Particular Coupling Function Patents (Class 385/27)
  • Patent number: 7646449
    Abstract: An exemplary backlight module (200) includes a light emitting unit (220). The light emitting unit includes a plurality of light sources (227, 228, 229) configured for providing color light beams respectively, and a mixer (222) configured for mixing the color light beams into white color beams. The mixer includes a plurality of light guide structures (223) respectively corresponding to the light sources and a mixing body (226) connected to the light guide structures. The light guide structures are configured for guiding color light beams emitted from the light sources to the mixing body. The color light beams emitted from all the light sources being partially mixed into white light beams in the mixing body.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 12, 2010
    Assignee: Innolux Display Corp.
    Inventor: Chih-chung Hsiao
  • Publication number: 20100002992
    Abstract: The present disclosure provides an approach to more efficiently amplify signals by matching either the gain materials or the pump profile with the signal profile for a higher-order mode (HOM) signal. By doing so, more efficient energy extraction is achieved.
    Type: Application
    Filed: February 5, 2008
    Publication date: January 7, 2010
    Applicant: FURUKAWA ELECTRIC NORTH AMERICA, INC.
    Inventor: Siddharth Ramachandran
  • Publication number: 20100002991
    Abstract: A substrate guided relay (600) includes an input coupler (601), an output coupler (603), and an optical substrate (602). Light is delivered from the input coupler (601) to the optical substrate (602), and then to the output coupler (603). Partially reflective coatings can be used at interfaces (606,607) between components. Partially reflective coatings or other devices (501) can be also used to create one or more copies of light. Light polarization alteration devices (661,662,663,664,665) can be used within the substrate guided relay (600), alone or in combination, to tailor the polarization of light to the designer's needs. Such devices, such as half-wave plates, provide the designer with increased flexibility regarding the design and manufacture of the substrate guided relay (600).
    Type: Application
    Filed: July 3, 2008
    Publication date: January 7, 2010
    Applicant: Microvision, Inc.
    Inventor: Christian Dean DeJong
  • Patent number: 7639909
    Abstract: The subject invention pertains to a method and apparatus for multiplexing in optical fiber communications. The subject invention relates to a method and apparatus for spatial domain modulation in optical wavelengths. In a specific embodiment, the subject invention relates to a spatial domain multiplexer (SDM) for use with an optical fiber. Preferably, the input channels coupled into the fiber optic cable include collimated laser beams. The techniques of the subject invention can be utilized with single mode and multi mode waveguide structures, for example, single mode and multi mode optical fibers. The subject invention is applicable to step index optical fiber and to graded index optical fiber. Applications of the subject technology can include secure data links, for example, which can modulate data such that if the data is intercepted, the data cannot be interpreted. The subject methods and apparatus can also be used in conjunction with other multiplexing techniques such as time-domain multiplexing.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: December 29, 2009
    Assignee: Florida Institute of Technology
    Inventors: Syed Murshid, Barry Grossman, Puntada Narakorn
  • Patent number: 7639912
    Abstract: Systems and methods for subterranean distribution of optical signals on integrated circuits are disclosed. A semiconductor device comprising a multi-layer substrate includes a surface layer and a subterranean layer. Electrical devices are formed in the surface layer. Optoelectronic devices may be formed in the subterranean layer or the surface layer and configured for converting electrical signals to optical signals or converting optical signals to electrical signals. At least one optical waveguide is formed in the subterranean layer and configured for transmitting optical signals through the subterranean layer. Electrical vias may be included for coupling electrical signals between the subterranean layer and the surface layer. In addition, optical vias may be for coupling optical signals between the subterranean layer and the surface layer.
