Switch (i.e., Switching From One Terminal To Another, Not Modulation) Patents (Class 385/16)
  • Patent number: 11156773
    Abstract: A handle-integrated composite wafer assembly includes a handle wafer attached to a device wafer. The device wafer includes a device layer formed on a buried oxide layer. The device layer includes an optical resonator structure. The handle wafer includes a base layer and a layer of anti-reflective material disposed on a top side of the base layer. The base layer has a cavity extending into the base layer from the top side of the base layer. The cavity has at least one side surface and a bottom surface. The layer of anti-reflective material is substantially conformally disposed within the cavity on the at least one side surface and bottom surface of the cavity. The handle wafer is attached to the device wafer with the layer of anti-reflective material affixed to the buried oxide layer, and with the cavity substantially aligned with the optical resonator structure in the device layer.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: October 26, 2021
    Assignee: Ayar Labs, Inc.
    Inventors: Haiwei Lu, Chen Li, John Fini, Chong Zhang, Roy Edward Meade
  • Patent number: 11159231
    Abstract: Data center interconnections, which encompass WSCs as well as traditional data centers, have become both a bottleneck and a cost/power issue for cloud computing providers, cloud service providers and the users of the cloud generally. Fiber optic technologies already play critical roles in data center operations and will increasingly in the future. The goal is to move data as fast as possible with the lowest latency with the lowest cost and the smallest space consumption on the server blade and throughout the network. Accordingly, it would be beneficial for new fiber optic interconnection architectures to address the traditional hierarchal time-division multiplexed (TDM) routing and interconnection and provide reduced latency, increased flexibility, lower cost, lower power consumption, and provide interconnections exploiting N×M×D Gbps photonic interconnects wherein N channels are provided each carrying M wavelength division signals at D Gbps.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: October 26, 2021
    Assignee: Aeponyx Inc.
    Inventors: Francois Menard, Martin Berard
  • Patent number: 11146782
    Abstract: Light from an array of laser light sources are spread to cover the modulating face of a DMD or other modulator. The spread may be performed, for example, by a varying curvature array of lenslets, each laser light directed at one of the lenslets. Light from neighboring and/or nearby light sources overlap at a modulator. The lasers are energized at different energy/brightness levels causing the light illuminating the modulator to itself be modulated (locally dimmed). The modulator then further modulates the locally dimmed lights to produce a desired image. A projector according to the invention may utilize, for example, a single modulator sequentially illuminated or separate primary color modulators simultaneously illuminated.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 12, 2021
    Assignee: Dolby Laboratories Licensing Corporation
    Inventor: Martin J. Richards
  • Patent number: 11137317
    Abstract: An optical time domain reflectometer for determining properties of an optical transmission fiber, the optical time domain reflectometer comprising an electro-absorption modulator comprising a waveguide and two electrodes, wherein the waveguide is arranged between the electrodes, a light source configured for emitting sampling light into the waveguide, wherein the waveguide is connected or to be connected between the fiber and the light source, and a control unit for controlling the operation of the light source and a modulation voltage between the electrodes. The electro-absorption modulator is capable of assuming an absorption state, wherein the electro-absorption modulator is further configured for receiving reflected light pulses resulting from the reflection of the pulses of sampling light in the fiber, wherein the absorption of reflected light pulses in the electro-absorption modulator results in the creation of a photocurrent between the electrodes.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: October 5, 2021
    Assignee: XIEON NETWORKS S.a.r.l.
    Inventor: Andreas Fricke
  • Patent number: 11125941
    Abstract: One example system comprises a substrate and a waveguide disposed on the substrate to define an optical path on the substrate. The waveguide is configured to guide, inside the waveguide and along the optical path, a light signal toward an edge of the waveguide. The edge defines an optical interface between the waveguide and a fluidic optical medium adjacent to the edge of the waveguide. The system also includes an optical fluid and a fluid actuator configured to adjust a physical state of the optical fluid based on a control signal. The adjustment of the physical state of the optical fluid causes an adjustment of the fluidic optical medium adjacent to the edge.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: September 21, 2021
    Assignee: Waymo LLC
    Inventors: James Dunphy, David Hutchison
  • Patent number: 11121796
    Abstract: An optical add-drop device includes optical circuits. Each of the optical circuits includes first to third sub optical circuits. Each sub optical circuit includes an input coupler, output coupler, and a phase shifter. In each of the optical circuit, two ports of the output coupler in the first sub optical circuit are respectively coupled to the input coupler in the second sub optical circuit and the input coupler in the third sub optical circuit. The output coupler in the second sub optical circuit in each of the optical circuits is coupled to a drop port or the input coupler in the first sub optical circuit in the adjacent optical circuit. The input coupler in the third sub optical circuit in each of the optical circuits is coupled to an add port or the output coupler in the third sub optical circuit in the adjacent optical circuit.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: September 14, 2021
    Assignees: FUJITSU LIMITED, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventor: Tomoyuki Akiyama
  • Patent number: 11105963
    Abstract: Optical systems may have tunable lenses with focal lengths that are adjusted by control circuitry. A display may produce image light that is received by a tunable lens. The display may be transparent so that light from objects can pass through the display and be received by the tunable lens. The tunable lens may include a birefringent lens element and a polarization rotator and may receive light that has been linearly polarized by passing through a linear polarizer. The polarization rotator may be operable in a first state in which the polarization of light passing through the polarization rotator is not rotated and a second state in which the polarization of light passing through the polarization rotator is rotated by 90°. The birefringent lens element may be formed from a cured liquid crystal polymer or other polymer and may have a liquid crystal additive to enhance birefringence.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: August 31, 2021
    Assignee: Apple Inc.
