Single Pole Multiple Throw (relay Switch) Patents (Class 385/22)
  • Patent number: 8175426
    Abstract: An optical fiber switch which may include first and second angled optical fibers having respective first and second end faces. Each of the first and second angled optical fibers may include a core having a core index of refraction, and a cladding surrounding the core and having a cladding index of refraction different than the core index of refraction. The optical fiber switch may further include a first index matching elastomeric solid layer having a proximal face coupled to the first end face and a distal face opposite the proximal face to be repeatably optically coupled to the second end face. The first index matching elastomeric solid layer may have an index of refraction profile matching an index of refraction of the core and the cladding. The optical fiber switch may also include at least one actuator for relatively moving the first and second angled optical fibers between a coupled position and an uncoupled position.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: May 8, 2012
    Assignee: Harris Corporation
    Inventor: Lawrence Wayne Shacklette
  • Patent number: 8175425
    Abstract: An approach is provided for an automated patch panel. A command is received to change a connection state of an optic patch cord. A robotic arm is controlled to change the connection state of the optic patch cord with respect to a particular port of a plurality of ports disposed about a disk-shaped face of a docking panel.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: May 8, 2012
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: David Z. Chen
  • Patent number: 8155484
    Abstract: An all-optical device for data processing is presented. The device comprises at least one optical waveguide unit (10) made of linear media and configured to provide multiple total internal reflections of light passing therethrough, the waveguide unit (10) comprising a waveguide portion (11) for interaction between reflected light components of input light; an input aperture arrangement (14) formed by at least one input aperture at an input facet of the waveguide portion (11); and an output aperture arrangement form by at least one output aperture at an output facet of the waveguide portion.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: April 10, 2012
    Assignees: Bar Ilan University, Ramot At Tel-Aviv University Ltd.
    Inventors: Zeev Zalevsky, Arkadi Roudnitski, Menachem Natan
  • Patent number: 8139904
    Abstract: A method of implementing optical deflection switching includes directing a tuning operation at a specific region of coupled optical resonators coupled to an input port, a first output port and a second output port, the coupled optical resonator including a plurality of cascaded unit cells; wherein the tuning operation interrupts a resonant coupling between one or more of the unit cells of the coupled resonators so as to cause an input optical signal from the input port to be directed from the first output port to the second output port.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: William M. Green, Fengnian Xia, Yurii Vlasov
  • Patent number: 8131124
    Abstract: Optical guided mode fast 1×2 and 2×2 spatial switches are provided that can be used in multimedia communication networks. These switches require a relative refractive index change of only 0.0001˜0.0002 and can be realized using Lithium Niobate, Polymers, semiconductors, etc. Extinction ratios of these switches are made to be better than 45 dB, by introductions of a rear edge adjusted broken electrode and a blocker electrode into their architecture. Optical losses are less than 3 dB, and excellent switching characteristics are achieved by suppressing cross talk to ˜50 dB. The two output ports of the 1×2 (2×2) switch are made to be spatially perpendicular (in opposition) by introduction of air grooves, allowing for two-dimensional integration of unit switches into matrices. System applications of the switch are made flexible due to a discrete drive requirement for each optical input to the 2×2 switch.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: March 6, 2012
    Inventor: Jamshid Nayyer
  • Patent number: 8131123
    Abstract: An optical system comprising two or more optical switches co-packaged together comprising discrete sets of input fiber ports (N per set) and an output fiber port (1 per set), and wherein ?n from said set of multiple input fiber ports (N) is focused on ?n mirror via the use of shared free space optics, wherein at least a first array of MEMS mirrors is utilized to select and switch selected wavelengths from the first set of input fiber ports (N) to an output fiber port of the same set, and wherein at least a second array of MEMS mirrors using and sharing the same free space optics is utilized to select individual wavelengths or spectral components from its input fiber ports to send to its output fiber port for optical power or other monitoring purposes, thus, enabling an N×1, or alternatively a 1×N switch capable of internal feedback monitoring.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: March 6, 2012