    Type: Grant
    Filed: January 31, 2007
    Date of Patent: December 29, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, Raymond G. Beausoleil, Wei Wu, Sean M. Spillane
  • Patent number: 7639910
    Abstract: An optical module is configured with a combination of a single-mode oscillating light source and an optical filter. In this optical module, the single-mode oscillating light source outputs a single-mode, frequency-modulated signal. Further, the optical filter converts the frequency modulation to an amplitude modulation. And, the single-mode oscillating light source and the optical filter are packaged without active alignment on the same substrate. Accordingly, it is possible to realize an optical module in a simple and low-cost configuration by packaging the single-mode oscillating light source and the optical filter by passive alignment, without active alignment, on the same substrate, and by using a simple optical filter such as a waveguide ring resonator, which converts a frequency modulation to an amplitude modulation.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 29, 2009
    Assignee: NEC Corporation
    Inventors: Hiroyuki Yamazaki, Takaaki Hatanaka
  • Publication number: 20090314333
    Abstract: Methods and systems for solar energy converter with increased photovoltaic and thermal conversion efficiencies including a collection optics for receiving and concentrating incident sunlight, or radiation from any other directed electromagnetic energy source, an optical filtering unit for separating and redirecting infrared light and ultraviolet light from incoming solar light, a thermal distribution unit redirecting heat from the optical filtering unit into a thermal-loop, and a photovoltaic for receiving the filtered light from the filtering system and converting the light into energy.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 24, 2009
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventor: Scott Roger Shepard
  • Publication number: 20090310912
    Abstract: An etched grating based chip provides a portion of each of a plurality of input optical signals from a plurality of laser diodes as optical feedback to the plurality of laser diodes, and couples the remaining light from the laser diodes onto an optical fiber, all the while maintaining a small form-factor, and meeting strict conditions regarding laser beat frequency. The present invention is applicable for both a single laser diode at a single wavelength and for an array of diodes at multiple wavelengths, which are multiplexed together in accordance with the present invention. The economics of laser diodes is much improved by decoupling the wavelength locking segment from the gain segment of the diode. Furthermore, the additional wavelength stability of such a locked diode will improve the performance and the economics of the network.
    Type: Application
    Filed: June 17, 2009
    Publication date: December 17, 2009
    Inventors: Serge Bidnyk, Ashok Balakrishnan, Matt Pearson
  • Publication number: 20090310905
    Abstract: The invention relates to a printed circuit board element (10) including at least one optoelectronic component (1) which is embedded in an optical, photopolymerizable layer material (13), and at least one optical waveguide (14) optically coupled thereto, which is structured in the optical, photopolymerizable material (13) by photon irradiation, wherein the component (1) comprises a curved deflection mirror (5) on its light transmission surface (3), which curved deflection mirror deflects the light radiation (15), for instance by 90°.
    Type: Application
    Filed: May 8, 2007
    Publication date: December 17, 2009
    Inventors: Markus Riester, Gregor Langer, Alexander Stuck
  • Patent number: 7630417
    Abstract: Whispering-gallery-mode (WGM) optical resonators made of crystal materials to achieve high quality factors at or above 1010.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: December 8, 2009
    Assignee: California Institute of Technology
    Inventors: Lutfollah Maleki, Andrey B. Matsko, Anatoliy Savchenkov, Dmitry V. Strekalov
  • Patent number: 7627207
    Abstract: A dispersion compensating method for carrying out automatic level control with the use of target output power and an ASE correction value corresponding to the number of wavelengths to multiplex and making output power of a wavelength multiplexed signal constant, comprising the steps of: switching into automatic gain control in which the output power of the wavelength multiplexed signal is made constant, to carry out increase/decrease of the wavelengths to multiplex; varying a dispersion compensating amount based on the increase/decrease of the wavelengths by the automatic gain control; calculating an ASE variation amount due to the change in the dispersion compensating amount; and reflecting the ASE variation amount on the ASE correction value and switching into the automatic level control.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: December 1, 2009
    Assignee: Fujitsu Limited
    Inventors: Masahiro Yoshimoto, Futoshi Izumi, Makoto Takakuwa
  • Patent number: 7627211
    Abstract: The present invention relates to a tunable dispersion and dispersion slope compensator based on an optical fiber grating in an optical communication system. The compensator includes: a first disk having a ring shape, wherein the first disk is configured to rotate; a second disk installed at an inner space of the first disk, wherein the second disk is configured not to rotate; a metal plate configured to bend as the first disk rotates; and an optical fiber grating adhered to the metal plate, wherein the optical fiber grating has different strains according to positions when the metal plate rotates.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: December 1, 2009
    Assignee: Korea Institute of Science and Technology
    Inventors: Jun Kye Bae, Young Jun Lee, Sang Hyuck Kim, Sang Bae Lee
  • Patent number: 7616854