    Inventors: Yuan Chen, Bennett S. Wilburn, Cheng Chen, Michael Slootsky, Shuang Wang, Zhibing Ge
  • Patent number: 11099324
    Abstract: In the optical waveguide device including an unnecessary-light waveguide for guiding unnecessary light emitted from a main waveguide, an emission waveguide connected to the unnecessary-light waveguide to emit the unnecessary light propagating through the unnecessary-light waveguide to the outside of the substrate is formed; an effective refractive index of the emission waveguide is set to be higher than an effective refractive index of the unnecessary-light waveguide; in a connection portion between the unnecessary-light waveguide and the emission waveguide, a centerline of the emission waveguide is inclined in a direction away from the main waveguide with respect to a centerline of the unnecessary-light waveguide; furthermore, in the connection portion, a position of the centerline of the emission waveguide is disposed to be shifted to a position further away from the main waveguide with respect to a position of the centerline of the unnecessary-light waveguide.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: August 24, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Yu Kataoka, Norikazu Miyazaki
  • Patent number: 11054599
    Abstract: Submarine cable branching units with fiber pair switching configured to allow any number of trunk cable fiber pairs to access the optical spectrum any number of branch cable fiber pairs. Access to a particular branch terminal is not limited to predefined subset of the trunk fiber pairs. This approach allows fewer branch cable fiber pairs to be equipped in each branching unit, reducing system cost, simplifies system planning and provides flexible routing of overall trunk cable capacity.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: July 6, 2021
    Assignee: SUBCOM, LLC
    Inventors: Lara Denise Garrett, Haifeng Li, Thomas Marino, Jr., Georg Heinrich Mohs, Massimo Manna
  • Patent number: 11057114
    Abstract: Optical transceivers comprising optical loopback circuits are described. The optical transceiver may comprise a housing, which may host a transmitter, a receiver and the optical loopback circuit. The optical loopback circuit may be configured to route at least a portion of a modulated optical signal from the transmitter to the receiver. The optical loopback circuit may comprise tap couplers and/or optical switches. The optical transceiver may be switched between a normal mode and a calibration mode. The optical transceiver may maintain the same fiber connections even when the optical transceiver is switched from one mode to another. The transmitter, the receiver and the optical loopback circuit may be disposed on a common substrate, or on separate substrates.
    Type: Grant
    Filed: August 4, 2016
    Date of Patent: July 6, 2021
    Assignee: Acacia Communications, Inc.
