated amorphous polymer. Particularly preferred is a polymer having a fluorinated aliphatic ring structure in its main chain, obtained by cyclopolymerization of a fluorinated monomer having at least two polymerizable double bonds.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: October 21, 2008
    Assignee: Asahi Glass Company, Limited
    Inventors: Nobuhiko Sarukura, Ko Aosaki, Hideki Sato, Yoshihiko Sakane
  • Publication number: 20080232762
    Abstract: An organometallic polymer material is obtained which excels in translucency, shows improved hardness after it is cured and exhibits high reliability at high temperature and high humidity. Characteristically, the organometallic polymer material contains an organometallic polymer having an -M-O-M- bond (M indicates a metal atom), a metal alkoxide having a single hydrolyzable group and/or its hydrolysate and an organic polymer having a urethane bond and a methacryloxy or acryloxy group, and preferably further contains an organic anhydride and/or an organic acid.
    Type: Application
    Filed: November 30, 2005
    Publication date: September 25, 2008
    Applicant: SANYO ELECTRIC CO., LTD.
    Inventors: Keiichi Kuramoto, Hitoshi Hirano, Nobuhiko Hayashi, Mitsuaki Matsumoto
  • Patent number: 7412142
    Abstract: An optical fiber comprising: (i) a silica based passive core having a first index of refraction n1; (ii) a silica based cladding surrounding the core and having a second index of refraction n2, such that n1>n2, said cladding having at least one stress rod and at least one air hole extending longitudinally through the length of said optical fiber; and (iii) wherein said optical fiber supports a single polarization mode or poses polarization maintaining properties within the operating wavelength range.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: August 12, 2008
    Assignee: Corning Incorporated
    Inventors: Xin Chen, Joohyun Koh, Ming-Jun Li, Daniel Aloysius Nolan
  • Patent number: 7409139
    Abstract: A halogenated polyamide acid composition containing a halogenated polyamide acid, a metal oxide precursor, a catalyst of reaction of generating a metal oxide from the precursor, and/or a coupling agent having a reactive group. A halogenated polyimide film is obtained by, for example, carrying out the heat treatment of the halogenated polyamide acid composition. The halogenated polyimide film has a refractive index at wavelength of, for example, 1,550 nm of 1.520 or lower. Further, an optical waveguide uses the halogenated polyimide film as at least one of a core layer and a clad layer, and a relative refractive index difference between the core layer and the clad layer of the optical waveguide is, for example, 0.6 or greater. An optical waveguide device contains such an optical waveguide.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: August 5, 2008
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Tomomi Makino, Kozo Tajiri, Shinichi Goto
  • Patent number: 7376328
    Abstract: A photosensitive resin composition for optical waveguide formation, comprising: (A) a di(meth)acrylate having the structure represented by the following general formula (1): (wherein R1 is —(OCH2CH2)m—, —(OCH(CH3)CH2)m—, or —OCH2CH(OH)CH2—; X is —C(CH3)2—, —CH2—, —O—, or —SO2—; Y is a hydrogen atom or a halogen atom; m is an integer of 0 to 4); (B) a mono(meth)acrylate having the structure represented by the following general formula (2): (wherein R2 is —(OCH2CH2)p—, —(OCH(CH3)CH2)p—, or —OCH2CH(OH)CH2—; Y is a hydrogen atom, a halogen atom, Ph-C(CH3)2—, Ph-, or an alkyl group having 1 to 20 carbon atoms; p is an integer of 0 to 4; Ph is a phenyl group); and (C) a photoradical polymerization initiator. The composition has excellent patterning ability, refractive index, heat resistance, and transmission characteristic.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: May 20, 2008
    Assignee: JSR Corporation
    Inventors: Hideaki Takase, Yuuichi Eriyama
  • Patent number: 7372283
    Abstract: A probe navigation method, a navigation device, and a defect inspection device wherein in a charged particle beam system provided with probes for electrical characteristics evaluation, probing can be easily carried out regardless of the equipment user's level of skill are provided. To attain this object, probes and a test piece stage on which a test piece is placed are driven by independent driving means. Further, a large stage driving means which integrally drives the probes and the test piece stage is provided. In addition, CAD navigation is adopted. This enhances the equipment users' convenience during probing.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: May 13, 2008
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Takashi Furukawa, Takayuki Mizuno, Eiichi Hazaki, Hirofumi Sato
  • Patent number: 7362429
    Abstract: The present invention is directed to the use of a light absorbing wall material to eliminate stray light paths in light-guiding structures, such as those used for HPLC absorbance detection. More specifically, the present invention relates to the use of carbon-doped Teflon® AF, or “black Teflon® AF,” for all or part of the walls of a light-guiding flowcell adapted for use in HPLC absorbance detection.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: April 22, 2008
    Assignee: Waters Investments Limited
    Inventor: Anthony C. Gilby
  • Publication number: 20080075413
    Abstract: A polymeric cladding material, cladded waveguides, devices that include cladded waveguides, and methods for using the cladding material. The polymeric cladding material is a thermally reversibly crosslinkable polymer having high conductivity above its glass transition temperature.