    Abstract: The present invention provides an apparatus and method for operation therefore. The apparatus, in one embodiment, includes an optical coupling structure disposed within a cladding region, wherein the optical coupling structure includes a first guiding portion and a second guiding portion. In this embodiment the first guiding portion has a first end proximate a core of a planar waveguide, and a second end proximate the second guiding portion and having a first thickness. Moreover, in this embodiment the second guiding portion has a first end proximate the first guiding portion and a second end, the second end of the second guiding portion having a second thickness less than the first thickness.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 10, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Douglas M. Gill, Sanjay Patel, Mahmoud Rasras
  • Patent number: 7609921
    Abstract: An optical fiber part includes an optical fiber having a main fiber, a taper fiber and a small-diameter fiber. The core diameter of the taper fiber decreases along an optical axis. Further, a heat-radiation silicon adhesive that is a highly heat-conductive material having heat conductivity of 4 W/m·K or higher has been applied to the entire area of the outer circumference of the taper fiber and a part of the small-diameter fiber next to the taper fiber. An input end of the optical fiber is connected to a semiconductor laser having an output power of 10 W. Light output from the laser propagates through the optical fiber and output from the output end. A part of light that has propagated through the main fiber and entered the taper fiber is output through the cladding thereof. Heat generated by light output from the cladding is transferred through the heat-radiation silicon adhesive and radiated.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: October 27, 2009
    Assignee: FUJIFILM CORPORATION
    Inventor: Shinichi Shimotsu
  • Publication number: 20090263081
    Abstract: A bi-directional signal interface includes a carrier signal source that generates a carrier traveling wave at an output. A first traveling wave structure includes a first and a second waveguide having an input that is coupled to the output of the carrier signal source. The first and second waveguide propagate the carrier traveling wave. A second traveling wave structure includes an outgoing signal port that receives an outgoing signal and a bi-directional signal port that receives an incoming electrical signal and provides the outgoing signal. The first and second traveling wave structures have an electromagnetic interaction region with a geometry that is chosen for a desired outgoing-to-incoming signal isolation. A detector having an input coupled to the output of the first traveling wave structure generates an electrical signal related to the incoming electrical signal.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 22, 2009
    Applicant: PHOTONIC SYSTEMS, INC.
    Inventors: Charles Cox, Edward Ackerman
  • Patent number: 7603017
    Abstract: In accordance with one or more embodiments of the present disclosure, a multi-color curved multi-light generating apparatus comprises a first input component adapted to receive a first input light beam, a second input component adapted to receive a second input light beam, a third input component adapted to receive a third input light beam, and an output component adapted to provide an output light beam. The input components and the output component are joined together to combine the input light beams and form the output light beam. In various implementations, each of the input components and the output component comprise a hollow tube with a polygonal cross-section, such as a hexagonal cross-section.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: October 13, 2009
    Assignee: The Boeing Company
    Inventors: Frank T Cianciotto, George H Butler, III
  • Patent number: 7599627
    Abstract: An optical homodyne communication system and method in which a side carrier is transmitted along with data bands in an optical data signal, and upon reception, the side carrier is boosted, shifted to the center of the data bands, and its polarization state is matched to the polarization state of the respective data bands to compensate for polarization mode dispersion during transmission. By shifting a boosted side carrier to the center of the data bands, and by simultaneously compensating for the effects of polarization mode dispersion, the provided system and method simulate the advantages of homodyne reception using a local oscillator. The deleterious effects of chromatic dispersion on the data signals within the data bands are also compensated for by applying a corrective function to the data signals which precisely counteracts the effects of chromatic dispersion.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: October 6, 2009
    Assignee: Teradvance Communications, LLC
    Inventors: Marcel F. C. Schemmann, Zoran Maricevic, Antonije R. Djordjevic, Darby Racey
  • Patent number: 7593608
    Abstract: In an optical communications link, an optical system including: at least a first input port for delivering an optical signal travelling in the communications link, the optical signal including a plurality of wavelength channels, the channels being utilized for carrying optical information over an optical data link; a dispersive element for spatially separating the wavelength channels; an active optical-phase element; and a plurality of optical manipulation elements for directing the spatially separated channels between the dispersive element and the optical phase element wherein, the optical phase element independently modifies the phase of predetermined ones of the wavelength channel in a predetermined and decoupled manner for substantial compensation of signal degradation effects imparted to the wavelength channels by said communications link.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 22, 2009
    Assignee: Finisar Corporation
