Phase Modulation Type Patents (Class 385/3)
  • Patent number: 11327234
    Abstract: An optical semiconductor device includes a first optical coupler including a first input port and a second input port, a first optical branching device including a first output port and a second output port, a second optical coupler including a third input port and a fourth input port, a second optical branching device including a third output port and an fourth output port, a first single mode waveguide configured to connect the second input port and the first output port, a second single mode waveguide configured to connect the second output port and the third input port, a third single mode waveguide configured to connect the fourth input port and the third output port, and a fourth single mode waveguide configured to connect the fourth output port and the first input port.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: May 10, 2022
    Assignee: FUJITSU LIMITED
    Inventor: Yohei Sobu
  • Patent number: 11307484
    Abstract: An integrated electro-optic frequency comb generator based on ultralow loss integrated, e.g. thin-film lithium niobate, platform, which enables low power consumption comb generation spanning over a wider range of optical frequencies. The comb generator includes an intensity modulator, and at least one phase modulator, which provides a powerful technique to generate a broad high power comb, without using an optical resonator. A compact integrated electro-optic modulator based frequency comb generator, provides the benefits of integrated, e.g. lithium niobate, platform including low waveguide loss, high electro-optic modulation efficiency, small bending radius and flexible microwave design.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: April 19, 2022
    Assignee: HyperLight Corporation
    Inventors: Mian Zhang, Christian Reimer, Kevin Luke
  • Patent number: 11194219
    Abstract: An optical modulator according to embodiments includes a first MZI and a second MZI each including a first optical coupler that splits CW light into two, a second optical coupler that couples the CW light split by the first optical coupler and outputs the CW light, and a bias electrode that adjusts a phase of the CW light split by the first optical coupler, a third optical coupler that couples outputs of the first MZI and the second MZI with at a predetermined ratio and outputs the light, and a bias adjustment circuit that adjusts an output voltage of a bias power supply applied to a bias electrode so that an optical path length difference between the CW light beams split by the first optical coupler is a predetermined times a carrier wavelength under a condition that an output of a differential output amplifier is a zero level, in accordance with an operating mode of the own apparatus.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 7, 2021
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Hiroto Kawakami, Hiroshi Yamazaki, Yutaka Miyamoto
  • Patent number: 11139895
    Abstract: A transmission device including a multi-division optical modulator having a plurality of modulation segments, the transmission device includes a driver circuit configured to output binary data for each bit based on an input electrical signal, and an optical modulator configured to have a multilevel modulation segment driven by a first drive signal including two or more bit signal from the driver circuit, and plural binary modulation segments driven by second drive signal including only one bit signal from the driver circuit, wherein the multilevel modulation segment incudes a first phase shifter disposed on each arm of the optical modulator, the binary modulation segment includes a plurality of second phase shifters arranged along each arm of the optical modulator, and lengths of the second phase shifters are all the same and are shorter than a length of the first phase shifter.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: October 5, 2021
    Assignee: FUJITSU LIMITED
    Inventors: Shinsuke Tanaka, Yohei Sobu
  • Patent number: 11115125
    Abstract: Various embodiments of a monolithic transceiver are described, which may be fabricated on a semiconductor substrate. The monolithic transceiver includes a coherent receiver module (CRM), a coherent transmitter module (CTM), and a local oscillation splitter to feed a local oscillation to the CRM and the CTM with a tunable power ratio. The monolithic transceiver provides tunable responsivity by employing avalanche photodiodes (APDs) for opto-electrical conversion. The monolithic transceiver also employs a polarization beam rotator-splitter (PBRS) and a polarization beam rotator-combiner (PBRC) for supporting modulation schemes including polarization multiplexed quadrature amplitude modulation (PM-QAM) and polarization multiplexed quadrature phase shift keying (PM-QPSK).
    Type: Grant
    Filed: April 8, 2020
    Date of Patent: September 7, 2021
    Assignee: SIFOTONICS TECHNOLOGIES CO., LTD.
    Inventors: Pengfei Cai, Zhou Fang, Yi Li, Ning Zhang, Rangchen Yu, Ching-yin Hong, Dong Pan
  • Patent number: 11112623
    Abstract: A method and apparatus for driving an optical push-pull Mach-Zehnder modulator.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: September 7, 2021
    Assignee: Acacia Communications, Inc.
