Particular Coupling Function Patents (Class 385/27)
  • Publication number: 20100209038
    Abstract: A hitless tunable filter may include a ring resonator, a Mach-Zehnder coupler, and first and second phase shifters. The Mach-Zehnder coupler may include a switching arm that is coupled to the ring resonator at first and second coupling points. The first phase shifter may be used to introduce a first phase shift to light propagating through the ring resonator, while the second phase shifter may be used to introduce a second phase shift to light propagating through the Mach-Zehnder coupler. The Mach-Zehnder coupler may have a free spectral range substantially equal to a free spectral range of the ring resonator divided by a non-negative integer.
    Type: Application
    Filed: March 26, 2008
    Publication date: August 19, 2010
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Milos Popovic, Michael R. Watts
  • Patent number: 7773844
    Abstract: A communications coupling for a low bandwidth fiber optic cable and a high bandwidth fiber optic cable, includes: a guiding ferrule adapted for coupling to a surrogate fiber optic cable comprised of one of the low bandwidth fiber optic cable and the high bandwidth fiber optic cable, the guiding ferrule including at least one mounting feature for aligning the guiding ferrule with an optical axis of the surrogate cable; the guiding ferrule further including at least one guiding feature for aligning the optical axis of the surrogate fiber optic cable with an optical axis of a connecting fiber optic cable, the connecting fiber optic cable comprised of the other one of the low bandwidth fiber optic cable and the high bandwidth fiber optic cable. A method and a communications infrastructure are provided.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: August 10, 2010
    Assignee: International Business Machines Corporation
    Inventors: Harry H. Bagheri, Lawrence Jacobowitz, Kenneth A. Scea
  • Patent number: 7773839
    Abstract: A method of providing dispersion compensation includes providing a dispersion signal indicative of an amount of dispersion for at least one channel of a multi-channel optical signal. A dispersion compensator is controlled in accordance with the dispersion signal to optically compensate for the dispersion of the optical signal.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: August 10, 2010
    Assignee: Tellabs Operations, Inc.
    Inventors: Kimon Papakos, Kenneth M. Fisher, Richard C. Younce
  • Publication number: 20100196005
    Abstract: Data security of a multi-dimensional code system is increased. An optical device is provided with a single input port; a splitter splitting an input light from the input port into a plurality of lights; a plurality of phase shifters each shifting one of the lights split by the splitter; a multi-port encoder/decoder inputting the lights whose phases are shifted by the phase shifters and generating spectral encoded codes; and a plurality of output ports outputting the spectral encoded codes generated by the multi-port encoder/decoder.
    Type: Application
    Filed: July 7, 2008
    Publication date: August 5, 2010
    Inventors: Naoya Wada, Gabriella Cincotti, Xu Wang, Kenichi Kitayama
  • Publication number: 20100196014
    Abstract: The method for filtering an optical signal comprising a plurality of channels lying on a grid of optical frequencies equally spaced by a frequency spacing and occupying an optical bandwidth, comprises: a) operating an optical filter comprising a plurality of resonators, wherein a first resonator of the plurality is optically coupled to the optical signal and the remaining resonators are optically coupled in series to the first resonator, so that a respective resonance of each one of the plurality of resonators falls within a first frequency band having bandwidth less than or equal to 15 GHz; b) operating the optical filter so as to obtain a separation between said respective resonance of at least one resonator with respect to said respective resonance of at least another different resonator, the separation being greater than or equal to 25 GHz; c) operating the optical filter so that said respective resonance of each one of the plurality of resonators falls within a second frequency band, different from the f
    Type: Application
    Filed: November 9, 2006
    Publication date: August 5, 2010
    Applicant: PGT PHOTONICS S.P.A.