    Inventor: Steven J. Frisken
  • Patent number: 7593606
    Abstract: An optical modulator and related methods are described. In accordance with one embodiment, the optical modulator comprises a horizontal waveguide grating structure (WGS) receiving an incident radiation beam propagating in a non-horizontal direction. The WGS includes a horizontal waveguiding layer along which a lateral propagation mode is guided, the lateral propagation mode having a vertically extending mode profile. The optical modulator further comprises a multiple quantum well (MQW) layer sufficiently proximal to the horizontal waveguiding layer to be within a vertical extent of the mode profile of the lateral propagation mode. The optical modulator further comprises an electric field source applying a time-varying electric field to the MQW layer. The optical modulator modulates the incident radiation beam according to the time-varying electric field to generate a modulated radiation beam propagating in one of a transmitted direction and a reflected direction.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: September 22, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Fattal, Michael M. Sigalas, Shih-Yuan Wang
  • Patent number: 7590317
    Abstract: The methods and apparatus of the present invention provide advantages for remote laser delivery systems that conduct high levels of light energy through a fiber optic cable to a target surface. Helical fiber optic mode scramblers in accordance with the present invention are an integral portion of a fiber optic cable having a spiral curvature predetermined to advantageously influence the intermodal dispersion characteristics of the fiber optic cable. Various embodiments of helical fiber optic mode scramblers in accordance with the present invention enable delivery of light energy at rates that can exceed continuous deliver of 30 Joules per millimeter squared of cross sectional area of a fiber optics cable. Particular embodiments of a fiber optic mode scrambler in accordance with the present invention include a support structure and a cylindrical sleeve that provide limited longitudinal flexibility maximizing the range of positions in which the fiber optics cable can be dynamically arranged.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: September 15, 2009
    Inventor: John Crownover
  • Patent number: 7590356
    Abstract: The present invention provides: (1) a compensator that compensates a wide range of amount of dispersion of light in a wide bandwidth band; and (2) a variable dispersion slope compensator applicable to the case where a transmission path suitable for a wavelength division multiplexing transmission system produces a wavelength dispersion slope.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: September 15, 2009
    Assignee: Hitachi Metals Ltd.
    Inventors: Toshiki Sugawara, Kazuhiko Hosomi, Satoshi Makio
  • Publication number: 20090226132
    Abstract: A variety of structures, methods, systems, and configurations can support plasmons for logic.
    Type: Application
    Filed: April 7, 2009
    Publication date: September 10, 2009
    Applicant: Searete LLC
    Inventors: Roderick A. Hyde, Edward K.Y. Jung, Nathan P. Myhrvold, John Brian Pendry, Clarence T. Tegreene, Lowell L. Wood, JR.
  • Patent number: 7587109
    Abstract: A hybrid, wide angle imaging system combines high sensitivity superposition arrays with a high resolution apposition array to generate distortion free images with an infinite depth of field. A conformal, superposition array of Keplerian telescope objectives focuses multiple apertures of light through the tubes of a louver baffle. The baffle tubes are terminated by field stops that separate the focused light into inverted, intermediate sub-images. A superposition array of field lenses, positioned immediately after the field stops, reverses the angles of the light beams. An apposition array of erector lenses, linked optically to the superposition arrays and field stops, refocuses and adjoins the beams into a single, upright image. The upright image is formed on the convex surface of a fiber optic imaging taper, which transfers the image to the flat bottom of the taper where it can be viewed through an eyepiece or digitized by a detector array.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: September 8, 2009
    Assignee: Spectral Imaging Laboratory
    Inventor: Francis Mark Reininger
  • Patent number: 7583894
    Abstract: Methods and apparatus are described for modulating an optical signal using electroabsorption in conjunction with an optical interferometer. Phase-shift keying modulation can be achieved with lower amplitude modulator drive signals than conventional methods by splitting the signal to be modulated into multiple optical modes and interferometrically combining the modes after modulating at least one of the modes with an EAM. Using the present invention, the extinction ratio performance of ASK can be significantly improved for a given drive voltage or a desired extinction ratio can be achieved with a substantially lower drive voltage. Hence, the elecro-optic bandwidth of EAMs can be enhanced by overcoming the trade-off relationship between extinction ratio and bandwidth. Furthermore, the present invention can be used to generate other modulation formats, such as QPSK or QAM, with much lower drive voltages, thereby reducing the cost and power consumption of the high-speed drive electronics for the modulation.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: September 1, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Inuk Kang
  • Publication number: 20090216299
    Abstract: A low-level laser therapy radiation system is provided. In a further aspect of the present invention, the system includes a laser source and an optical device. In another aspect of the present invention, a low-level laser therapy chamber is employed. The chamber produces an even distribution of laser radiation to a surface of a human body.