    Inventors: Long Chen, Christopher Doerr
  • Patent number: 11042025
    Abstract: Embodiments of an optical data communication apparatus using micro-electro-mechanical system (MEMS) micro-mirror arrays is described herein. The apparatus may include a router configured to operate as a relay to exchange optical data signals between optical switches of the apparatus. The optical switches may be configured to switch between reflection directions to reflect the optical signals over different optical connections between the optical switches and different receiving ports of the router. The reflection directions may be switched in accordance with predetermined mappings between the receiving ports of the router and destinations of the optical signals. The router includes a MEMS micro-mirror array configured to reflect received optical signals to the destinations. A processing element of the optical data switching circuitry may generate a plurality of optical data signals and may send the optical data signals to an optical switch of the optical data switching circuitry.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: June 22, 2021
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Sean D. Keller, Benn H. Gleason
  • Patent number: 11029566
    Abstract: A privacy display comprises a polarised output spatial light modulator, reflective polariser, plural polar control retarders and a polariser. A birefringent surface relief diffuser structure is arranged to transmit light from the display with high transparency and provide diffuse reflection of ambient light to head-on display users. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss and with low diffusion, whereas off-axis light has reduced luminance and increased diffusion. Further, overall display reflectivity is reduced for on-axis reflections of ambient light, while reflectivity is increased for off-axis light. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction, increased frontal reflectivity and diffusion of ambient light. In a public mode of operation, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: June 8, 2021
    Assignee: RealD Spark, LLC
    Inventors: Michael G. Robinson, Robert A. Ramsey, Graham J. Woodgate
  • Patent number: 11022856
    Abstract: A display device includes a scanned projector for projecting a beam of light, and a diffraction grating for dispersing the light at a plurality of angles into a waveguide, wherein at least a portion of the diffraction grating includes a nanovoided polymer. Manipulation of the nanovoid topology, such as through capacitive actuation, can be used to reversibly control the effective refractive index of the nanovoided polymer and hence the grating efficiency. The switchable grating can be used to control the amount of diffraction of an incident beam of light through the grating thereby decreasing optical loss. Various other methods, systems, apparatuses, and materials are also disclosed.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: June 1, 2021
    Assignee: Facebook Technologies, LLC
    Inventors: Andrew John Ouderkirk, Wanli Chi, Kenneth Diest, Renate Eva Klementine Landig, Tanya Malhotra, Austin Lane, Christopher Yuan Ting Liao, Katherine Marie Smyth, Jack Lindsay
  • Patent number: 11018772
    Abstract: Various apparatuses, circuits, systems, and methods for optical communication are disclosed. In some implementations, an apparatus includes multiple lasers that input an electronic signal. Each laser encodes and outputs a respective optical data signal based on the electronic signal. Each laser has a different configuration of one or more first optical parameters. A first selection circuit selects the respective optical data signal from one of the lasers. Multiple optical components configure second optical parameters of an input optical data signal. A second selection circuit inputs the selected optical data signal from the first selection circuit and provides the selected optical data signal to one of the optical components. A third selection circuit selects the optical data signal output from the one optical component.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: May 25, 2021
    Assignee: XILINX, INC.
    Inventors: Austin H. Lesea, Stephen M. Trimberger
  • Patent number: 11002957
    Abstract: An optical device that provides a broadened circular scanning pattern. The device includes a reflector system dimensioned to form a coupled oscillator with two modes of oscillation for circular tilt motion, a first mode oscillation in a first resonance frequency and a second mode of oscillation in a second resonance frequency that is different from the first resonance frequency. A signal processing element is configured to control the actuation signals to maintain a first amplitude in the first mode of oscillation, and a second amplitude in the second mode of oscillation.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: May 11, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Jouni Erkkilä, Tero Sillanpää, Matti Liukku, Anssi Blomqvist
  • Patent number: 10996541
    Abstract: A display includes a plurality of elongated waveguides positioned adjacent to each other and extending along a first direction, a plurality of elongated upper electrodes positioned adjacent to each other on a first side of the waveguides and extending along the first direction, and a plurality of elongated lower electrodes positioned adjacent to each other on a second side of the waveguides opposite the first side and extending along a second direction transverse to the first direction. At least one of the waveguides comprises nonlinear materials having a third order susceptibility.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: May 4, 2021
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Sean P. Rodrigues, Ercan M. Dede
  • Patent number: 10935817
    Abstract: An optical device according to the embodiment of the inventive concept includes a waveguide path including a light generation region, a wavelength variable region, and a light modulation region, a first light waveguide layer provided in the light generation region to generate light, a second light waveguide layer provided in the wavelength variable region and connected to the first light waveguide layer, a ring-shaped third light waveguide layer provided in the light modulation region and connected to the second light waveguide layer, and first and second light modulation electrodes spaced apart from each other with the light modulation region therebetween. Here, the first light modulation electrode, the third light waveguide layer, and the second light modulation electrode vertically overlap each other.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: March 2, 2021