    Inventors: Lorenzo Bolla, Paola Galli, Silvia Ghidini, Marco Romagnoli, Luciano Socci
  • Patent number: 7769262
    Abstract: Provided is an ultra-short pulse light source having an optical pulse generator 111 for emitting short pulse light, an optical amplifier 112 for amplifying the short pulse light output from the optical pulse generator 111 and an optical compressor 120 for compressing the short pulse light. The optical compressor 120 has multi-step configuration of steps polarization beam splitters 1211,2, optical fibers 1221,2,1231,2 for compressing the incident pulse light, polarization rotating element 1241,2, for rotating the polarization direction of the incident light by 90 degrees to return the light to the optical fibers 1231,2, polarization maintaining optical fibers 1251,2 provided to the output side of the polarization beam splitters 1211,2, and a polarization maintaining optical fiber 1251 at the front step is connected to a polarization maintaining optical fiber 1252 at the rear step.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 3, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Oguri, Shunichi Matsushita
  • Publication number: 20100172614
    Abstract: A bidirectional optical module according to the present invention emits light to an optical fiber and allows returning light from the optical fiber to enter and includes a plurality of light emitting elements that emit light to enter the optical fiber, a light receiving element that receives light having exited the optical fiber, and a non-reciprocal unit for making an optical path in a forward direction from the light emitting element to the optical fiber and an optical path in a backward direction from the optical fiber to the light emitting element different. Then, polarization planes of light incident on the optical fiber after being emitted from the plurality of light emitting elements are mutually orthogonal, and the non-reciprocal unit emits returning light of light emitted from the plurality of light emitting elements from the optical fiber toward the light receiving element to one light receiving element.
    Type: Application
    Filed: January 5, 2009
    Publication date: July 8, 2010
    Applicants: YOKOGAWA ELECTRIC CORPORATION, OPTOHUB CO., LTD.
    Inventors: Katsushi Oota, Haruo Shibuya, Yasuaki Tamura, Shunji Sakai
  • Patent number: 7751655
    Abstract: A micro-ring configured to selectively detect or modulate optical energy includes at least one annular optical cavity; at least two electrodes disposed about the optical cavity configured to generate an electrical field in the at least one optical cavity; and an optically active layer optically coupled to the at least one optical cavity. A method of manipulating optical energy within a waveguide includes optically coupling at least one annular optical cavity with the waveguide; and selectively controlling an electrical field in the at least one annular optical cavity to modulate optical energy from the waveguide.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: July 6, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David A. Fattal, Charles M. Santori, Raymond G. Beausoleil, Marco Fiorentino, Theodore I. Kamins
  • Patent number: 7738751
    Abstract: An optical coupler is provided for a passive coherent combination of fiber lasers/amplifiers. A plurality of optical fibers are arranged in a close-packed hexagonal array having 1+3n(n+1) fibers with (3/2)(n2?n)+3 interferometrically dark fibers and (3/2)(n2+3n)?2 light fibers, where n is an integer greater than or equal to 1. Each optical fiber has a first end and a second end. The plurality of optical fibers are fused together along a section of each optical fiber proximate the first end of each optical fiber to form a fused section having a fiber axis. The fused section of the plurality of optical fibers is tapered to form a tapered region. A facet is at an end of the fused section. The facet is disposed in a direction perpendicular to the fiber axis. The coherent pattern is highly stable against perturbation.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: June 15, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Monica L. Minden, Shuoqin Wang
  • Patent number: 7738527
    Abstract: A semiconductor laser comprises two optical ring resonators, each comprising an optical waveguide electrically pumped to provide optical gain. The two ring resonators have different round-trip optical path lengths, and are coupled to each other through a half-wave optical coupler. The half-wave optical coupler has a predetermined cross-coupling coefficient and a 180-degree cross-coupling phase. The cross-coupling coefficient is substantially less than the self-coupling coefficients in order to achieve an optimal single-mode selectivity of the laser. The first ring resonator has an optical path length such that its resonant wavelengths correspond to a set of discrete operating channels. The second ring resonator has a slightly different length so that only one resonant wavelength coincides with one of the resonant wavelengths of the first ring resonator over the operating spectral window. The lasing action occurs at the common resonant wavelength.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 15, 2010
    Inventor: Jian-Jun He
  • Patent number: 7738752
    Abstract: It is made possible to provide an optical waveguide system that has a coupling mechanism capable of selecting a wavelength and has the highest possible conversion efficiency, and that is capable of providing directivity in the light propagation direction. An optical waveguide system includes: a three-dimensional photonic crystalline structure including crystal pillars and having a hollow structure inside thereof; an optical waveguide in which a plurality of metal nanoparticles are dispersed in a dielectric material, the optical waveguide having an end portion inserted between the crystal pillars of the three-dimensional photonic crystalline structure, and containing semiconductor quantum dots that are located adjacent to the metal nanoparticles and emit near-field light when receiving excitation light, the metal nanoparticles exciting surface plasmon when receiving the near-field light; and an excitation light source that emits the excitation light for exciting the semiconductor quantum dots.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masakazu Yamagiwa, Kenji Todori, Reiko Yoshimura, Miho Maruyama, Kou Yamada, Yasuyuki Hotta, Tsukasa Tada