    Assignee: Olympus Corporation
    Inventors: Harry Wayne Presley, Michael L. Nagy
  • Patent number: 8125701
    Abstract: A detection means (52) detects optimum driving voltages of a mirror device. A correction means (53) corrects driving voltage values in a table (54b) based on the optimum driving voltages. This makes it possible to drive the mirror to an optimum pivot angle even when the optimum pivot angle of the mirror changes due to, e.g., mirror drift or a change in the environment such as temperature.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: February 28, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Johji Yamaguchi, Naru Nemoto, Shingo Uchiyama, Tsuyoshi Yamamoto
  • Patent number: 8064036
    Abstract: An optical device has the structure to perform switching and attenuation of an optical beam with reduced polarization dependent loss (PDL). The optical device includes a birefringent displacer and two liquid crystal (LC) structures. The first LC structure is used to condition s-polarized components of the optical beam and the second LC structure is used to condition p-polarized components of the optical beam. Each LC structure has a separate control electrode so that the s-polarized components of the optical beam and the p-polarized components of the optical beam can be conditioned differently and in such a manner that reduces PDL. The optical device may be configured for processing multiple input light beams, such as the multiple wavelength channels de-multiplexed from a wavelength division multiplexed (WDM) optical signal.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 22, 2011
    Assignee: Oclaro (North America), Inc.
    Inventors: Xuefeng Yue, Christopher Lin, Ruipeng Sun, Ruibo Wang
  • Patent number: 8055106
    Abstract: An optical communication device provided with digital optical switching includes a substrate; and at least one optical switch including a first optical switch composed of a main core disposed on the substrate and extending along a first direction, the main core including an optical input part and a transmission output part sequentially arranged along the first direction; a heater extending along a second direction to cross the main core; and a reflection output part extending along a third direction from a central point of the main core. The first direction and the second direction define a first angle there between, the second direction and the third direction define a second angle there between, and the first angle is equal to the second angle. An optical signal is outputted through the reflection output part or the transmission output part in response to heat from operation of the heater.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: November 8, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Young-Tak Han, Jang Uk Shin, Sang-Pil Han, Sang Ho Park, Yongsoon Baek
  • Publication number: 20110236015
    Abstract: Terminals of upstream and downstream sides of an in-service line and a detour line are connected by optical couplers. An optical oscilloscope is connected to one optical coupler, and a chirped pulse light source is connected to the other optical coupler to thereby form dualized lines. The detour line includes an optical line length adjuster for compensating for the phase difference of optical transmission signals that occurs because of the optical line length difference with the in-service line. Pulse light in which an optical frequency is chirped is transmitted from the chirped pulse light source. The pulse light is branched by the second optical coupler, passes through the in-service line and the detour line, is multiplexed again by the first optical coupler, and is measured by the optical oscilloscope.
    Type: Application
    Filed: November 24, 2009
    Publication date: September 29, 2011
    Inventors: Takeshi Tsujimura, Kuniaki Tanaka, Koichi Yoshida, Kazunori Katayama, Yuji Azuma, Masatoshi Shimizu
  • Patent number: 7974502
    Abstract: An optical module controls its output characteristics electrically and an optical switch constitutes the optical module. An optical waveguide circuit (PLC) and an electronic circuit (IC) for driving the PLC are mounted on the same substrate. The IC is composed of a bare chip to be molded afterward. Wiring of the IC is grouped and integrated on the PLC substrate to achieve higher density and miniaturization of the optical module.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: July 5, 2011
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Shinji Mino, Takeshi Kitagawa, Motohaya Ishii, Takashi Yamada, Akira Himeno, Masayuki Okuno, Shunichi Souma, Takashi Goh