    Inventor: Christopher Doerr
  • Patent number: 11112624
    Abstract: A semiconductor device includes a first insulating layer, an optical waveguide, a first slab portion, a second insulating layer, and a conductive layer. The optical waveguide is formed on the first insulating layer and has a first side surface and a second side surface. The first slab portion is adjacent to the first side surface. The second insulating layer is formed on the optical waveguide. The conductive layer is formed on the second insulating layer. The optical waveguide has a first conductivity type. The first slab portion has first portion, second portion and third portion. The first portion has a second conductivity type opposite to the first conductivity type. The second portion is located farther from the optical waveguide than the first portion and has a first conductivity type. The third portion is formed between the optical waveguide and the second portion and has the first conductivity type.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: September 7, 2021
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Yasutaka Nakashiba, Tohru Kawai
  • Patent number: 11106060
    Abstract: Disclosed are structures as well as methods of manufacture and operation of integrated optoelectronic devices that facilitate directly heating the diode or waveguide structures to regulate a temperature of the device while allowing electrical contacts to be placed close to the device to reduce the electrical resistance. Embodiments include, in particular, heterogeneous electro-absorption modulators that include a compound-semiconductor diode structure placed above a waveguide formed in the device layer of an SOI substrate.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: August 31, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Jonathan Edgar Roth, Erik Johan Norberg
  • Patent number: 11106108
    Abstract: A semiconductor MZM of the present invention includes the first and second signal electrodes formed to be parallel to the first and second arm waveguides, respectively; the first and second phase modulation electrodes that are branched from the first and second signal electrodes and that are provided on the first and second arm waveguides in a discrete manner along the first and second signal electrodes; the first and second ground electrodes formed parallelly along the first and second signal electrodes; and a plurality of connection wirings to connect the first and second ground electrodes between a plurality of points. A differential signal is inputted to or outputted from the first and second signal electrodes. The plurality of connection wirings adjacent to each other are arranged with an interval ¼ times smaller than wavelength of a signal propagated through the first and second signal electrodes.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: August 31, 2021
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Josuke Ozaki, Yoshihiro Ogiso, Norihide Kashio
  • Patent number: 11092875
    Abstract: Reconfigurable nonlinear frequency conversion waveguide chip based on Mach-Zehnder interferometer coupled micro-ring, the method is based on the integration of waveguide components of phase-adjustable Mach-Zehnder interferometers (MZI) and micro-ring resonators. The chip is illustrated by FIG. 1. The MZI couples light and photons into and output of the micro-ring resonator and controls the micorings' quality factor thus optimize the nonlinear frequency conversion processes inside the ring by the phase-modulator inside the MZI. The micro-ring resonator enables the nonlinear optical generation of new frequency light beams and quantum light sources based on the second-order or third-order nonlinear optical process. Other optical waveguide components in region I and III of FIG. 1 are linear optical circuits for power splitting of pump beams and post-process of generated light beams or photons.
    Type: Grant
    Filed: June 14, 2020
    Date of Patent: August 17, 2021
    Assignee: National university of defense technology
    Inventors: Ping Xu, Yingwen Liu, Chao Wu, Junjie Wu
  • Patent number: 11088765
    Abstract: In some embodiments, an apparatus includes a memory and a processor operatively coupled to the memory. The processor is configured to send a stimulus signal at a frequency that corresponds to a first frequency value to a tributary channel of a coherent optical transponder. The processor is configured to adjust an amplitude of the stimulus signal and receive a first plurality of output optical power values. The processor is configured to adjust the frequency of the stimulus signal and receive a second plurality of output optical power values. The processor is configured to determine a bandwidth limitation and a modulation nonlinearity, and then send a first signal to a first filter to reduce the bandwidth limitation and a second signal to a second filter to reduce the modulation nonlinearity.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: August 10, 2021
    Assignee: Juniper Networks, Inc.