  • Patent number: 7734131
    Abstract: A tunable Fabry-Perot filter (8, 118, 218, 318, 418) includes substrates (10, 12) with parallel generally planar facing principal surfaces (14, 16) including spaced apart facing reflective surface regions (20, 22) that are at least partially reflective over a wavelength range and define an optical gap (Gopt) therebetween. At least one substrate of the pair of substrates is light transmissive over the selected wavelength range to enable optical coupling with the optical gap. Electrodes (24, 26) are disposed on the facing principal surfaces of the substrates. The electrodes on the facing principal surfaces of the substrates are define an electrode gap therebetween such that electrical biasing of the electrodes simultaneously modifies the optical and electrode gaps.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: June 8, 2010
    Assignee: Xerox Corporation
    Inventors: Pinyen Lin, Peter M. Gulvin, Yao Rong Wang, Lalit K Mestha
  • Publication number: 20100135613
    Abstract: A light guide includes a core and a clad made of a material having an index of refraction different from an index of refraction of the core and covering the core, in which at least one of a light incident surface or a light exit surface of the core is arranged while shifted in parallel without changing respective inclined angles so that the inclined surface is divided into a plurality of inclined surfaces parallel in a longitudinal direction (X direction) of the rectangular shape in the orthogonal projection and the plurality of inclined surfaces closer to the light emitting portion are positioned in a direction (Z direction) of moving away from the end face to be in a shape extending in the direction (Z direction) of moving away from the end face in a stepwise manner as a whole.
    Type: Application
    Filed: March 14, 2008
    Publication date: June 3, 2010
    Applicant: OMRON CORPORATION
    Inventors: Yukari Terakawa, Hayami Hosokawa
  • Patent number: 7729574
    Abstract: The present invention includes a device and method to create a light beam having substantially uniform far-field intensity. Light from a laser source is directed to at least one multimode optical fiber configured produce an intensity profile approximated by a Bessel function.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: June 1, 2010
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Daniel T Moriarty
  • Patent number: 7729573
    Abstract: An optical reader system is described herein which has a single mode (SM) optical fiber launch/receive system that uses one or more SM optical fibers to interrogate a biosensor and does not use multimode (MM) optical fibers to interrogate the biosensor. The use of the SM optical fiber launch/receive system effectively reduces angular sensitivity, reduces unwanted system reflections, improves overall angular tolerance, and improves resonant peak reflectivity and resonant peak width. Two specific embodiments of the SM optical fiber launch/receive system are described herein which include: (1) a dual fiber collimator launch/receive system; and (2) a single fiber launch/receive system that interrogates the biosensor at a normal incidence.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: June 1, 2010
    Assignee: Corning Incorporated
    Inventors: Jacques Gollier, Garrett A. Piech
  • Patent number: 7729576
    Abstract: Various embodiments and methods utilizing resonators that differently receive electromagnetic radiation from a modulated signal are disclosed.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: June 1, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Pavel Kornilovich, Michael W. Cumbie
  • Patent number: 7729572
    Abstract: An optical time delay module has a plurality of time delay elements connected in a series and a plurality an optical output couplers wherein each of said optical output couplers is operationally connected between one or more time delay elements in said series, the optical output couplers providing a plurality of optical outputs from said module with different optical delays controlled by an analog voltage.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: June 1, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: David M. Pepper, David Sumida, Richard P. Berg
  • Patent number: 7724994
    Abstract: An optical time delay module has a plurality of time delay elements connected in a series and a plurality an optical output couplers wherein each of said optical output couplers is operationally connected between one or more time delay elements in said series, the optical output couplers providing a plurality of optical outputs from said module with different optical delays controlled by a digital control word.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: May 25, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: David M. Pepper, David Sumida
  • Patent number: 7720331
    Abstract: An apparatus for performing mode scrambling in a multimode optical fibre 1 comprises an electromechanical transducer 3 and a signal generator 9. A portion of the fibre 1, which is in the form of a loop 5, is arranged with its ends 6 fixed to the transducer 3, but with the remainder of the portion being left free to vibrate. The signal generator 9 drives the transducer 3 so as to form a succession of bends of differing bend radii in the portion of the fibre as a beam of electromagnetic radiation travels through the fibre, thereby “scrambling” the beam as it travels through the fibre.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: May 18, 2010