  • Publication number: 20110103740
    Abstract: An optical fiber switch which may include first and second angled optical fibers having respective first and second end faces. Each of the first and second angled optical fibers may include a core having a core index of refraction, and a cladding surrounding the core and having a cladding index of refraction less than the core index of refraction. The optical fiber switch may further include a first index matching elastomeric solid layer having a proximal face coupled to the first end face, and a distal face opposite the proximal face to be repeatably optically coupled to the second end face. The first index matching elastomeric solid layer may have an index of refraction matching at least the index of refraction of the core. The optical fiber switch may also include at least one actuator for relatively moving the first and second angled optical fibers between a coupled position and an uncoupled position.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: Harris Corporation Corporation of the State of Delaware
    Inventor: Lawrence Wayne Shacklette
  • Publication number: 20110103741
    Abstract: An optical fiber switch which may include first and second angled optical fibers having respective first and second end faces. Each of the first and second angled optical fibers may include a core having a core index of refraction, and a cladding surrounding the core and having a cladding index of refraction different than the core index of refraction. The optical fiber switch may further include a first index matching elastomeric solid layer having a proximal face coupled to the first end face and a distal face opposite the proximal face to be repeatably optically coupled to the second end face. The first index matching elastomeric solid layer may have an index of refraction profile matching an index of refraction of the core and the cladding. The optical fiber switch may also include at least one actuator for relatively moving the first and second angled optical fibers between a coupled position and an uncoupled position.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: Harris Corporation
    Inventor: Lawrence Wayne Shacklette
  • Patent number: 7929108
    Abstract: An optical switching device includes an array of liquid crystal macropixels, wherein each macropixel includes at least two liquid crystal subpixels. The subpixels may be controlled together to act as a single polarizing pixel, or independently to act as multiple polarizing pixels. When the switching device processes a WDM having a wide channel spacing, the subpixels are controlled together, and when the switching device processes a WDM having a narrow channel spacing, each subpixel is controlled independently.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: April 19, 2011
    Assignee: Oclaro (North America), Inc.
    Inventor: Giovanni Barbarossa
  • Publication number: 20110033151
    Abstract: A fiber-optical, wavelength selective switch, especially for channel routing with equalization and blocking applications. The input signals are converted to light beams having predefined polarizations (41). The beams are then laterally expanded (43), and then undergo spatial dispersion in the beam expansion plane. The different wavelength components are directed through a polarization rotation device, pixilated along the wavelength dispersion direction such that each pixel operates on a separate wavelength. Each beam is passed into a pixilated beam steering array (48), for directing each wavelength to a desired output port. The beam steering devices can be MEMS-based or Liquid crystal-based, or an LCOS array. When the appropriate voltage is applied to a pixel and its associated beam steering element, the polarization of the light passing through the pixel is rotated and the beam steered to couple to the selected output port.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 10, 2011
    Applicant: OCLARO (NEW JERSEY), INC.
    Inventors: Gil COHEN, Seong Woo Suh, Yossi Corem
  • Publication number: 20100322620
    Abstract: A device may include a component, a first switch, a repeater, and a second switch. The component may configure optical paths between ports. The component may comprise a first pair of optical ports connected to a first pair of optical fibers, and a second pair of optical ports connected to a second pair of optical fibers. The first switch may be configured to output one of two optical signals received by the first pair of optical ports from the first pair of optical fibers. The repeater may reshape or amplify the outputted optical signal. The second switch may be configured to direct the reshaped or amplified signal to one of the second pair of optical ports.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 23, 2010
    Applicant: VERIZON PATENT AND LICENSING INC.