    Inventors: Qiang Wang, Yang Yue
  • Patent number: 11082145
    Abstract: An optical branching/coupling device includes: a first optical branching unit that splits first light with a first and a second wavelength, and outputs second light and third light; a wavelength selector that receives the second light, receives fourth light with a third wavelength, output fifth and sixth light, one of the fifth light and the sixth light including an optical signal of the first wavelength of the second light and including the fourth light, and the other including an optical signal of the second wavelength; a first light switch that receives the fifth light and the sixth light, output one of the fifth light and the sixth light as seventh light, and output the other as eighth light; and a second light switch that receives the third light, receives the eighth light, and outputs the third or the eighth light that have been input as ninth light.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: August 3, 2021
    Assignee: NEC CORPORATION
    Inventor: Ryuji Aida
  • Patent number: 11048140
    Abstract: An optical modulator includes: a waveguide made of semiconductor, a light being input to one of ends of the waveguide; and a first electrode provided on the waveguide and overlapping with a part of the waveguide, wherein the waveguide has a first region to a third region along a propagation direction of the light from the one of ends, wherein neither the first region nor a part of the second region on a side of the first region in the propagation direction overlaps with the first electrode, wherein the third region and a part of the second region on a side of the third region in the propagation direction overlap with the first electrode, wherein a second width of the second region is larger than a first width of the first region and a third width of the third region.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: June 29, 2021
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Hajime Tanaka, Tsutomu Ishikawa
  • Patent number: 11029577
    Abstract: An optical modulator includes an optical modulation element having a plurality of signal electrodes; a housing that houses the optical modulation element; a plurality of signal input terminals each of which inputs an electrical signal to be applied to each of the signal electrodes; and a relay substrate on which a plurality of signal conductor patterns that electrically connect each of the signal input terminals to each of the signal electrodes, and a plurality of ground conductor patterns are formed, in which the relay substrate is housed in the housing, and at least one input side ground conductor pattern extending from at least one of the ground conductor patterns is formed on an input side surface having a side on which an electrical signal output from the signal input terminal is input to the signal conductor pattern as one side.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: June 8, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Norikazu Miyazaki, Toru Sugamata
  • Patent number: 10983411
    Abstract: A MOS optical modulator having high modulation efficiency and a method of manufacturing the same are provided. A MOS optical modulator includes: a p-type Si layer constituting an optical waveguide; a gate insulating film provided on the optical waveguide; a gate layer provided on the gate insulating film and formed of an n-type group III-V semiconductor; a first contact portion connected to the gate layer; and a second contact portion connected to the Si layer.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: April 20, 2021
    Assignee: THE UNIVERSITY OF TOKYO
    Inventors: Mitsuru Takenaka, Jae-Hoon Han, Shinichi Takagi
  • Patent number: 10969546
    Abstract: A method of fabricating an optical apparatus comprises forming a first waveguide on a dielectric substrate. The first waveguide extends in a direction of an optical path. The first waveguide comprises a monocrystalline semiconductor material and is doped with a first conductivity type. The method further comprises depositing a first dielectric layer on the first waveguide, etching a first opening that extends at least partly through the first dielectric layer, and forming a second waveguide at least partly overlapping the first waveguide along the direction. The second waveguide is doped with a different, second conductivity type. Forming the second waveguide comprises depositing a monocrystalline semiconductor material on the first dielectric layer, whereby the first opening is filled with the deposited monocrystalline semiconductor material.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: April 6, 2021
    Assignee: Cisco Technology, Inc.
    Inventors: Xunyuan Zhang, Vipulkumar K. Patel, Prakash B. Gothoskar
  • Patent number: 10955692
    Abstract: An optoelectronic component including a waveguide, the waveguide comprising an optically active region (OAR), the OAR having an upper and a lower surface; a lower doped region, wherein the lower doped region is located at and/or adjacent to at least a portion of a lower surface of the OAR, and extends laterally outwards from the OAR in a first direction; an upper doped region, wherein the upper doped region is located at and/or adjacent to at least a portion of an upper surface of the OAR, and extends laterally outwards from the OAR in a second direction; and an intrinsic region located between the lower doped region and the upper doped region.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: March 23, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Kevin Masuda, Andrea Trita, Aaron Zilkie
  • Patent number: 10921682
    Abstract: A low propagation loss and loose fabrication tolerance waveguide for a photonic integrated circuit (PIC) device may be realized by using a weak optical confinement to the optical mode, through designing a waveguide of single or double thin strips with high aspect ratio as waveguide core. To introduce a modulation functionality on this type of PIC device, a thin-film electrooptic material may be incorporated to form a hybrid phase modulating device, where a material that can be processed easily may be used as a device layer and is bonded to, or deposited with, a thin electrooptic film that may otherwise be difficult to fabricate or process. A low insertion loss, compact size and high-efficiency phase modulator on PIC device with this type of weakly confined waveguide is disclosed.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: February 16, 2021
    Assignee: KVH Industries, Inc.