    Type: Application
    Filed: August 18, 2005
    Publication date: March 27, 2008
    Inventors: Kwan-Yue Jen, Jingdong Luo, Sen Liu
  • Patent number: 7345134
    Abstract: A polymer that includes a constitutional unit contributed by (a) a first monomer comprising a halocatechol diacrylate, a halocatechol diacrylate, a haloresorcinol diacrylate, or a halohydroquinone diacrylate, and (b) a second monomer comprising a charge transporting moiety.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: March 18, 2008
    Assignee: Lumera Corporation
    Inventor: Dan L. Jin
  • Patent number: 7346259
    Abstract: A polymeric cladding material, cladded waveguides, devices that include cladded waveguides, and methods for using the cladding material. The polymeric cladding material is a thermally reversibly crosslinkable polymer having high conductivity above its glass transition temperature.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: March 18, 2008
    Assignee: University of Washington
    Inventors: Kwan-Yue Jen, Jingdong Luo, Sen Liu
  • Patent number: 7330631
    Abstract: A method including poling an optical waveguide device including an optical waveguide core, an electrode, and an organically modified sol-gel layer.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: February 12, 2008
    Assignee: Lumera Corporation
    Inventors: Louis J. Bintz, Raluca Dinu, Danliang Jin
  • Patent number: 7317847
    Abstract: The invention relates to an asymmetric optical fiber that includes a core and a functional cladding that surrounds substantially half of the core along at least a portion of the fiber. The asymmetric optical fiber may include substantially parallel electrodes disposed on a face of the optical fiber.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: January 8, 2008
    Assignee: KVH Industries, Inc.
    Inventors: Liming Wang, Thomas D. Monte
  • Patent number: 7302119
    Abstract: An optical phase modulator comprising a plurality of non-polarizing waveguides having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layer of cladding material having higher indices of refraction than the core for non-guided mode, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a plurality of non-polarizing waveguide(s), a waveguide having a non-polarizing non-modulating region and a non-polarizing modulating region, coupler/splitter(s), electrode(s), a waveguide configuration including a first non-polarizing waveguide, a second polarizing waveguide and a third waveguide, and at least two optical fiber pigtails where one is coupled to a second and third waveguide.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: November 27, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley, Geoffrey A. Lindsay
  • Patent number: 7283715
    Abstract: An optical waveguide comprising a substrate, a lower clad layer on the substrate, a core layer and an upper clad layer, at least one of the lower clad layer, the core layer and the upper clad layer is formed of a cured product of a photo-curable organopolysiloxane composition comprising (A) a (meth)acryloyloxy group-containing organopolysiloxane of the following average compositional formula (1): (CH2?CR1COO(CH2)n)a(Ph)bR2c(R3O)dSiO(4-a-b-c-d)/2??(1) wherein R1 is hydrogen or methyl, R2 is an C1–C8 alkyl or C2–C8 alkenyl group, Ph is phenyl, R3 is hydrogen or an unsubstituted or alkoxy-substituted C1–C4 alkyl group, subscripts a, b, c and d are numbers satisfying: 0.05?a?0.9, 0.1?b?0.9, 0?c?0.2, 0<d?0.5, and 0.8?a+b+c+d?1.5, and n is an integer of 2 to 5, and having a weight average molecular weight of 1,000 to 100,000 as measured by GPC using a polystyrene standard, and (B) a photosensitizer.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: October 16, 2007
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Kinya Kodama, Tsutomu Kashiwagi, Toshio Shiobara
  • Patent number: 7274854
    Abstract: An optical waveguide has a core layer made by a film containing a cross-linked polyamide based on a repeating unit of general formula (I) and a method for the production thereof.
    Type: Grant
    Filed: June 27, 2002
    Date of Patent: September 25, 2007
    Assignee: Pirelli & C. S.p.A.
    Inventors: Antonio Zaopo, Yuri A. Dubitsky, Marco Colombo
  • Patent number: 7260297
    Abstract: The present invention describes a fluorescent dye doped polymer based optical wave-guide structure. The described polymers can be used to fabricate a range of display elements and illumination systems which work without the use of external electrical power. This is due to the process of the fluorescent dyes absorbing ambient light and then subsequently emitting light which is conducted by the polymer host material to a point where it is emitted. The emitted light can be of a range of colours depending upon the type of dye that polymers are doped with. There is a constant contrast between the light power flux emitted for the wave-guide structure and the light power flux of the ambient light. There is also provided a method in which a dielectric stack mirror layer fabricated on the surface of the polymer which can be used to improve the efficiency and the contrast of those optical elements.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: August 21, 2007
    Assignee: The Court of Napier University
    Inventors: Janos Hajto, Colin Hindle, Andrew Graham
  • Patent number: 7239765
    Abstract: An optical phase modulator comprising a plurality of polarizing waveguides having a layered stack including a core between at least one layer of cladding material, wherein the core is constructed of electro-optic material(s), wherein the layers of cladding materials having lower indices of refraction than the core for guided mode, wherein the layers of cladding materials having higher indices of refraction than the core for non-guided mode, at least one electrode coupled to at least one waveguide including a modulating polarizing region, at least one waveguide having a non-modulating region and a modulating region, a substrate dimensioned and configured to integrate a plurality of optical components, wherein the optical components include a plurality of polarizing waveguide(s), a waveguide having a non-modulating region and a modulating region, coupler/splitter(s), electrode(s), and a waveguide configuration including a first polarizing waveguide, a second polarizing waveguide and a third polarizing waveguide
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: July 3, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Michael D Bramson, Paul R. Ashley, Geoffrey A. Lindsay
  • Patent number: 7231127
    Abstract: Optical waveguide devices that include a polymer clad and a polymer core where the clad includes constitutional units contributed by (a) a monomer selected from the group consisting of a halocatechol diacrylate, a haloresorcinol diacrylate, and a haldhydroquinone diacrylate, and/or (b) a charge transport moiety.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: June 12, 2007
    Assignee: Lumera Corporation
    Inventor: Dan L. Jin