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee Kwon, Kisoo Kim, Su Hwan Oh, Chul-Wook Lee
  • Patent number: 10935737
    Abstract: An optical waveguide includes a lower clad having an upper flat surface and a lower flat surface, a core positioned on the upper flat surface of the lower clad and includes a linear-shaped configuration and two end portions in the longitudinal direction of the linear-shaped configuration, and an upper clad positioned on the upper flat surface of the lower clad in the state of covering the upper flat surface and the core. Further, the core includes the convex configurations protruding in the planer direction from the linear-shaped configuration. The upper clad includes the opening for exposing the convex configurations in a plan view.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: March 2, 2021
    Assignee: KYOCERA CORPORATION
    Inventor: Akifumi Sagara
  • Patent number: 10922650
    Abstract: Techniques for intelligently predicting bundles of replacement parts. A plurality of maintenance events for a plurality of replacement parts are determined based on historical data related to the plurality of replacement parts. Each maintenance event of the plurality of maintenance events corresponds with one or more of the replacement parts. A plurality of clusters of replacement parts are generated based on the plurality of maintenance events. A plurality of bundles of replacement parts are predicted based on the clusters. Each bundle includes a plurality of replacement parts.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: February 16, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Zhennong Wang, Yun Shi
  • Patent number: 10923626
    Abstract: LEDs and methods of forming LEDs with various structural configurations to mitigate non-radiative recombination at the LED sidewalls are described. The various configurations described include combinations of LED sidewall surface diffusion with pillar structure, modulated doping profiles to form an n-p superlattice along the LED sidewalls, and selectively etched cladding layers to create entry points for shallow doping or regrowth layers.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: February 16, 2021
    Inventors: David P. Bour, Dmitry S. Sizov, Daniel A. Haeger, Xiaobin Xin
  • Patent number: 10887010
    Abstract: In one embodiment, a distributed antenna system comprises: at least one master unit; at least one remote antenna unit communicatively coupled via a switch to the master unit by a primary cable and a secondary cable both coupled to the switch, the remote antenna unit comprising a compensating link check module that outputs a control signal to the switch, wherein the switch selects between the primary and secondary cable in response to the control signal; wherein the compensating link check module controls the switch to momentarily select the secondary cable to perform a link check during which the remote unit measures a quality metric of a downlink signal received via the secondary cable; and upon initiation of the link check, the compensating link check module adjusts an attenuation of the downlink signal received on the secondary cable by loading calibration settings for the secondary cable into a compensation attenuator.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: January 5, 2021
    Assignee: Andrew Wireless Systems GmbH
    Inventors: Jaroslav Hoffmann, Peter Starek
  • Patent number: 10871612
    Abstract: A universal interferometer (100) for coupling modes of electromagnetic radiation according to a transformation has N inputs and N outputs for inputting and outputting N modes of electromagnetic radiation into and from the interferometer. Waveguides (101, 102, 103, 104, 105) pass through the interferometer to connect the N inputs to the N outputs and to carry the N modes of electromagnetic radiation. The waveguides provide crossing points between pairs of waveguides and a reconfigurable beam splitter (107) implements a reconfigurable reflectivity and a reconfigurable phase shift at each crossing point. The waveguides and crossing points are arranged such that each of the N modes of electromagnetic radiation is capable of coupling with each of the other modes of electromagnetic radiation at respective reconfigurable beam splitters.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: December 22, 2020
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: William Clements, Peter Humphreys, Benjamin Metcalf, Steven Kolthammer, Ian Walmsley
  • Patent number: 10873409
    Abstract: A wavelength selective optical switching arrangement (23) comprises a set of input ports (61), a set of output ports (65); a switching matrix; and a plurality of de-multiplexers each comprising an aggregate port (62) and a plurality of tributary ports (64), each aggregate port being connected to an input port and each tributary port being connected to the switching matrix (57), the switching matrix being coupled between the tributary ports and the output ports. The wavelength selective optical switching arrangement is configured to receive at an input port a group of optical signals, each optical signal being transmitted on a different wavelength and being assigned to one of a plurality of destination nodes.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: December 22, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Francesco Testa, Alberto Bianchi, Filippo Ponzini
  • Patent number: 10866361
    Abstract: A method of making a grating in a waveguide includes forming a waveguide material over a substrate, the waveguide material having a thickness less than or equal to about 100 nanometers (nm). The method further includes forming a photoresist over the waveguide material and patterning the photoresist. The method further includes forming a first set of openings in the waveguide material through the patterned substrate and filling the first set of openings with a metal material.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: December 15, 2020