    Inventors: Glenn A. Wellbrock, Tiejun J. Xia
  • Patent number: 7826697
    Abstract: A system and method of asymmetrical fiber or waveguide spacing comprising, in general, an asymmetrical fiber concentrator array (FCA), wherein an offset in the front face spacing of the output waveguides relative to the input waveguides functions to reduce or eliminate the introduction of static back reflection, and static in-to-in crosstalk into a fiber by an optical switch, but does not impose the cost, complexity, and insertion loss penalties brought about by additional components.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: November 2, 2010
    Assignee: Olympus Corporation
    Inventors: Harry W. Presley, Michael L. Nagy
  • Patent number: 7787720
    Abstract: An optical coupling device including: at least a first input port for delivering an optical input signal beam that includes a plurality of wavelength channels; at least a first optical output port for receiving an optical output signal beam; a wavelength dispersion element for spatially separating the plurality of wavelength channels in the optical input signal beam to form a plurality of spatially separated wavelength channel beams; an optical coupling device for independently modifying the phase of each of the spatially separated wavelength channel beams such that, for at least one wavelength channel beam, a selected fraction of the light is coupled to the first output port and a fraction of the light is coupled away from the first output port.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: August 31, 2010
    Assignee: Optium Australia PTY Limited
    Inventors: Steven James Frisken, Glenn Wayne Baxter, Hao Zhou, Dmitri Abakoumov
  • Patent number: 7778506
    Abstract: A multi-port RF MEMS switch, a switch matrix having several multi-port RF MEMS switches and an interconnect network have a monolithic structure with clamped-clamped beams, cantilever beams or thermally operated actuators. A method of fabricating a monolithic switch has clamped-clamped beams or cantilever beams.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: August 17, 2010
    Inventors: Mojgan Daneshmand, Raafat R. Mansour
  • Patent number: 7769255
    Abstract: A high port count instantiated wavelength selective switch comprising two or more discrete sets, or instances, of m fiber ports totaling N fiber ports co-packaged together, one or more shared optical elements and dispersive elements, and one or more steering elements in each instance. The steering elements steer ?(k) from each instance of m input fiber ports to a ?(k) mirror dedicated to that fiber port instance, and wherein ?(k) mirror of the instance of m fiber ports is utilized to select and switch one ?(k) from the instance of m fiber ports to a fixed mirror which in turn reflects ?(k) to the ?(k) output mirror. The ?(k) output mirror selects and switches one ?(k) from one of the one or more instances of m fiber ports of the N×1 optical switch to the 1 output fiber port for each wavelength, and vice-versa for the 1×N optical switch.
    Type: Grant
    Filed: March 29, 2009
    Date of Patent: August 3, 2010
    Assignee: Olympus Corporation
    Inventors: Michael L. Nagy, Harry W. Presley
  • Patent number: 7760972
    Abstract: The present invention provides a switch assembly for use with a single-port OPM to realize a multi-port OPM having improved reliability. In one embodiment, an N×1 optical switch assembly, wherein N is an integer greater than one, is provided. The optical switch assembly includes N optical input ports, N micro-electro-mechanical system (MEMS) variable optical attenuators (VOAs), where each MEMS VOA is optically coupled to a respective optical input port and is operable between an on position and an off position, and an N×1 optical combiner optically coupled to the N MEMS VOAs. Each MEMS VOA is configured to transmit an optical signal from a respective one of the optical input ports to the N×1 optical combiner in the on position and to not transmit the optical signal in the off position.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: July 20, 2010
    Assignee: Oclaro Technology, plc
    Inventors: Joe Wen, Samuel Liu, Giovanni Barbarossa
  • Patent number: 7742664
    Abstract: Liquid crystal waveguides for dynamically controlling the refraction of light. Generally, liquid crystal materials may be disposed within a waveguide in a cladding proximate or adjacent to a core layer of the waveguide. In one example, portions of the liquid crystal material can be induced to form refractive or lens shapes in the cladding that interact with a portion (e.g. evanescent) of light in the waveguide so as to permit electronic control of the refraction/bending, focusing, or defocusing of light as it travels through the waveguide. In one example, a waveguide may be formed using one or more patterned or shaped electrodes that induce formation of such refractive or lens shapes of liquid crystal material, or alternatively, an alignment layer may have one or more regions that define such refractive or lens shapes to induce formation of refractive or lens shapes of the liquid crystal material.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: June 22, 2010
    Assignee: Vescent Photonics, Inc.