    Assignee: Point Source Limited
    Inventors: Andrew James Rennie, Trevor White, Christel Rousseau, Ian Peter Alcock
  • Patent number: 7719688
    Abstract: An optical device includes a primary nanowire having a predetermined characteristic that affects an optical property of the primary nanowire. At least one secondary nanowire abuts the primary nanowire at a non-zero angle. The secondary nanowire(s) have another predetermined characteristic that affects an optical property of the secondary nanowire(s). A junction is formed between the primary and secondary nanowires. The device is configured to cause a portion of a light beam of a predetermined wavelength or range of wavelengths traveling through one of the primary nanowire or the secondary nanowire(s) to enter another of the secondary nanowire(s) or the primary nanowire.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 18, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventor: Theodore I. Kamins
  • Patent number: 7720340
    Abstract: A device for coupling multimode pump light and a laser signal into or out of a cladding-pumped fibre laser is disclosed, comprising an output optical fibre, a substantially un-tapered feed-through optical fibre, an annular waveguide having a tapered section, and a plurality of multimode pump fibres such that: the signal feed-through fibre is located within the annular waveguide; the signal feed-through fibre is fused into the annular waveguide in the tapered section so that the annular waveguide becomes an additional cladding layer of the feed-through fibre; the end of the feed-through fibre that is fused into the annular waveguide is optically coupled to the output optical fibre; the multimode pump fibres are optically coupled to the annular waveguide in the un-tapered section. Methods of forming the device are also disclosed.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 18, 2010
    Assignee: GSI Group Ltd.
    Inventors: Steffan Lewis, Glyn Edwards
  • Patent number: 7711224
    Abstract: A colorless tunable dispersion compensator for compensating for chromatic dispersion in a multi-channel light signal is provided. The compensator includes a multi-channel Bragg grating extending along a waveguide. Dispersion tuning means, such as a temperature gradient inducing device, are provided for tuning the dispersion characteristics of the wavelength channels. Wavelength shifting means are also provided for uniformly shifting the central wavelengths of all channels independently of their dispersion characteristics. A uniform temperature inducing or strain applying assembly can be used for this purpose.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: May 4, 2010
    Assignee: Teraxion Inc.
    Inventors: François Pelletier, Martin Lapointe, Simon Savard
  • Patent number: 7711220
    Abstract: A fiber stub assembly is provided that has a cladding layer that is reduced in diameter near the end of the stub into which light is launched from a light source. The portion of the stub having the cladding layer with the reduced diameter is surrounded by a light-absorbing material that is in contact with the inner surface of the ferule and with the outer surface of the cladding layer. The light-absorbing material and the outer surface of the cladding layer have indices of refraction that are matched, or very close to one another, such that any modes of light that are propagating in the cladding layer that impinge on the interface propagate into the light-absorbing material and are absorbed thereby. The reduced diameter of the cladding layer and the surrounding light-absorbing material form a pin hole opening through which light is received.
    Type: Grant
    Filed: February 13, 2008
    Date of Patent: May 4, 2010
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Marco Scofet, Cristiana Contardi, Luigi Tallone
  • Patent number: 7711219
    Abstract: Thermally tunable optical dispersion compensation (ODC) devices are disclosed. In one aspect, an ODC device may include multiple Gires-Tournois (G-T) etalons. The etalons may be optically coupled together. The etalons may compensate for optical dispersion by collectively delaying light. At least one of the G-T etalons may have a temperature dependent partial reflector. The ODC device may also include at least one thermal device to change the temperature of the G-T etalon having the temperature dependent partial reflector. Methods of making and using the ODC devices are also disclosed, as well as various systems including the ODC devices.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: May 4, 2010
    Assignee: Intel Corporation
    Inventors: Mark McDonald, Andrew Daiber
  • Publication number: 20100104237
    Abstract: In an optical interferometer, polarization dependence attributable to the optical path difference has conventionally been eliminated by inserting a half-wave plate at the center of the interferometer. However, light induced by polarization coupling produced in directional couplers used in the optical interferometer causes interference having different interference conditions from those of the normal light. Polarization rotators that effect any one of 90° rotation and ?90° rotation of all states of polarization of incoming light are inserted in the optical interferometer, and thereby the interference conditions of light induced by polarization coupling are made the same as those of the normal light. Each of the polarization rotators is implemented by using two half-wave plates and by varying an angle of combination of these half-wave plates. Alternatively, each of the polarization rotators is implemented through a combination of one half-wave plate and a waveguide having birefringence properties.