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui Hsieh Lai, Ying-Hao Kuo
  • Patent number: 10851962
    Abstract: A backlit three-dimensional lamp for a vehicle includes an indicia rendering disposed on a transparent lenticular sheet, an outer lens positioned in front of the transparent lenticular sheet, and a light source positioned behind the transparent lenticular sheet. The light source provides backlighting of the indicia rendering such that the lenticular sheet projects a forward image that hovers beyond the outer lens. A vehicle light assembly includes a light source adapted to produce a substantially homogeneous light, a rendering of indicia located adjacent the light source and facing away from the light source such that the rendering of indicia is backlit by the light source, and an array of light-modifying elements aligned with the light source to at least partially cover the rendering of indicia for creating a projection of the rendering of indicia outside the vehicle light assembly.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: December 1, 2020
    Assignee: Flex-N-Gate Advanced Product Development, LLC
    Inventors: Todd Nykerk, Les Sullivan
  • Patent number: 10845546
    Abstract: Systems for providing an optical rotary joint are provided. In some embodiments, a system comprises: a lens-less optical rotary joint, comprising: a guide ferrule; a rotatable ferrule; a rotatable optical fiber, the rotatable optical fiber passing through the rotatable ferrule and the guide ferrule, the rotatable optical fiber being secured within the rotatable ferrule, and the rotatable optical fiber being freely rotatable within the guide ferrule; and a coupler to secure the guide ferrule and receive a static ferrule including a static optical fiber such that a face of the static optical fiber is proximate a face of the rotatable optical fiber.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: November 24, 2020
    Assignee: The General Hospital Corporation
    Inventors: Guillermo J. Tearney, Zhonglie Piao
  • Patent number: 10841548
    Abstract: An oscillating mirror element includes a mirror portion, a drive portion that drives the mirror portion, a strain sensor capable of detecting an amount of displacement of the mirror portion, and a base including a mirror beam portion provided with the mirror portion, a sensor beam portion provided with the strain sensor, and a body portion that supports the mirror beam portion and the sensor beam portion and is provided with the drive portion.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: November 17, 2020
    Assignees: FUNAI ELECTRIC CO., LTD., NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Fuminori Tanaka, Takeshi Inoda, Ken Nishioka, Jun Akedo
  • Patent number: 10816326
    Abstract: A polarization maintaining fiber array includes a substrate, a cover, and at least two polarization maintaining optical fibers. The substrate includes at least two main grooves, a first additional groove, and a second additional groove, wherein the main grooves are positioned between the first additional groove and the second additional groove. The fiber array includes at least two polarization maintaining optical fibers positioned in the at least two main grooves, a first dummy fiber positioned in the first additional groove, and a second dummy fiber positioned in the second additional groove. The cover is positioned such that it contacts the polarization maintaining optical fibers, the first dummy fiber, and the second dummy fiber.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: October 27, 2020
    Assignee: Alliance Fiber Optic Products, Inc.
    Inventors: Chia-Hang Chang, Ximao Feng, Wen-Lung Kuang, Andy Fenglei Zhou
  • Patent number: 10807859
    Abstract: Embodiments of the present invention provide an MEMS actuator with a substrate, at least one post attached to the substrate and a deflectable actuator body that is connected to the at least one post via at least one spring, wherein, during electrostatic, electromagnetic or magnetic force application, the actuator body takes a second position starting from a first position by a tilt-free translational movement, wherein the first position and the second position are different, and wherein in a top view of the MEMS actuator the actuator body is arranged outside an area spanned by the at least one post.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: October 20, 2020
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Peter Duerr, Detlef Kunze, Andreas Neudert, Martin Friedrichs
  • Patent number: 10809471
    Abstract: An integrated pluggable optical tap module configured to be coupled to a host interface of a network equipment for tapping a signal of an optical transport link comprises a first, a second optical interface, and an active optical receiver. The optical pluggable module also includes a passive optical tap for splitting a signal received from the first optical interface and transmitting the signal on the second optical interface and a copy of the signal to the active optical receiver. The active optical receiver converts said signal to an electrical signal for transmission to the host interface.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: October 20, 2020
    Assignee: Accedian Networks Inc.
    Inventors: Ziad Akl-Chedid, Nicolas Côté
  • Patent number: 10812049
    Abstract: Systems, methods, and devices for reducing insertion loss and/or swapping transmitter (TX) and receiver (RX) frequencies in an electrical balance duplexer (EBD) used in a transceiver device for frequency division duplexing (FDD) applications are provided. Feed-forward receiver path from the antenna to a low noise amplifier (LNA) and a feed-forward path from the antenna to a power amplifier (PA) of the EBD may be used for reducing insertion loss of the RX and TX signals. In some embodiments, switches may be used to selectively alter operational modes for varied levels of isolation and/or swapping of TX and RX frequencies.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: October 20, 2020
    Assignee: Apple Inc.