    Type: Application
    Filed: April 5, 2006
    Publication date: August 27, 2009
    Applicant: Borad of Trustees of Michigan State University
    Inventor: Marcos Dantus
  • Patent number: 7577327
    Abstract: An optical apparatus comprises an optical device formed on a device substrate, a first optical waveguide formed on the substrate or on the optical device, and a second, mechanically discrete optical waveguide assembled with the device substrate, optical device, or first optical waveguide. The first optical waveguide is arranged for transferring an optical signal between the optical device and the first optical waveguide. The first and second optical waveguides are arranged, when the second optical waveguide is assembled with the device substrate, optical device, or first optical waveguide, for transferring the optical signal therebetween via optical transverse coupling.
    Type: Grant
    Filed: May 25, 2008
    Date of Patent: August 18, 2009
    Assignee: Hoya Corporation USA
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Publication number: 20090202201
    Abstract: A fiber stub assembly is provided that has a cladding layer that is reduced in diameter near the end of the stub into which light is launched from a light source. The portion of the stub having the cladding layer with the reduced diameter is surrounded by a light-absorbing material that is in contact with the inner surface of the ferule and with the outer surface of the cladding layer. The light-absorbing material and the outer surface of the cladding layer have indices of refraction that are matched, or very close to one another, such that any modes of light that are propagating in the cladding layer that impinge on the interface propagate into the light-absorbing material and are absorbed thereby. The reduced diameter of the cladding layer and the surrounding light-absorbing material form a pin hole opening through which light is received.
    Type: Application
    Filed: February 13, 2008
    Publication date: August 13, 2009
    Applicant: Avago Technologies Fiber IP Pte, Ltd.
    Inventors: Marco Scofet, Cristiana Contardi, Luigi Tallone
  • Patent number: 7574084
    Abstract: An improved electro-optical system has a planar waveguide coupled to a photodetector through a transparent substrate. The planar waveguide is within a planar optical structure that can be part of optical communication network. The photodetector is positioned to receive light that passes from the waveguide through the transparent substrate. The photodetector can be electrically coupled to electrical circuitry along the transparent substrate for connection to a electrical apparatus. Corresponding methods for forming the electro-optical structure are described. These improved electro-optical systems can be used for terminating an optical transmission system at an end user or a local network associated with a group of end users.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: August 11, 2009
    Assignee: NeoPhotonics Corporation
    Inventors: Ming Yan, Ping Peter Xie, Anthony J. Ticknor
  • Patent number: 7574081
    Abstract: The present invention provides an optical system with waveguides, which comprises first, second and third optical input/output means (12, 14, 16), fourth and fifth multi-mode optical waveguides (20, 22) each capable of propagating light with plural propagation modes, and optical-filter mounting means (26) for mounting an optical filter (24) between the fourth and fifth multi-mode optical waveguides (20, 22) across a traveling direction of light in the fourth and fifth multi-mode optical waveguides (20, 22). The first optical input/output means (12) is connected to an end face of the fourth multi-mode optical waveguide (20) on a side thereof opposite to the optical-filter mounting means (26). Each of the second and third optical input/output means (14, 16) is connected to an end face of the fifth multi-mode optical waveguide (22) on a side opposite to the optical-filter mounting means (26).
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: August 11, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Publication number: 20090195781
    Abstract: A biological information measuring sensor (10) has light-receiving regions (21, 22) arranged on a light-receiving element (20) for receiving light from a living body, and a waveguide (15) including an inlet-side opening portion (14a) into which the light enters and an outlet-side opening portion (14b) from which the light exits, provided corresponding to the light-receiving regions (21, 22), and guiding the light to the light-receiving regions (21, 22). The waveguide (15) has a front-side waveguide (15a) and a rear-side waveguide (15b).