    Inventors: Michael H. Anderson, Scott D. Rommel, Scott R. Davis
  • Patent number: 7724993
    Abstract: MEMS switches are formed with membranes or layers that are deformable upon the application of a voltage. In some embodiments, the application of a voltage opens switch contacts.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: May 25, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventors: Clarence Chui, Manish Kothari
  • Patent number: 7720329
    Abstract: A fiber optic switch utilizing a segmented prism element, comprising a fiber optic switch used in multi-channel optical communications networks and having one or more arrays of micro electromechanical system (MEMS) mirrors, wherein at least a first array of MEMS mirrors is utilized to select & switch wavelengths from a number of input fiber ports (N) to an output fiber port, wherein at least a second array of MEMS mirrors using and sharing the same free space optics as the first MEMS array is utilized to produce yet another fiber optic switch, wherein the second switch is utilized to select individual wavelengths or spectral components from its input fiber ports to send to its output fiber port for optical power or other monitoring purposes, thus, enabling a cost effective, high level of integration N×1 or alternatively a 1×N switch capable of internal feedback monitoring.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: May 18, 2010
    Assignee: Olympus Corporation
    Inventors: Harry Wayne Presley, Michael Nagy
  • Patent number: 7702200
    Abstract: A planar optical device useful as a low order wavelength router is realized by using a waveguide grating comprising two curved arrays of opposite curvatures. The diffraction order is determined by the angles of rotation of the two curved arrays, and any nonzero order less than about 30 can be realized. This arrangement is smaller, and performs better than a previous grating using a combination of three curved arrays.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: April 20, 2010
    Inventor: Corrado Pietro Dragone
  • Patent number: 7696901
    Abstract: Subterranean oilfield sensor systems and methods are provided. The subterranean oilfield sensor systems and methods facilitate downhole monitoring and high data transmission rates with power provided to at least one downhole device by a light source at the surface. In one embodiment, a system includes uphole light source, a downhole sensor, a photonic power converter at the downhole sensor, an optical fiber extending between the uphole light source and the photonic power converter, and downhole sensor electronics powered by the photonic power converter. The photonic power converter is contained in a high temperature resistant package. For example, the high temperature resistant package and photonic power converter may operate at temperatures of greater than approximately 100° C.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: April 13, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Colin Wilson, Soon Seong Chee, Les Nutt, Tsutomu Yamate, Masahiro Kamata
  • Publication number: 20100046885
    Abstract: An approach is provided for an automated patch panel. A command is received to change a connection state of an optic patch cord. A robotic arm is controlled to change the connection state of the optic patch cord with respect to a particular port of a plurality of ports disposed about a disk-shaped face of a docking panel.
    Type: Application
    Filed: August 21, 2008
    Publication date: February 25, 2010
    Applicant: Verizon Corporate Services Group Inc.
    Inventor: David Z. Chen
  • Patent number: 7656568
    Abstract: Embodiments of the present invention provide structures for microelectromechanical systems (MEMS) that can be sensed, activated, controlled or otherwise addressed or made to respond by the application of forcing functions. In particular, an optical shutter structure suitable for use in an optical switch arrangement is disclosed. In one embodiment, an optical shutter or switch can be scaled and/or arranged to form arbitrary switch, multiplexer and/or demultiplexer configurations. In another embodiment of the present invention, an optical switch can include: a shutter; and a flexure coupled to the shutter, whereupon a vibration transmitted to the flexure when in the presence of a resonant frequency causes the shutter to move across an opening for the passage of an optical signal.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: February 2, 2010
    Assignee: The Regents of the University of California
    Inventors: Hyuck Choo, Richard S. Muller
  • Patent number: 7646947
    Abstract: An optical switch including an alignment head, a first fiber, a second fiber, a third fiber, a wedge, and a displacing means is provided. The alignment head has a base and a cover. The base has a first V-groove, a second V-groove, and a trench linked to the first and the second V-grooves. An end of the first fiber and that of the second fiber are mounted in the first and the second V-grooves, respectively. The cover is mounted on the base to secure the ends of the first and the second fibers. An end of the third fiber located in the trench is aligned to that of the first fiber. The wedge located beside the base has an incline. The displacing means set under the wedge is capable of aligning the end of the third fiber to that of the second fiber by moving the wedge.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: January 12, 2010
    Assignee: Arcadyan Technology Corporation
    Inventor: Kuo-An Yen
  • Patent number: 7639910
    Abstract: An optical module is configured with a combination of a single-mode oscillating light source and an optical filter. In this optical module, the single-mode oscillating light source outputs a single-mode, frequency-modulated signal. Further, the optical filter converts the frequency modulation to an amplitude modulation. And, the single-mode oscillating light source and the optical filter are packaged without active alignment on the same substrate. Accordingly, it is possible to realize an optical module in a simple and low-cost configuration by packaging the single-mode oscillating light source and the optical filter by passive alignment, without active alignment, on the same substrate, and by using a simple optical filter such as a waveguide ring resonator, which converts a frequency modulation to an amplitude modulation.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 29, 2009
    Assignee: NEC Corporation
    Inventors: Hiroyuki Yamazaki, Takaaki Hatanaka
  • Publication number: 20090310910
    Abstract: Optical switches are described herein. In one embodiment, an exemplary optical switch includes, but is not limited to, a first waveguide, a second waveguide across with the first waveguide in an angle to form an intersection, and a pair of electrodes placed within a proximity of the intersection to switch a light traveling from the first waveguide to the second waveguide, where the intersection includes a geometry that supports single and multimode propagation. The intersection includes a geometry having a ridge width ranging approximately from 2.6 ?m to 19.2 ?m and a ridge height ranging approximately from 4 ?m to 16 ?m. Other methods and apparatuses are also described.