    Type: Application
    Filed: December 27, 2007
    Publication date: April 29, 2010
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yusuke Nasu, Manabu Oguma, Yasuaki Hashizume, Yasuyuki Inoue, Hiroshi Takahashi, Kuninori Hattori, Toshikazu Hashimoto, Yohei Sakamaki
  • Patent number: 7706644
    Abstract: One or more nanotaper coupling waveguides formed within an optical substrate allows for straightforward, reproducible offset launch conditions to be achieved between an incoming signal and the core region of a multimode fiber (which may be disposed along an alignment fixture formed in the optical substrate), fiber array or other multimode waveguiding structure. Offset launching of a single mode signal into a multimode fiber couples the signal into favorable spatial modes which reduce the presence of differential mode dispersion along the fiber. This approach to providing single mode signal coupling into legacy multimode fiber is considered to be an improvement over the prior art which required the use of an interface element between a single mode fiber and multimode fiber, limiting the number of propagating signals and applications for the legacy multimode fiber. An optical switch may be used to select the specific nanotaper(s) for coupling into the multimode fiber.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: April 27, 2010
    Assignee: Lightwire, Inc.
    Inventors: Mark Webster, Prakash Gothoskar, Vipulkumar Patel, David Piede
  • Patent number: 7702202
    Abstract: An optical device and a sensor system incorporating same are disclosed. The optical device includes a microresonator that has a core with input and output ports. The output port is different than the input port. The optical device further includes first and second optical waveguides. Each optical waveguide has a core with input and output faces. The output face of the core of the first optical waveguide physically contacts the input port of the core of the microresonator. The input face of the core of the second optical waveguide physically contacts the output port of the core of the microresonator.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: April 20, 2010
    Assignee: 3M Innovative Properties Company
    Inventors: Barry J. Koch, Terry L. Smith, Yasha Yi, Chunmei Guo
  • Patent number: 7697799
    Abstract: A light receiving device includes a first receiving structure and a second receiving structure. The first receiving structure has a first concentric coupling periodic structure provided in a first surface of a conductive thin film formed on a substrate, a first opening located at a center of the first concentric coupling periodic structure, and a first light receiving section located at an opening end of the first opening. The second receiving structure has a second concentric coupling periodic structure provided in the first surface of the conductive thin film, a second opening located at a center of the second concentric coupling periodic structure, and a second light receiving section located at an opening end of the second opening. The second light receiving section is electrically isolated from the first light receiving section.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: April 13, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideto Furuyama
  • Patent number: 7697804
    Abstract: A method for generating a high-frequency signal includes the steps of entering an optical pulse to a wavelength filtering device and generating modulating light having periodic wavelength intervals, and inputting the optical pulse outputted from the wavelength filtering device to a wavelength dispersive device to subject the optical pulse to treatment of different speeds according to the wavelength, and separating the optical pulse into time pulses independent with respect to the wavelength.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: April 13, 2010
    Assignee: Sony Corporation
    Inventor: Koichiro Kishima
  • Publication number: 20100085750
    Abstract: The present invention describes a light mixing waveguide including a transparent slab waveguide having a reflectorized edge, a pair of opposing side edges adjacent to the reflectorized edge, a light transfer edge opposite the reflectorized edge, and a plurality of cavities formed inside the slab waveguide, wherein at least one of the side edges is configured to receive light from one or more light sources so that the received light is totally-internally reflected from top and bottom surfaces of the transparent slab waveguide. Interaction of the received light, the cavities, and the reflectorized edge mixes the received light prior to the light passing through the light transfer edge and into a target optical system.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 8, 2010
    Applicant: UNI-PIXEL DISPLAYS, INC.