    Inventors: Joonhoi Hur, Rastislav Vazny, Ronald W. Dimpflmaier
  • Patent number: 10804784
    Abstract: An actuator includes a coil that provides a magnetic field to move a permanent magnet in a moving direction perpendicular to a coil axis. The coil includes conductor patterns on an insulating base material layer. The permanent magnet is located above insulating base material layer so that a polar direction of the permanent magnet is the moving direction. The conductor patterns include a closest conductor pattern closest to the permanent magnet. A first maximum width of an interval inside the closest conductor pattern in the polar direction is smaller than a second maximum width of an interval inside another conductor pattern in the polar direction. An overlapping width in the polar direction between the interval of the first maximum width inside the closest conductor pattern and the permanent magnet is the first maximum width regardless of a position of the permanent magnet.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: October 13, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Shingo Ito
  • Patent number: 10802218
    Abstract: An optical device and a method of manufacturing an optical device, including a ridge waveguide second, and a strip-loaded ridge waveguide section, comprises applying two different protective layers and two separate etches at two different depths. The protective layers overlap to protect the same section of the optical device, and to limit the surfaces of optical device to exposure to multiple etches, except at edges where the protective layers overlap.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: October 13, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Thomas Wetteland Baehr-Jones, Ruizhi Shi
  • Patent number: 10802220
    Abstract: An integrated optical beam steering system is configured in three stages to provide beam steering for image light from an imager (e.g., laser, light emitting diode, or other light source) to downstream elements in a display system such as an exit pupil expander (EPE) in a mixed-reality computing device. The first stage includes a multi-level cascaded array of optical switches that are configurable to spatially route image light over a first dimension of a two-dimensional (2D) field of view (FOV) of the display system. The second waveguiding stage transfers the image light along preformed waveguides to a collimator in the third stage which is configured to collimate the image light along the first dimension of the FOV (e.g., horizontal). The waveguiding and collimating stages may be implemented using lightweight photonic crystal nanostructures.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 13, 2020
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Joshua Owen Miller, Kai Zang, Wyatt Owen Davis, Mohammadamin Eftekhar
  • Patent number: 10802269
    Abstract: An optical circuit includes an input waveguide, an arrayed waveguide including a plurality of output waveguides, a coupler, an electrode capable of applying a voltage to each of the output waveguides of the arrayed waveguide, and a chip unit to which the input waveguide, the coupler, and a portion of the arrayed waveguide are fixed. The arrayed waveguide is divided into a phase shifter portion capable of generating a predetermined phase difference between adjacent ones of the output waveguides, a beam portion having a cantilever structure that is not fixed by the chip unit, and a waveguide portion between the phase shifter portion and the beam portion. The electrode is capable of applying positive and negative voltages to the beam portion of the arrayed waveguide such that positive and negative voltages are alternately applied to adjacent ones of the output waveguides.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: October 13, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshiya Sato, Keita Mochizuki
  • Patent number: 10788689
    Abstract: In an electro-optical modulator, an electro-optical modulation layer is bonded to a cladding layer that overlies a substrate. A modulation zone waveguide is optically coupled to the electro-optical modulation layer and optically coupled to an I/O waveguiding structure embedded in the cladding layer. The I/O waveguiding structure is conformed to guide input light toward the modulation zone waveguide and to guide output light away from the modulation zone waveguide.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: September 29, 2020
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Anthony L. Lentine, Christopher DeRose, Douglas Chandler Trotter, Thomas A. Friedmann, Michael Gehl, Nicholas Boynton
  • Patent number: 10750257
    Abstract: Methods, systems, and devices for data encoding and channel hopping. The system includes a signal source for providing a signal. The system includes an optical switch having an input port and multiple output paths. The optical switch is configured to receive, at the input port, the signal. The optical switch is configured to route the signal to an output path of the multiple output paths. The system includes a mode converter that is connected to the optical switch and configured to select an orbital angular momentum (OAM) mode. The mode converter is configured to encode or channel hop the signal using the OAM mode and combine the signal from each output path. The system includes a transmitter configured to propagate the signal.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: August 18, 2020
    Assignee: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Alan E. Willner, Yongxiong Ren, Guodong Xie, Asher J. Willner
  • Patent number: 10734788
    Abstract: A wafer comprising: a silicon substrate; a base layer of a predetermined thickness of a III-V semiconductor material bonded with the silicon substrate; and at least one layer grown on the base layer to form a plurality of quantum dot lasers.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: August 4, 2020
    Assignee: Cisco Technology, Inc.
    Inventors: Dominic F. Siriani, Sean P. Anderson, Vipulkumar Patel
  • Patent number: 10725312
    Abstract: An Electrically Switchable Bragg Grating (ESBG) despeckler device comprising at least one ESBG element recorded in a hPDLC sandwiched between transparent substrates to which transparent conductive coatings have been applied. At least one of said coatings is patterned to provide a two-dimensional array of independently switchable ESBG pixels. Each ESBG pixel has a first unique speckle state under said first applied voltage and a second unique speckle state under said second applied voltage.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: July 28, 2020
    Assignee: DigiLens Inc.