    Type: Application
    Filed: March 20, 2009
    Publication date: December 17, 2009
    Inventor: JEFFERY J. MAKI
  • Patent number: 7620275
    Abstract: Provided is an apparatus and method for use thereof. The apparatus, in one embodiment, includes a 1×2 coupler in communication with a waveguide. The 1×2 coupler, in this embodiment, is configured to separate an input finite bandwidth optical signal provided from the optical waveguide into two similar optical signals. Input ends of first and second waveguide arms, in one embodiment, are in communication with the 1×2 coupler and configured to receive ones of the input optical signals. An inherent birefringence of each of the first and second waveguide arms may be substantially similar. Moreover, the first and second waveguide arms have different physical path lengths that differ by an amount (?L). Additionally, a 2×2 coupler may be in optical communication with an output end of the first and second waveguide arms and configured to provide an output TE polarization and an output TM polarization.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: November 17, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Christopher Richard Doerr
  • Publication number: 20090214161
    Abstract: It is an object of the present invention to provide a multimode interference waveguide type optical switch that has a wide tolerance and that digitally performs switching with respect to a change in an applied voltage or injected current. The multimode interference waveguide type optical switch of the present invention includes an input single-mode waveguide (102) into which input light is entered, a multimode rectangular slab waveguide (103) into which light emitted from the input single-mode waveguide is entered, two electrodes (105a, 105b) that are arranged in parallel in a waveguide direction on the slab waveguide and that decrease the refractive index of the slab waveguide (103) disposed thereunder by injecting current or applying voltage, and a plurality of output single-mode waveguides (104a, 104b) into which light emitted from the slab waveguide (103) is entered and from which output light is emitted.
    Type: Application
    Filed: February 10, 2006
    Publication date: August 27, 2009
    Applicant: Keio Univeristy
    Inventors: Hiroyuki Tsuda, Mitsuhiro Yasumoto
  • Publication number: 20090208169
    Abstract: An optical switching device includes an array of liquid crystal macropixels, wherein each macropixel includes at least two liquid crystal subpixels. The subpixels may be controlled together to act as a single polarizing pixel, or independently to act as multiple polarizing pixels. When the switching device processes a WDM having a wide channel spacing, the subpixels are controlled together, and when the switching device processes a WDM having a narrow channel spacing, each subpixel is controlled independently.