    Inventors: Daniel K. Van Ostrand, Martin A. Kykta, Berry Tod Cox
  • Patent number: 7692125
    Abstract: An apparatus includes a radome and an evanescent wave-coupled windowing system in the radome. In operation, the apparatus receives radiation reflected from an object that is incident upon a windowing system; emits evanescent waves from the windowing system whose amplitudes are proportional to the angle of incidence of the radiation; and non-coherent, Fresnel direction finds the object.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: April 6, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Brett A. Williams
  • Patent number: 7693366
    Abstract: A cascaded pair of broad bandwidth optical filters provides an overlap in pass-bands that forms a flat, narrow band optical filter. A first band-pass filter is operable to receive the optical signal and to transmit a first portion of the optical signal. The second band-pass filter receives the first portion of the optical signal transmits a second portion of the optical signal. The first band-pass filter has a first corner-pass wavelength of ?a, a first corner-stop wavelength of ?b, and a first pass-band center wavelength ?pb1 such that ?a??pb1??b. The second band-pass filter has a second corner-pass wavelength of ?c, a second corner-stop wavelength of ?d, and a second pass-band center wavelength ?pb2 such that ?c??pb2??d, wherein ?a<?c<?b<?d. As such, the combined pass-band is ?c??pb3??b.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: April 6, 2010
    Assignee: General Instrument Corporation
    Inventor: Kerry Litvin
  • Publication number: 20100074578
    Abstract: [Summary] [Problem] To provide an optical cable connecting closure and optical interconnection system which can easily respond to changes in required connection functions if any. [Solving Means] An optical cable connecting closure 118 has a case 121, while a plurality of connecting modules 123 are arranged (stored) so as to be erected with respect to the bottom face of a closure main body 119 along the width direction in a module storing section 122 of the case 121. The connecting module 123 has a rectangular parallelepiped board-like module main body 127, while a plurality of MT connectors 128, 129 are attached in a vertical row to one end face of the module main body 127. In the module main body 127, an optical connecting section 130 for connecting the MT connectors 128, 129 to each other is arranged. The module storing section 122 can store a different kind of connecting module having a connecting configuration (function) different from that of the connecting module 123.
    Type: Application
    Filed: March 11, 2008
    Publication date: March 25, 2010
    Inventors: Tsuyoshi Imaizumi, Kenichiro Ohtsuka, Akio Kishi, Shinya Watanabe, Akira Murozono, Tetsuya Oosugi
  • Publication number: 20100067846
    Abstract: An optical converter comprises: a first waveguide, a second waveguide, and a tapered waveguide arranged between both the waveguides, wherein heights of a core of the first waveguide and a core of the second waveguide are different; both ends in a direction of wave guiding of a core of the tapered waveguide are respectively connected to the core of the first waveguide and the core of the second waveguide; cross-sectional shapes and refractive indexes of cores of two waveguides that are connected change continuously or in a stepwise manner at each connection part; and a cross-sectional shape and refractive index of the core of the tapered waveguide change continuously or in a stepwise manner along a direction of wave guiding.
    Type: Application
    Filed: November 30, 2007
    Publication date: March 18, 2010
    Inventor: Masatoshi Tokushima
  • Publication number: 20100054661
    Abstract: An apparatus and method for producing optical pulses of a desired wavelength utilizes a section of higher-order-mode (HOM) fiber to receive input optical pulses at a first wavelength, and thereafter produce output optical pulses at the desired wavelength through soliton self-frequency shifting (SSFS) or Cherenkov radiation. The HOM fiber is configured to exhibit a large positive dispersion and effective area at wavelengths less than 1300 nm.
    Type: Application
    Filed: October 17, 2008
    Publication date: March 4, 2010
    Inventor: Slddharth Ramachandran
  • Patent number: 7672550
    Abstract: A coherent light source includes a plurality of light emitting points arranged in one-dimensional array. A beam shaping unit shapes a light beam so that a diameter of a light emitted from the coherent light source in a direction perpendicular to a direction of the light emitting point array is larger than a diameter in the direction of the light emitting point array, and an intensity distribution of the light emitted from each of the light emitting points is uniform. A magnification of a focusing optical system is set such that a light emitted from the beam shaping unit is coupled to an optical fiber based on a maximum diameter of the light emitted from the beam shaping unit.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: March 2, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Rena Murase, Yoko Inoue, Tomohiro Sasagawa
  • Patent number: 7672560
    Abstract: An optical coupling device for coupling light with an optical waveguide comprises a mirror formed within an optical waveguide. The mirror comprises a first material, a first reflective end, and a second reflective end. The first material is light conducting and has a first refractive index. The first and second reflective ends reflect and transmit light. The mirror has an axis line. The optical coupling device is useful for extracting light from a waveguide and providing a backlight for a liquid crystal display.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: March 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger F. Dangel, Folkert Horst, Tobias P. Lamprecht, Bert Jan Offrein
  • Publication number: 20100046943
    Abstract: An optical communication apparatus that includes multiple optically communicative components positioned optically in series. Some of the optically communicative components may be optical fiber segments of perhaps different types. The optical channel represented by the series of optically communicative components and approximates a transfer function of an optical channel of a longer optical fiber. Accordingly, rather than deal with a lengthy optical fiber, an apparatus having a shorter optical channel may be used instead. The construction of the optical communicative components may be calculating an input transfer function. The construction would include an ordering of discrete optically communicative components that, when placed optically in series, simulates an estimation of a particular transfer function. Testing may then occur by actually passing an optical signal through the series construction of optically communicative components, rather than through the longer optical fiber.