    Inventors: Milan Momcilo Popovich, Jonathan David Waldern, John James Storey
  • Patent number: 10718899
    Abstract: An optical device includes: a first port group P including n ports Pi; a second port Q; and a wavelength multiplexer/demultiplexer disposed between the first port group P and the second port Q. In a case where light beams Li of predetermined different n wavelengths ?i corresponding to the respective ports Pi are inputted to the wavelength multiplexer/demultiplexer, the wavelength multiplexer/demultiplexer combines the light beams Li into light L and outputs the light L to the second port Q. In a case where light L? is inputted to the second port Q, the wavelength multiplexer/demultiplexer separates the light L? into light beams L?i of the wavelengths ?i and outputs the light beams L?i to the corresponding ports Pi.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: July 21, 2020
    Assignee: Fujikura Ltd.
    Inventor: Kazuhiro Goi
  • Patent number: 10705295
    Abstract: This application discloses an optical switch and an optical switching system. The optical switch includes a first waveguide, a second waveguide, and a first movable waveguide. The first waveguide and the second waveguide are immovable relative to a substrate. The first waveguide and the second waveguide are located in a first plane, and the first waveguide and the second waveguide do not intersect. The first movable waveguide is movable relative to the substrate. If the first movable waveguide is at a first location, the first movable waveguide is optically decoupled from the first waveguide and the second waveguide, and the optical switch is in a through state. If the first movable waveguide is at a second location, the first movable waveguide is optically coupled to the first waveguide and the second waveguide, and the optical switch is in a drop state.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: July 7, 2020
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Xin Tu
  • Patent number: 10699860
    Abstract: Problem To be capable of specifying an operation of a knob. Solution A switch 1 includes an operation detecting portion 7 which detects an operation of the knob 5. The operation detecting portion 7 includes a movable member 6 which displaces in association with the operation of the knob 5, a through hole 62a which penetrates through a light shielding portion 62 of the movable member 6 in a thickness direction thereof, one optical source 15 which is provided on one side of the movable member 6 in the thickness direction, a light guiding path 9A which is provided on the other side of the movable member 6 in the thickness direction, and two light receiving elements 10A, 10A which are attached to the light guiding path 9A. The light guiding path 9A is arranged in a position of being capable of receiving light emitted from the optical source 15 through the through hole 62a when the movable member 6 is arranged in a predetermined position by the operation of the knob 5.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: June 30, 2020
    Inventor: Stephane Schuler
  • Patent number: 10700805
    Abstract: A network node (400) for use with a single-fiber bidirectional communication link comprises a filter (300). The filter (300) comprises at least four ports. A first port (301) is configured to communicate with the single-fiber in a west direction. A second port (303) is configured to communicate with the single-fiber in an east direction. A third port (305) is configured to add/drop in the west direction. A fourth port (307) is configured to add/drop in the east direction. The network node is configured to add a first wavelength (?A) to the west direction and the east direction, and configured to drop a second wavelength (?B) from the west direction and the east direction.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: June 30, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Roberto Magri, Alberto Deho
  • Patent number: 10684464
    Abstract: The invention relates to a device (1, 2) for pivoting an optical element (10), comprising: an optical element (10), wherein the optical element is movably mounted so that the optical element can be tilted at least about a first axis (A), a magnet (20) extending in an extension direction (Z), wherein the magnet (20) comprises a magnetization (M) aligned with said extension direction (Z), and wherein the magnet (20) comprises a front side (20a), and wherein optical element (10) is rigidly coupled to the magnet (20) or to a first conductor section (30) that faces the front side (20a) of the magnet (20) in the extension direction (Z), wherein the first conductor section (30) extends along the first axis (A), and a current source means (50) electrically connected to the first conductor section (30), which current source means (50) is designed to apply an electrical current (I) to said first conductor section (30), so that a Lorentz force is generated that tilts the optical element (10) about said first axis (A) al
    Type: Grant
    Filed: September 18, 2015
    Date of Patent: June 16, 2020
    Assignee: OPTOTUNE AG
    Inventors: Manuel Aschwanden, David Niederer, Stephan Smolka, Chauncey Gratzel, Roman Patscheider, Markus Geissner
  • Patent number: 10677994
    Abstract: Described herein is a calibration system (25) for a wavelength selective switch (1). The switch (1) is adapted for dynamically switching optical beams (5, 7) along respective trajectories between input and output ports disposed in an array (3) using a reconfigurable Liquid crystal on silicon (LCOS) spatial light modulator device (17). The calibration system (25) includes a monitor (27) for projecting an optical monitor beam (29) through at least a portion of the switch (1) onto the LCOS (17) and detecting the monitor beam (29) reflected from the LCOS (17). In response, system (25) provides a calibration signal (33) to an active correction unit (35) for applying a correction to one or more of the trajectories while maintaining a constant switching state in the LCOS (17).