    Type: Application
    Filed: February 15, 2008
    Publication date: August 20, 2009
    Inventor: Giovanni Barbarossa
  • Patent number: 7570847
    Abstract: A method of forming an optical switch is disclosed. The optical switch is implemented with one or more cantilevered optical channels, which are formed in a flexible waveguide structure, and an actuator which is connected to the cantilevered optical channels, to position the cantilevered optical channels to direct an optical signal along one of a number of optical pathways.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: August 4, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Trevor Niblock, Gerard Dirk Smits
  • Patent number: 7561766
    Abstract: A thin film interleaver device is disclosed. The thin film interleaver includes thin film optics. The thin film(s) are formed such that they reflect one group of wavelengths while allowing a second group of wavelengths to pass through the thin film(s). The thin film(s) exhibit a flat top frequency response across the channel bandwidths of the multiplexed signal for which the thin film filter is designed such that the thin film interleaver is less sensitive to wavelength drift and temperature variations.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: July 14, 2009
    Assignee: Finisar Corporation
    Inventors: Johhny Zhong, Yin Zhang, Steve Wang, Ping Xie, Kevin Zhang
  • Publication number: 20090154874
    Abstract: The invention relates to multiport routing devices for routing optical signals which also provide beam attenuation by imparting a controllable offset between an optical beam and a selected optical port. A multiport optical routing device of the present invention has a plurality of non-equally spaced optical ports disposed in a row to enable beam offset for attenuation without substantially increasing optical crosstalk between adjacent ports in a compact port arrangement.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 18, 2009
    Inventors: Sheldon McLaughlin, Pierre D. Wall
  • Patent number: 7548669
    Abstract: An optical gate array device which permits the use of an optical gate array with a pitch smaller than the diameter of optical fibers. The optical gate array has an array of optical gates, and an optical fiber array has an array of optical fibers. A lens is arranged between the optical gate array and the optical fiber array, for collectively achieving optical coupling between all of the optical gates of the optical gate array and all of the optical fibers of the optical fiber array.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: June 16, 2009
    Assignee: Fujitsu Limited
    Inventor: Goji Nakagawa
  • Publication number: 20090148097
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for routing.
    Type: Application
    Filed: January 8, 2009
    Publication date: June 11, 2009
    Applicant: Searete LLC.
    Inventors: Roderick A. Hyde, Edward K.Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Patent number: 7529454
    Abstract: A photonic crystal may be configured to support a surface state for logic.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 5, 2009
    Inventors: Roderick A. Hyde, Nathan P. Myhrvold
  • Patent number: 7522789
    Abstract: An optical switch comprises one or more input ports for directing an optical beam into the switch; dispersive means configured to receive said optical beam and which spatially separate the optical beam into individual wavelength components which are routed to an actuator; wherein the actuator is in the form of an array of elongate movable fingers for selectively interfering with individual wavelength components and means are provided to direct optical beams to selected one or more output ports.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: April 21, 2009
    Assignee: Polatis Ltd.
    Inventors: Andrew Nicholas Dames, Martin Edward Brock
  • Patent number: 7508574
    Abstract: Apparatus for providing optical radiation (10) comprising a pump array (8) for providing pump radiation (7), a first pump combiner (1), and a waveguide (3), wherein the pump radiation (7) from the pump array (8) is coupled into the waveguide (3) via the first pump combiner (1), and wherein the waveguide (3) comprises a pump guide (4) for guiding the pump radiation (7), and a gain medium (5) which emits the optical radiation (10) when it is pumped by the pump radiation (7).
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: March 24, 2009
    Assignee: SPI Lasers UK Ltd.
    Inventors: William Andrew Clarkson, David Neil Payne, Malcolm Paul Varnham, Mikhail Nicholaos Zervas
  • Patent number: 7499608
    Abstract: An optical switch includes an optical waveguide to route an input optical beam. At least one polarization switch receives the input optical beam from the optical waveguide. At least one birefringent wedge is associated with the at least one polarization switch. The at least one polarization switch and at least one birefringent wedge operate to direct the input optical beam to two or more output locations through control of the polarization switch.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: March 3, 2009
    Assignee: Coadna Photonics, Inc.
    Inventors: Jack R. Kelly, Mingji Cui, David Heineman, Hudson Washburn, Meng Xue
  • Patent number: 7477813
    Abstract: The invention provides a multi-beam light source including a light guide array by which the yield can be improved. An array pitch P2 of entrance surfaces of light guide pattern is 1/N as wide as an array pitch P1 of exit surfaces of optical fiber arrays. The number of the light guide patterns is N or more times as large as the number of optical fibers. The exit surfaces of a plurality of the optical fibers are coupled with the entrance surfaces of a plurality of the light guide patterns opposed thereto.