    Type: Application
    Filed: August 20, 2008
    Publication date: February 25, 2010
    Applicant: Finisar Corporation
    Inventors: Gayle L. Noble, Lucy G. Hosking, Luke M. Ekkizogloy
  • Publication number: 20100046886
    Abstract: An apparatus comprising a planar optical structure that includes an input coupler, first and second planar waveguides and an output coupler, all on a planar substrate. The input coupler is configured to divide an incoming light into two input light beams. Each of the first and second waveguides is configured to receive one of the two input light beams. The first waveguide has a first core with a width that is greater than a width of a second core of the second waveguide. At least one of the first or second planar waveguides is birefringent. The output coupler is configured to receive the light beams after passage through the first and second waveguides. A first output light beam from the output coupler is substantially TE polarized light and a second output light beam from the output coupler is substantially TM polarized light.
    Type: Application
    Filed: August 19, 2008
    Publication date: February 25, 2010
    Applicant: Lucent Technologies Inc.
    Inventor: Christopher Richard Doerr
  • Patent number: 7668421
    Abstract: The present invention relates to an optical coupling lens and light source module. An optical coupling lens is provided for converging a light flux emitted from a light source to an entrance aperture. The optical coupling lens satisfies a predetermined condition according to a third-order astigmatisms coefficient of the optical coupling lens. A light source module includes: a light source; an optical waveguide; and an optical unit including one or more of an optical coupling lens for converging a light flux emitted from the light source onto the optical waveguide. At least one optical coupling lens satisfies predetermined condition according to a third-order astigmatism coefficient of the optical coupling lens.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 23, 2010
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Fumio Nagai, Nobuyoshi Mori
  • Publication number: 20100040329
    Abstract: A semiconductor device includes a direct light-triggered thyristor triggered by an optical gate signal, a first optical fiber connected to the direct light-triggered thyristor and through which the optical gate signal is transmitted, a second optical fiber used to extend the first optical fiber, and a inter-optical-fiber relaying unit configured to connect the first optical fiber to the second optical fiber and to input the optical gate signal output from the second optical fiber to the first optical fiber.
    Type: Application
    Filed: October 22, 2009
    Publication date: February 18, 2010
    Inventor: Takafumi FUJIMOTO
  • Publication number: 20100040326
    Abstract: A portable electronic system comprises a portable electronic device having a screen and a visual extender. The visual extender has a thin film element and is coupled to the portable electronic device, positioning the thin film element to provide visual extension of the screen of the portable electronic device.
    Type: Application
    Filed: August 12, 2008
    Publication date: February 18, 2010
    Applicant: DISH NETWORK L.L.C.
    Inventor: John T. Kennedy
  • Patent number: 7664352
    Abstract: A spot size converter has a first core, a larger second core, and a clad disposed on a substrate. The first core has a rectilinear cross-sectional shape and is embedded in the clad, except at its ends. One of these ends has a sloping surface along which the thickness of the first core tapers gradually to zero. The second core, which has a refractive index intermediate between the refractive indexes of the first core and clad, sits on the clad and covers the sloping end surface of the first core. Light propagates through the first core, then through the second core into an external optical device, or propagates from an external optical device through the second core into the first core. This arrangement provides a spot size converter having an easily manufacturable structure and no polarization dependency.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: February 16, 2010
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hideaki Okayama
  • Publication number: 20100027938
    Abstract: The present disclosure provides an approach to more efficiently amplify signals by matching either the gain materials or the pump profile with the signal profile for a higher-order mode (HOM) signal. By doing so, more efficient energy extraction is achieved.