    Inventor: Liming Wang
  • Patent number: 10911148
    Abstract: An optical transmission apparatus includes first and second optical waveguides to transmit light of multiple wavelengths; optical couplers on the waveguides, to couple the lights transmitted through the waveguides, so as to output the coupled light to the waveguides; phase shifters provided at preceding stages of part of the optical couplers, to change a phase shift amount of the light transmitted through the first and/or second optical waveguides, wherein the number of optical couplers in the part is greater than or equal to the number of the types of wavelengths; a monitor to monitor the intensity of the light output to the second optical waveguide via the optical coupler at the last stage; and a controller to control the phase shifters by changing the phase shift amount for each of the phase shifters in a direction in which the output of the monitor decreases.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: February 2, 2021
    Assignees: FUJITSU LIMITED, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventor: Tomoyuki Akiyama
  • Patent number: 10908474
    Abstract: An optical modulator device and method, including and utilizing: a first optical waveguide arm including one or more optical phase shifters, e.g., pn junctions, and configured to receive a first bias voltage Vbias1; and a second optical waveguide arm including one or more optical phase shifters, e.g., pn junctions, and configured to receive a second bias voltage Vbias2; wherein the first bias voltage Vbias1 and the second bias voltage Vbias2 are dissimilar, such that the first optical waveguide arm and the second optical waveguide arm exhibit a same phase modulation. Vbias1 and Vbias2 are selected such that the corresponding slopes V? of the associated phase shift versus applied bias voltage curves are equal. The optical modulator device further includes a driver coupled to the first optical waveguide arm and the second optical waveguide arm and including a current offset control circuit operable for providing Vbias1 and Vbias2.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: February 2, 2021
    Assignee: Ciena Corporation
    Inventors: Michael Vitic, Alexandre Delisle-Simard, Michel Poulin
  • Patent number: 10900867
    Abstract: Methods and devices for coupling light bidirectionally into optical fiber are described. The disclosed devices can be manufactured inexpensively in one-piece and integrated in high speed optical transceivers with small form-factor. The described methods and devices enable OTDR functionality in such transceivers and are compatible with sensor components mounted on a wiring or circuit board.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: January 26, 2021
    Assignee: Ultra Communications, Inc.
    Inventors: Charles B. Kuznia, Joseph Farzin Ahadian, Sandra Skendzic
  • Patent number: 10901054
    Abstract: An atomic defect sensor for measuring a magnitude of a physical parameter comprises an optical waveguide comprising an atomic defect site located within the optical waveguide, the optical waveguide being configured to guide an optical signal toward the atomic defect site, a first doped fin integrated with the optical waveguide at a first side of the optical waveguide, and a second doped fin integrated with the optical waveguide at a second side of the optical waveguide, wherein the atomic defect site is configured to be energetically stimulated by the optical signal in the presence of an RF signal, and to generate a photocurrent corresponding to the magnitude of the physical parameter and a voltage differential between the first and second doped fins.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 26, 2021
    Assignee: HRL Laboratories, LLC
    Inventors: Edward H. Chen, Matthew J. Pelliccione, David T. Chang, Raviv Perahia, Biqin Huang
  • Patent number: 10892603
    Abstract: Systems and methods for producing a multi-wavelength beam, wherein the system comprises a laser array and an arrayed waveguide grating having an input end and an output end, wherein the input end has an anti-reflection coating, the input end is configured to receive light from the laser array, and the output end has a reflective coating configured to reflect feedback to the laser array.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: January 12, 2021
    Assignee: Forward Photonics, LLC
    Inventors: Robin Huang, Mike Cruz, Jeff Shattuck, Dan Dugmore
  • Patent number: 10890787
    Abstract: The MZ type optical modulator of the invention includes: a Si optical modulator including an input optical waveguide, two arm waveguides branching and guiding light input from the input optical waveguide, an output optical waveguide combining the light guided through the two arm waveguides and outputting the combined light, two signal electrodes for applying radio frequency signals that are arranged in parallel to the two arm waveguides respectively, and a DC electrode for applying a bias voltage that is provided between the two signal electrodes; and at least one ground electrode arranged in parallel to the two signal electrodes.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: January 12, 2021
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yuriko Kawamura, Ken Tsuzuki, Kiyofumi Kikuchi
  • Patent number: 10877212
    Abstract: A photonic integrated circuit device includes a semiconductor substrate (e.g., wafer) having a chip region therein, which is bounded on at least one side thereof by a scribe line. The chip region includes an optical transmitter, an optical receiver and a test optical waveguide. This test optical waveguide is coupled to the optical transmitter and the optical receiver and overlaps the scribe line. During a substrate dicing operation, a portion of the test optical waveguide overlapping the scribe line is removed.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: December 29, 2020
    Inventors: Keun Yeong Cho, Hyunil Byun, Ho-Chul Ji
  • Patent number: 10871791
    Abstract: In order to achieve sufficiently stable output voltage with low losses even during rapid load changes in a battery emulator, a battery emulator is controlled using model-based control with a model of the battery emulator, wherein a line inductance of the electric line and the back-up capacitor is integrated into the model of the battery emulator.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: December 22, 2020
    Assignee: AVL LIST GmbH
    Inventor: Oliver König
  • Patent number: 10866081
    Abstract: A waveguide interferometer includes a multicore fiber used a multicore waveguide, where the multicore waveguide includes a coupler section formed by tapering a portion of the multicore waveguide so that one core though which a light source is fed is optically coupled to another core that is terminated differently that the core into which the source signal is provided. The terminations respond differently upon being exposed to an environmental condition or substance, and the difference in response to the environmental condition or substance results in a shift in interference of the light reflected back through the multicore waveguide, which is detected with a detector on the same side of the multicore waveguide as the light source.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: December 15, 2020
    Assignee: INPHOTECH SP. Z O.O.