    Type: Application
    Filed: June 6, 2006
    Publication date: August 6, 2009
    Applicant: OMRON HEALTHCARE CO., LTD.
    Inventor: Muneo Tokita
  • Patent number: 7570850
    Abstract: An optical system, device, and method that are capable of generating high-order Bessel beams and determining the orbital angular momentum of at least one of the photons of a Bessel beam are provided. The optical system and device include a tapered waveguide having an outer surface defined by a diameter that varies along a longitudinal axis of the waveguide from a first end to an opposing second end. The optical system and device include a resonator that is arranged in optical communication with the first end of the tapered waveguide such that an evanescent field emitted from (i) the waveguide can be coupled with the resonator, or (ii) the resonator can be coupled with the waveguide.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: August 4, 2009
    Assignee: The United States of America as represented by the National Aeronautics and Space Administration
    Inventors: Andrey B. Matsko, Anatoliy A. Savchenkov, Lute Maleki, Dmitry V. Strekalov
  • Patent number: 7565045
    Abstract: The present invention aims to provide a tuning light source apparatus including a multiple-optical resonator, where the resonance frequencies of the respective optical resonators in a multiple-optical resonator are exactly coincided with the set frequency, and the frequency of the output laser beam is locked within a range of about 1 GHz from the set frequency. Current is flowed to TO phase shifters based on lights detected by light receiving elements, and the resonance wavelengths of resonators are adjusted in an aim of obtaining a state in which an intensity of an oscillation light becomes a maximum and at the same time an intensity of a light from a through port becomes a minimum.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: July 21, 2009
    Assignee: NEC Corporation
    Inventor: Kouichi Suzuki
  • Patent number: 7561768
    Abstract: An optical branching device comprises a first lens member comprising a transmitting plane surface, a transmitting convex surface having an approximate center of curvature in the transmitting plane surface, and a first optical fiber and a second optical fiber firmly affixed on the transmitting plane surface of the first lens member. The transmitting convex surface has a wavelength-selective mirror surface that transmits light of a first wavelength and reflects light of a second wavelength. The light of the second wavelength, which is one of the wavelengths of light emitted from the first optical fiber and is reflected and converged by the wavelength-selective mirror surface, enters into the second optical fiber.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: July 14, 2009
    Assignee: Kabushiki Kaisha Topcon
    Inventors: Akira Takada, Shinya Ikoma, Shigenori Nagano
  • Patent number: 7558450
    Abstract: This invention provides a tunable delay of an optical signal having a carrier with an angular frequency ?0 and a single side band having a signal band with a median angular frequency ?r. The delay line comprises at least a first, a second and a third integrated resonators coupled sequentially to a waveguide. The first and the second resonators have angular resonant frequencies ?1=?r??? and ?2=?r+?? respectively, where ?? is a deviation from the median frequency. The third resonator provides a phase delay difference between the phase at the optical carrier ?0 and the phase at the median frequency ?r equal to (?r??0)Td, where Td is the time delay. The device provides an equal group delay to all frequency components in the output signal and also equal phase delay for all frequency components of an RF signal when the optical signal is downconverted at a photodetector. The device may find applications controlling the time delay to antenna elements in a phased array system.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: July 7, 2009
    Assignee: Morton Photonics, Inc.
    Inventors: Jacob Khurgin, Paul A. Morton
  • Patent number: 7558451
    Abstract: An optical fiber line arranging guide groove capable of sensing optical signals is provided for detecting the status of optical signals in the optical fiber line. Through an optical detection circuit and a display element, the connection status of optical signals for the optical fiber line in the optical fiber line arranging guide groove is determined.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: July 7, 2009
    Assignee: Inventec Multimedia & Telecom (Tianjin) Co., Ltd.