    Type: Application
    Filed: February 5, 2008
    Publication date: February 4, 2010
    Applicant: FURUKAWA ELECTRIC NORTH AMERICA, INC.
    Inventors: David J. Digiovanni, Clifford E. Headley
  • Publication number: 20100028020
    Abstract: A multimode optical fiber has an equivalent modal dispersion value (DMDinner&outer) of less than 0.11 ps/m for (??max×D)>0.07 ps/m as measured on a modified DMD graph. The modified DMD graph accounts for chromatic dispersion to ensure that the multimode optical fiber has a calculated effective bandwidth EBc greater than 6000 MHz-km when used with multimode transverse sources.
    Type: Application
    Filed: July 7, 2009
    Publication date: February 4, 2010
    Applicant: Draka Cornteq B.V.
    Inventors: Asghar Gholami, Denis Molin, Pierre Sillard, Yves Lumineau
  • Patent number: 7657138
    Abstract: An approach is provided for a free-space optical switch. A command is received to change a connection state of a free-space optical transmission path. A mirror is controlled to change the connection state of the free-space optical transmission path with respect to a particular port of a plurality of ports that interface to respective optical fibers, wherein the ports correspond to holes disposed about a circumferential surface of a port ring.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: February 2, 2010
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: David Z. Chen, Joseph Finn
  • Patent number: 7656472
    Abstract: In a light source device, a row of fibers is provided in which a plurality of optical fibers is arrayed in a single row in parallel fashion separately from each other. A light-direction controller is disposed on one side of the optical fibers, main fibers is disposed above and below the light-direction controller, and a main fiber is disposed at the other end of the row of fibers. Light sources are connected to each of the end portions of the main fibers. Three types of mirrors that mutually differ in direction are formed on the surface of the light-direction controller, light emitted from a main fiber enters the optical fibers by way of a first mirror, and light emitted from a main fiber enters the optical fibers by way of a second mirror.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: February 2, 2010
    Assignee: NEC Corporation
    Inventors: Kenichi Takatori, Ken Sumiyoshi
  • Patent number: 7653268
    Abstract: A substrate guided relay (600) includes an input coupler (601), an output coupler (603), and an optical substrate (602). Light is delivered from the input coupler (601) to the optical substrate (602), and then to the output coupler (603). Partially reflective coatings can be used at interfaces (606,607) between components. Partially reflective coatings or other devices (501) can be also used to create one or more copies of light. Light polarization alteration devices (661,662,663,664,665) can be used within the substrate guided relay (600), alone or in combination, to tailor the polarization of light to the designer's needs. Such devices, such as half-wave plates, provide the designer with increased flexibility regarding the design and manufacture of the substrate guided relay (600).
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: January 26, 2010
    Assignee: Microvision, Inc.
    Inventor: Christian Dean DeJong
  • Patent number: 7653310
    Abstract: A low-cost configuration of, and at the same time to control the variable dispersion compensator at a high speed in a variable dispersion compensator for compensating the wavelength dependent accumulated dispersion resulting from the wavelength dependency of the transmission fiber and fixed dispersion compensator in a long-distance high-speed WDM transmission system. In order to achieve the object mentioned above, the wavelength dependent representative characteristic of the transmission fibers 4-1 . . . n, and the wavelength dependent representative characteristic of the DCFs 13-1 . . . n are recorded and maintained in advance in the dispersion control circuit 5-1 . . .
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: January 26, 2010
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventor: Kenro Sekine
  • Publication number: 20100014807
    Abstract: A laser beam mixing apparatus to convert a laser beam bundle into a single laser beam having a uniform energy density. The laser beam mixing apparatus includes: a barrel to adjust a distance between a multi-core optical cable and an optical lens included therein, to convert a laser beam bundle into a single beam; and a stage to adjust the position and angle a single-core optical cable with respect to the optical lens, to align the core of the single-core optical cable with the center of the single beam.
    Type: Application
    Filed: July 15, 2009
    Publication date: January 21, 2010
    Applicant: Samsung Mobile Display Co., Ltd.
    Inventors: Hyun-Cheul Shin, Won-Woong Jung, Je-Kil Ryu, Kyong-Teog Lee