    Inventors: Tomasz Nasilowski, Marek Napierala, Anna Makowska, Michal Murawski, Dawid Budnicki, Janusz Fidelus, Zbigniew Holdynski, Lukasz Szostkiewicz, Lukasz Ostrowski, Karol Wysokinski, Ana Pytel
  • Patent number: 10845668
    Abstract: An IQ optical modulator including: a parent Mach-Zehnder type (MZM) optical waveguide; child MZM optical waveguides constituting two arms of the parent MZM; two electrode transmission lines provided along the two arms of the child MZM, respectively, and receiving modulation signal to phase-modulate an optical signal; an RF extension line connected to the two electrode transmission lines, respectively; a first optical splitter branching light into the two arms of the parent MZM; a second optical splitter branching light into the two arms of the child MZM; and a first optical multiplexer multiplexing light from the two arms of the child MZM, wherein stripe direction of the child MZM optical waveguide is same as the RF extension line, the second optical splitter, and the first optical multiplexer, and is orthogonal to the first optical splitter.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: November 24, 2020
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Yoshihiro Ogiso, Josuke Ozaki, Yuta Ueda
  • Patent number: 10845555
    Abstract: An optical module includes a laser light supply system and a chip disposed within a housing. The chip includes a laser input optical port and a transmit data optical port and a receive data optical port. The optical module includes a link-fiber interface exposed at an exterior surface of the housing. The link-fiber interface includes a transmit data connector and a receive data connector. The optical module includes a polarization-maintaining optical fiber connected between a laser output optical port of the laser light supply system and the laser input optical port of the chip. The optical module includes a first non-polarization-maintaining optical fiber connected between the transmit data optical port of the chip and the transmit data connector of the link-fiber interface. The optical module includes a second non-polarization-maintaining optical fiber connected between the receive data optical port of the chip and the receive data connector of the link-fiber interface.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: November 24, 2020
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Mark Wade, Chen Sun, Vladimir Stojanovic, Alexandra Wright
  • Patent number: 10838145
    Abstract: An coherent transceiver includes a single silicon photonics substrate configured to integrate a laser diode chip flip-mounted and coupled with a wavelength tuning section to provide a laser output with tuned wavelengths which is split in X:Y ratio partly into a coherent receiver block as local-oscillator signals and partly into a coherent transmitter block as a light source. The coherent receiver includes a polarization-beam-splitter-rotator to split a coherent input signal to a TE-mode signal and a TM*-mode signal respectively detected by two 90-deg hybrid receivers and a flip-mounted TIA chip assisted by two local-oscillator signals from the tunable laser device.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: November 17, 2020
    Assignee: INPHI CORPORATION
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 10830932
    Abstract: An on-chip optical filter including three different arm sections comprised of three different types of waveguides, e.g. shape, material or polarization, can achieve the same performance quality as external commercially available solutions with no addition costs of fabrication of the photonic integrated chip (PIC) and a footprint several orders of magnitude smaller than any of the conventional filters.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: November 10, 2020
    Assignee: Elenion Technologies, LLC
    Inventors: Tal Galfsky, Saeed Fathololoumi, Thomas Baehr-Jones, Matthew Streshinsky, Yury Dziashko
  • Patent number: 10831080
    Abstract: An electro-optic modulator. The modulator is made as a plurality of discrete elements, and adjacent elements abut such that there are no free space optics between adjacent discrete elements. The modulator comprises a radio frequency, RF, element configured to modulate light passing through the element based on an electrical RF input. The plurality of discrete elements comprises a first set of discrete elements fabricated from thin film lithium niobate, TFLN, and a second set of discrete elements fabricated from silicon photonics, SiPh. The first set of discrete elements comprises the RF element.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: November 10, 2020
    Assignee: Lumentum Technology UK Limited
    Inventors: Marco Villa, Luigi Gobbi, Stefano Balsamo
  • Patent number: 10816832
    Abstract: In accordance with the present invention, an elongated phase shifting diode is provided for modulating an electrical signal onto an optical wave. Structurally, the phase shifting diode includes a p doped central stripe that extends through a phase shifting length L of a waveguide. P+ doped finger stripes and N+ doped finger stripes, which are laterally and axially offset from each other, extend into the waveguide for contact with the p doped central stripe along the length L. In combination, the plurality of N+ doped finger stripes and the p doped central stripe create a plurality of PN junctions that are structurally aligned along the p doped central stripe to establish electrically parallel phase shifting functions for the elongated diode.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: October 27, 2020
    Assignee: VEO, INC.