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: June 9, 2020
    Assignee: II-VI Delaware, Inc.
    Inventor: Steven James Frisken
  • Patent number: 10649147
    Abstract: An optical module that is connectable to an optical fiber array and that can be packaged in a high density. Two package modules are mounted on a board, and optical waveguides in a Si photonic lightwave circuit mounted on the package module are connected to an optical fiber array fixed to an optical fiber block. Moreover, output end surfaces of the optical waveguides in the Si photonic lightwave circuit are perpendicular to a mount surface of the package module. The optical waveguides in the Si photonic lightwave circuit may be tilted at an appropriate angle with respect to a direction perpendicular to a right end surface. Moreover, the optical fiber block fixes optical fibers with the optical fibers tilted with respect to a direction perpendicular to an end surface connected to the Si photonic lightwave circuit.
    Type: Grant
    Filed: May 12, 2017
    Date of Patent: May 12, 2020
    Assignees: NTT ELECTRONICS CORPORATION, NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Tomohiro Nakanishi, Teruaki Sato, Motohaya Ishii, Satoru Konno, Yuichi Suzuki, Shigeo Nagashima, Shinji Mino, Shuichiro Asakawa, Hiroshi Fukuda, Shin Kamei, Shunichi Soma, Ken Tsuzuki, Mitsuo Usui, Takashi Saida
  • Patent number: 10642023
    Abstract: An electromagnetic filtering system comprising an electromagnetic radiation source, a filter chamber to filter the radiation and a filter chamber control system to selectively modify the contents of the filter chamber in order to modify the wavelengths of the radiation that pass through the filter chamber. There is also provided a method of controlling an electromagnetic filtering system that comprises a controllable filter chamber capable of being controlled so as to selectively be filled with a filter material, the method comprising —determining filtering characteristics to be provided by the filtering system, —determining whether the filter chamber should be filled with the filter material, and —controlling the filter chamber to be filled as determined.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: May 5, 2020
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Lluis Hierro Domenech, Esteve Comas, Sergi Culubret
  • Patent number: 10641954
    Abstract: A universal interferometer (100) for coupling modes of electromagnetic radiation according to a transformation has N inputs and N outputs for inputting and outputting N modes of electromagnetic radiation into and from the interferometer. Waveguides (101, 102, 103, 104, 105) pass through the interferometer to connect the N inputs to the N outputs and to carry the N modes of electromagnetic radiation. The waveguides provide crossing points between pairs of waveguides and a reconfigurable beam splitter (107) implements a reconfigurable reflectivity and a reconfigurable phase shift at each crossing point. The waveguides and crossing points are arranged such that each of the N modes of electromagnetic radiation is capable of coupling with each of the other modes of electromagnetic radiation at respective reconfigurable beam splitters.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: May 5, 2020
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: William Clements, Peter Humphreys, Benjamin Metcalf, Steven Kolthammer, Ian Walmsley
  • Patent number: 10634850
    Abstract: An optical switch for optical fiber large-capacity stored program control exchanges. Optical transmission among optical fibers is performed through the reflection of lasers by a lens part of DMD chips. The lens part of the DMD chips consists of at least two single lenses or at least two lens basic units arranged in an one-dimensional array. The lens basic units are formed by arranging a number of single lenses in an n×n matrix, wherein 2?n?10. The one-dimensional array is arranged in such a direction that lasers do not interfere with each other after reflection. The area of the single lenses or that of the lens basic units is no less than the cross-sectional area of a single optical fiber.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 28, 2020
    Assignees: TIAN JIN SHENG YUN NEW MATERIAL TECHNOLOGY CO. LTD
    Inventors: Jiliang Han, Guangshu Liu, Dejiao Xu
  • Patent number: 10620394
    Abstract: Apparatus for establishing and managing optical connections between optical fibers, the apparatus comprising: a first array that includes a plurality of slack management units (40), each having a holding socket (44) for holding an optical end connector (60) of an optical fiber (61); a second array comprising a plurality of coupling sockets (47), configured to hold optical end of an optical fiber; and a grabber (90) configured to grab an optical end connector (60) from any slack management unit (40) in the first array, and plug the optical end connector (60) into any coupling socket (47) in the second array to establish an optical connection between the optical fiber (61) connected to the optical end connector (60) and an optical end of an optical fiber (49) held in the coupling socket (47).
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: April 14, 2020
    Assignee: Xenoptics IP Holdings Pty Ltd.
    Inventors: Joseph Arol, Zohar Avrahami, Solomon Sokolovsky, Sopit Nondjuy, Patcharin Jaikaew