    Inventor: Kevin Lu
  • Patent number: 7555220
    Abstract: An optical equalizer/dispersion compensator (E/CDC) comprises an input/output for receiving a multiplexed channel signal comprising a plurality of channel signals of different wavelengths. An optical amplifier may be coupled to receive, as an input/output, the multiplexed channel signals which amplifier may be a semiconductor optical amplifier (SOA) or a gain clamped-semiconductor optical amplifier (GC-SOA). A variable optical attenuator (VOA) is coupled to the optical amplifier and a chromatic dispersion compensator (CDC) is coupled to the variable optical attenuator. A mirror or Faraday rotator mirror (FRM) is coupled to the chromatic dispersion compensator to reflect the multiplexed channel signal back through these optical components The E/CDC components may be integrated in a photonic integrated circuit (PIC) chip.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: June 30, 2009
    Assignee: Infinera Corporation
    Inventors: Stephen G. Grubb, Charles H. Joyner, Frank H. Peters, Fred A. Kish, Jr., Drew D. Perkins
  • Patent number: 7555178
    Abstract: A periodic optical filter for interleaving a plurality of optical signals to provide a multiplexed signal for transmission over an optical fiber is disclosed. The periodic optical filter includes a first optical filter constructed to receive at least two optical signals through an input port to provide at least one filtered optical signal. The periodic optical filter also includes a second optical filter, in communication with the first optical filter, constructed to receive the filtered optical signal from the first optical filter through an intermediate port to provide a multiplexed signal for transmission through an output port. At least one of the optical filters includes an infinite-impulse response filter and at least one of the optical filters includes a finite-impulse response filter. Methods of fabrication and methods of use including the periodic optical filter are disclosed.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: June 30, 2009
    Assignee: Infinera Corporation
    Inventor: Wei Chen
  • Patent number: 7548668
    Abstract: An apparatus having a topology that allows building complicated optical programmable arrays useful for manipulating the phase and/or amplitude of an optical signal. Sophisticated filtering and other optical signal processing functionality can be programmed into the array after a chip containing the array has been fabricated. This programming capability is analogous to that of electronic field programmable gate arrays (FPGA's). Apparatus described herein will provide a powerful tool for processing optical signals or very broadband electrical signals.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: June 16, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Young-Kai Chen, Andreas Leven, Mahmoud Rasras, Kun-Yii Tu
  • Publication number: 20090142018
    Abstract: Disclosed in a method and a device in which a wave number of light in the waveguide mode of a photonic crystal optical waveguide is matched with that of the incident light, or a intensity ratio of electric field to magnetic field of the light in the waveguide mode of the photonic crystal optical waveguide is matched with that of the incident light, and furthermore, in addition to the method above, the distribution of light intensity on the incident end surface in the waveguide mode of the photonic crystal optical waveguide is matched with that of the incident light. A photonic crystal optical waveguide and channel optical waveguide are joined together, and the structure of the channel optical waveguide is wedge shaped in the joint section.
    Type: Application
    Filed: January 26, 2009
    Publication date: June 4, 2009
    Inventors: Akiko Gomyo, Jun Ushida
  • Patent number: 7542641
    Abstract: The multi-channel optical device includes a demultiplexer in a laser cavity. The demultiplexer is configured to demultiplex a multi-channel light beam into a plurality of channels. The device also includes a plurality of ports. Each channel exits the laser cavity through a different one of the ports.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: June 2, 2009
    Assignee: Kotura, Inc.
    Inventors: Mehdi Asghari, Dazeng Feng
  • Publication number: 20090136189
    Abstract: In a preferred embodiment, an integrated optical gate matrix, that includes a set of nonlinear elements and waveguides interconnecting at least some nonlinear elements in the set of nonlinear elements, may be configured to enable optical processing. A first subset of the set of nonlinear elements is preferably configured to function as a set of ON/OFF switches in the “OFF” state to enable a second subset of the set of nonlinear elements to be configured in at least one optical processing configuration. Configuration of the second subset of the set of nonlinear elements may be used for various optical processing operations, such as all-optical 2R or 3R regeneration, wavelength conversion, data format conversion, demultiplexing, clock recovery, logic operations and dispersion compensation. Related apparatus and methods are also described.
    Type: Application
    Filed: December 30, 2008
    Publication date: May 28, 2009
    Applicant: Rondel Technology Facility, L.L.C.