    Inventors: Robert B. Welstand, Chen-Kuo Sun, Rajat Sharma
  • Patent number: 10754091
    Abstract: An coherent transceiver includes a single silicon photonics substrate configured to integrate a laser diode chip flip-mounted and coupled with a wavelength tuning section to provide a laser output with tuned wavelengths which is split in X:Y ratio partly into a coherent receiver block as local-oscillator signals and partly into a coherent transmitter block as a light source. The coherent receiver includes a polarization-beam-splitter-rotator to split a coherent input signal to a TE-mode signal and a TM*-mode signal respectively detected by two 90-deg hybrid receivers and a flip-mounted TIA chip assisted by two local-oscillator signals from the tunable laser device.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: August 25, 2020
    Assignee: INPHI CORPORATION
    Inventor: Radhakrishnan L. Nagarajan
  • Patent number: 10718901
    Abstract: An integrated photonic device is provided with a photonic crystal lower cladding on a semiconductor substrate.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: July 21, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Yuval Saado
  • Patent number: 10715270
    Abstract: An optical branching/coupling device includes: a first optical branching unit that splits first light with a first and a second wavelength, and outputs second light and third light; a wavelength selector that receives the second light, receives fourth light with a third wavelength, output fifth and sixth light, one of the fifth light and the sixth light including an optical signal of the first wavelength of the second light and including the fourth light, and the other including an optical signal of the second wavelength; a first light switch that receives the fifth light and the sixth light, output one of the fifth light and the sixth light as seventh light, and output the other as eighth light; and a second light switch that receives the third light, receives the eighth light, and outputs the third or the eighth light that have been input as ninth light.
    Type: Grant
    Filed: October 20, 2017
    Date of Patent: July 14, 2020
    Assignee: NEC CORPORATION
    Inventor: Ryuji Aida
  • Patent number: 10684528
    Abstract: A radio frequency, RF, waveguide array. The array comprises a substrate and an electrical RF transmission line array. The substrate comprises a plurality of optical waveguides, each waveguide being elongate in a first direction. The electrical RF transmission line array is located on a face of the substrate and comprises a plurality of RF transmission lines. Each transmission line comprises a signal electrode and at least two ground electrodes located on either side of the signal electrode. Each electrode extends in the first direction. Each signal electrode is positioned to provide a signal to two respective waveguides, i.e. each RF transmission line is positioned adjacent to two respective waveguides. The ground electrodes include at least two intermediate ground electrodes positioned between each pair of signal electrodes. Intermediate ground electrodes of different RF transmission lines are separated from each other by channels.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: June 16, 2020
    Assignee: Lumentum Technology UK Limited
    Inventors: Flavio Dell'Orto, Marco Villa
  • Patent number: 10598862
    Abstract: Provided is an optical element module including: a substrate; an optical modulator unit that is formed in the substrate and includes an optical waveguide; a first lens unit that is disposed on an end surface of the substrate, and includes a lens portion at which a signal light beam emitted from the optical modulator unit is collimated; and a second lens unit that introduces the signal light beam passing through the first lens unit to an optical fiber.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: March 24, 2020
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Norikazu Miyazaki, Yoichi Hosokawa, Yuu Kataoka
  • Patent number: 10585328
    Abstract: Disclosed herein is an optical waveguide element that includes a substrate and a waveguide layer formed on the substrate and comprising lithium niobate. The waveguide layer has a slab part having a predetermined thickness and a ridge part protruding from the slab part. The maximum thickness of the slab part is 0.05 times or more and less than 0.4 times a wavelength of a light propagating in the ridge part.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: March 10, 2020
    Assignee: TDK CORPORATION
    Inventors: Shinji Iwatsuka, Kenji Sasaki, Satoshi Shirai
  • Patent number: 10578892