    Type: Grant
    Filed: January 16, 2007
    Date of Patent: January 13, 2009
    Assignee: Ricoh Printing Systems, Ltd.
    Inventors: Susumu Monma, Takeshi Mochizuki, Keiji Kataoka
  • Patent number: 7474818
    Abstract: An optical switch for switching signal light by allowing the signal light to obliquely enter a non-linear optical thin film 1 containing nano-crystal of metal oxide from a light path disposed in an optical material, and irradiating visible excitation light to the non-linear optical thin film to induce a total reflection phenomenon, thereby controlling the reflection and transmission behavior of the signal light, wherein a difference between a temperature coefficient factor of an optical index of the non-linear optical thin film and that of an optical index of the optical material which is in contact with the non-linear optical thin film is determined to be 15×10?6/° C. or below. Preferably, it is determined to be zero or substantially zero. Thus, an influence due to the temperature increase is cancelled, and a malfunction of switching can be avoided.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: January 6, 2009
    Assignee: Hitachi, Ltd.
    Inventors: Hideto Momose, Yuichi Sawai, Takashi Naito, Kensuke Matsui
  • Publication number: 20080292240
    Abstract: Optical switches are described herein. In one embodiment, an exemplary optical switch includes, but is not limited to, a first waveguide, a second waveguide across with the first waveguide in an angle to form an intersection, and a pair of electrodes placed within a proximity of the intersection to switch a light traveling from the first waveguide to the second waveguide, where the intersection includes a geometry that supports single and multimode propagation. Other methods and apparatuses are also described.
    Type: Application
    Filed: June 11, 2008
    Publication date: November 27, 2008
    Inventor: Jeffery J. Maki
  • Patent number: 7457493
    Abstract: An m×n fan out device for receiving at least m=2 laser beams of different wavelengths and dividing the power of each laser beam into at least two other laser beams directed to at least one of n exit ports of the fan out device is disclosed.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: November 25, 2008
    Assignee: Kent Optronics
    Inventors: Le Li, Haiping Yu, Ben Tang, Jianhui Li, Hejun Ma, Fang Du
  • Patent number: 7454099
    Abstract: An optical channel shifting device includes a containing unit having a first inner space and a second inner space adjacent to the first inner space, an input optical fiber held in the first inner space, an output unit having a first output optical fiber and a second output optical fiber and a driving assembly held in the second inner space. The containing unit includes a first side, a second side opposite to the first side and two guiding channels located between the first side and the second side and held in the first inner space. The first output optical fiber and the second output optical fiber are respectively fixed in the guiding channels. The driving assembly includes a switching lever shifted in either a first position or a second position and a performing edge connected with the switching lever and attached with the input optical fiber in the form of the point-contact.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: November 18, 2008
    Assignee: Asia Optical Co., Inc.
    Inventor: Chih-Jung Fang
  • Publication number: 20080267558
    Abstract: An optical switch including an alignment head, a first fiber, a second fiber, a third fiber, a wedge, and a displacing means is provided. The alignment head has a base and a cover. The base has a first V-groove, a second V-groove, and a trench linked to the first and the second V-grooves. An end of the first fiber and that of the second fiber are mounted in the first and the second V-grooves, respectively. The cover is mounted on the base to secure the ends of the first and the second V-grooves. An end of the third fiber located in the trench is aligned to that of the first fiber. The wedge located beside the base has an incline. The displacing means set under the wedge is capable of aligning the end of the third fiber to that of the second fiber by moving the wedge.
    Type: Application
    Filed: September 5, 2007
    Publication date: October 30, 2008
    Applicant: ARCADYAN TECHNOLOGY CORPORATION
    Inventor: Kuo-An Yen
  • Patent number: 7444042
    Abstract: An optical switch is implemented with one or more cantilevered optical channels, which are formed in a flexible waveguide structure, and an actuator which is connected to the cantilevered optical channels, to position the cantilevered optical channels to direct an optical signal along one of a number of optical pathways.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 28, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Trevor Niblock, Gerard Dirk Smits