    Inventor: Doron Handelman
  • Publication number: 20090136177
    Abstract: A microstructure optical adapter or tip according to the present disclosure may incorporate precision micro structure optical components engaging the input or output end of light energy delivery devices for customized light delivery of the light energy. The incorporation of precision micro structure optical components in injection molded plastic or glass parts will allow for inexpensive modification of the output light while also serving to protect the end of the illumination device. The micro structure optical components may also be incorporated in an adapter to tailor the light energy to the subsequent device.
    Type: Application
    Filed: January 6, 2009
    Publication date: May 28, 2009
    Inventors: Alex Vayser, Kenneth C. Trauner
  • Patent number: 7539369
    Abstract: An optical device includes: a substrate side waveguide formed on a substrate; and a plurality of optical elements fixed on the substrate. The substrate side waveguide and an optical element side waveguide formed in each of the plurality of optical elements forms a continuous optical waveguide path.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: May 26, 2009
    Assignee: NEC Corporation
    Inventor: Hiroyuki Yamazaki
  • Patent number: 7532789
    Abstract: In general, in one aspect, an apparatus includes an optical bus arm and a ring resonator arm. The apparatus also includes first, second and third directional couplers between the optical bus arm and the ring resonator arm. A first tuner is included on one of the optical bus arm and the ring resonator arm between the first directional coupler and the second directional coupler. A second tuner is included on other of the optical bus arm and the ring resonator arm between the second directional coupler and the third directional coupler. A tuning mechanism is also included.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: May 12, 2009
    Assignee: Intel Corporation
    Inventor: Jonathan K. Doylend
  • Patent number: 7532779
    Abstract: An optical reader system is described herein which has a single mode (SM) optical fiber launch/receive system that uses one or more SM optical fibers to interrogate a biosensor and does not use multimode (MM) optical fibers to interrogate the biosensor. The use of the SM optical fiber launch/receive system effectively reduces angular sensitivity, reduces unwanted system reflections, improves overall angular tolerance, and improves resonant peak reflectivity and resonant peak width. Two specific embodiments of the SM optical fiber launch/receive system are described herein which include: (1) a dual fiber collimator launch/receive system; and (2) a single fiber launch/receive system that interrogates the biosensor at a normal incidence.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: May 12, 2009
    Assignee: Corning Incorporated
    Inventors: Jacques Gollier, Garrett A. Piech
  • Patent number: 7532790
    Abstract: A method of making a microresonator device includes the steps of providing at least a first substrate and providing a waveguide integrated on the substrate. The waveguide includes a core and a metal cladding layer on at least part of one boundary of the core. Another step is positioning a microresonator so that it is in an optically coupling relationship with the waveguide.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: May 12, 2009
    Assignee: 3M Innovative Properties Company
    Inventors: Terry L. Smith, Barry J. Koch, Michael A. Haase, Jun-Ying Zhang, Robert W. Wilson, Xudong Fan
  • Publication number: 20090116786
    Abstract: A multi-channel dispersion compensator comprising an optical signal waveguide that forms an input end for receiving an optical signal and an output end for providing a filtered optical signal. The multi-channel dispersion compensator also includes a series of closed-loop resonators providing frequency delay to at least one channel of the optical signal. The optical signal waveguide and each closed-loop resonator form a tunable coupler having a coupling value. The coupling value for each tunable coupler is selected to minimize constant dispersion and linear slope dispersion of the optical signal. Methods of fabrication and use are also described.
    Type: Application
    Filed: November 2, 2007
    Publication date: May 7, 2009
    Inventors: Brent E. Little, Wei Chen
  • Patent number: 7529456
    Abstract: A photonic crystal may be configured to support a surface state for logic.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: May 5, 2009
    Inventors: Roderick A. Hyde, Nathan P. Myhrvold
  • Patent number: 7529454
    Abstract: A photonic crystal may be configured to support a surface state for logic.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 5, 2009
    Inventors: Roderick A. Hyde, Nathan P. Myhrvold
  • Patent number: 7526148
    Abstract: An acoustic sensor includes at least one photonic crystal structure having at least one optical resonance with a resonance frequency and a resonance lineshape. The acoustic sensor further includes a housing substantially surrounding the at least one photonic crystal structure and mechanically coupled to the at least one photonic crystal structure. At least one of the resonance frequency and the resonance lineshape is responsive to acoustic waves incident upon the housing.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: April 28, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Onur Kilic, Olav Solgaard, Michel J. F. Digonnet, Gordon S. Kino