    Abstract: Methods and systems for a low-parasitic silicon high-speed phase modulator are disclosed and may include in an optical phase modulator that comprises a PN junction waveguide formed in a silicon layer, wherein the silicon layer may be on an oxide layer and the oxide layer may be on a silicon substrate. The PN junction waveguide may have fingers of p-doped and n-doped regions on opposite sides along a length of the PN junction waveguide. Contacts may be formed on the fingers of p-doped and n-doped regions. The fingers of p-doped and n-doped regions may be arranged symmetrically about the PN junction waveguide or staggered along the length of the PN junction waveguide. Etch transition features may be removed along the p-doped and n-doped regions.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: March 3, 2020
    Assignee: Luxtera, Inc.
    Inventors: Ali Ayazi, Gianlorenzo Masini, Subal Sahni, Attila Mekis, Thierry Pinguet
  • Patent number: 10536221
    Abstract: In some embodiments, an apparatus includes a memory and a processor operatively coupled to the memory. The processor is configured to send a stimulus signal at a frequency that corresponds to a first frequency value to a tributary channel of a coherent optical transponder. The processor is configured to adjust an amplitude of the stimulus signal and receive a first plurality of output optical power values. The processor is configured to adjust the frequency of the stimulus signal and receive a second plurality of output optical power values. The processor is configured to determine a bandwidth limitation and a modulation nonlinearity, and then send a first signal to a first filter to reduce the bandwidth limitation and a second signal to a second filter to reduce the modulation nonlinearity.
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: January 14, 2020
    Assignee: Juniper Networks, Inc.
    Inventors: Qiang Wang, Yang Yue
  • Patent number: 10488683
    Abstract: In an embodiment, an optical modulator comprising an optical path having at least one optical waveguide, and an impedance formed along the optical path, wherein the impedance comprises a capacitance that increases along the optical path. In another embodiment, a method for increasing bandwidth of an optical modulator by applying a first voltage applied to a beginning of a resistive line. and applying a second voltage applied to an end of the resistive line; wherein the first voltage is less than the second voltage.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: November 26, 2019
    Assignee: Acacia Communications, Inc.
    Inventor: Christopher Doerr
  • Patent number: 10466415
    Abstract: A semiconductor device including an optical waveguide and a p-type semiconductor portion is configured as follows. The optical waveguide includes: a first semiconductor layer formed on an insulating layer; an insulating layer formed on the first semiconductor layer; and a second semiconductor layer formed on the insulating layer. The p-type semiconductor portion includes the first semiconductor layer. The film thickness of the p-type semiconductor portion is smaller than that of the optical waveguide. By forming the insulating layer between the first semiconductor layer and the second semiconductor layer, control of the film thicknesses of the optical waveguide and the p-type semiconductor portion is facilitated. Specifically, when the unnecessary second semiconductor layer is removed by etching in a step of forming the p-type semiconductor portion, the insulating layer which is the lower layer functions as an etching stopper, and the film thickness of the p-type semiconductor portion can be easily adjusted.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: November 5, 2019
    Assignee: Renesas Electronics Corporation
    Inventors: Yasutaka Nakashiba, Shinichi Watanuki
  • Patent number: 10462904
    Abstract: An electronic component mounting package includes a body portion which accommodates an electronic component; a flexible substrate. The body portion comprises a notched portion which is open to a lower surface and a side surface thereof, and is provided with a projecting ridge portion which extends along a side end portion of the notched portion on a side surface side of the notched body portion. The flexible substrate extends from an interior of the notched portion to an exterior of the notched portion, and comprises a fixed end portion joined to a terminal of a coaxial connector disposed on a bottom surface of the notched portion, and a free end portion extending to the exterior of the notched portion. The flexible substrate abuts on the projecting ridge portion to be bent.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: October 29, 2019
    Assignee: Kyocera Corporation
    Inventor: Takayuki Shirasaki
  • Patent number: 10416525
    Abstract: Optical modulators with semiconductor based optical waveguides interacting with an RF waveguide in a traveling wave structure. The semiconductor optical waveguide generally comprise a p-n junction along the waveguide. To reduce the phase walk-off between the optical signal and the RF signal, the traveling wave structure can comprise one or more compensation sections where the phase walk-off is reversed. The compensation sections can comprise a change in dopant concentrations, extra length for the optical waveguide and/or extra length for the RF waveguide. Corresponding methods are described.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: September 17, 2019
    Assignee: NeoPhotonics Corporation
    Inventor: Jianying Zhou
  • Patent number: 10359653
    Abstract: A thin-plate LN optical control device includes: a thin-plate LN optical waveguide element which includes an optical waveguide formed by thermal diffusion of Ti in a substrate made of lithium niobate, and a control electrode that is formed on the substrate and is configured to control a light wave propagating through the optical waveguide, and in which at least a part of the substrate is thinned; and a housing that accommodates the thin-plate LN optical waveguide element in an air-tight sealing manner. Oxygen is contained in a filler gas inside the housing.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: July 23, 2019
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Katsutoshi Kondou, Kiyotaka Nakano, Eiji Murakami
  • Patent number: 10353225
    Abstract: The purpose of the present invention is to allow a silicon photonics modulator to be operated at high speed with high frequency by providing an electrode structure for the small multichannel high-density silicon photonics modulator. This electrode structure for a silicon photonics modulator includes, on the planar surface of a silicon substrate, a first layer for forming a plurality of bias electrical wirings, and a second layer formed by aligning each of a plurality of ground electrode portions and each electrical wiring in the first layer.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: July 16, 2019
    Assignee: PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Kenichiro Yashiki, Yasuyuki Suzuki
  • Patent number: 10331006
    Abstract: A pluggable electric connector can communicate a communication data signal and a control signal with an optical communication apparatus. An optical signal output unit includes a Mach-Zehnder type optical modulator including a phase modulation area and outputs an optical modulation signal modulated according to the communication data signal. An optical power control unit can control optical power of the optical modulation signal. A pluggable optical receptor can output the optical modulation signal to an optical fiber. A control unit controls a modulation operation of the optical signal output unit and the bias voltage applied to the phase modulation area. The control unit determines the bias voltage applied to the phase modulation area according to phase angle information of the control signal. The optical signal output unit applies the bias voltage determined by the control unit to the phase modulation area.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: June 25, 2019
    Assignee: NEC Corporation
    Inventor: Katsuhiro Yutani
  • Patent number: 10330875
    Abstract: An optical module includes a laser light supply system and a chip disposed within a housing. The chip includes a laser input optical port and a transmit data optical port and a receive data optical port. The optical module includes a link-fiber interface exposed at an exterior surface of the housing. The link-fiber interface includes a transmit data connector and a receive data connector. The optical module includes a polarization-maintaining optical fiber connected between a laser output optical port of the laser light supply system and the laser input optical port of the chip. The optical module includes a first non-polarization-maintaining optical fiber connected between the transmit data optical port of the chip and the transmit data connector of the link-fiber interface. The optical module includes a second non-polarization-maintaining optical fiber connected between the receive data optical port of the chip and the receive data connector of the link-fiber interface.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: June 25, 2019
    Assignee: Ayar Labs, Inc.
    Inventors: John Fini, Roy Edward Meade, Mark Wade, Chen Sun, Vladimir Stojanovic, Alexandra Wright
  • Patent number: 10274757
    Abstract: An electro-optic device includes a first semiconductor layer including the rib-type waveguide, which includes a rib part and a first slab part, which extends in a first direction from the rib part; a dielectric layer, which is formed on the rib part; a second semiconductor layer, which extends in a second direction, which is opposite to the first direction, from an upper surface of the dielectric layer; a first high-concentration impurity region, which is formed in the first semiconductor layer to be in contact with the first slab part on the first direction side; and a second high-concentration impurity region, which is formed in a region of the second semiconductor layer on the second direction side. The second high-concentration impurity region is formed in a region other than a region overlapping the first semiconductor layer in a lamination direction.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: April 30, 2019
    Assignees: NEC CORPORATION, PHOTONICS ELECTRONICS TECHNOLOGY RESEARCH ASSOCIATION
    Inventors: Junichi Fujikata, Shigeki Takahashi