Electrodes On Or Near The Coupling Region Patents (Class 385/40)
  • Patent number: 9933566
    Abstract: Embodiments herein describe a photonic chip which includes a coupling interface for evanescently coupling the chip to a waveguide on an external substrate. In one embodiment, the photonic chip includes a tapered waveguide that aligns with a tapered waveguide on the external substrate. The respective tapers of the two waveguides are inverted such that as the width of the waveguide in the photonic chip decreases, the width of the waveguide on the external substrate increases. In one embodiment, these two waveguides form an adiabatic structure where the optical signal transfers between the waveguides with minimal or no coupling of the optical signal to other non-intended modes. Using the two waveguides, optical signals can be transmitted between the photonic chip and the external substrate.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: April 3, 2018
    Assignee: Cisco Technology, Inc.
    Inventors: Vipulkumar Patel, Mark Webster, Ravi Tummidi, Mary Nadeau
  • Patent number: 9904081
    Abstract: A steerable laser transmitter and situational awareness sensor uses a liquid crystal waveguide (LCWG) to steer a spot-beam onto a conical mirror, which in turn redirects the spot-beam to scan a FOV. The spot-beam passes through one or more annular sections of non-linearly material (NLM) formed along the axis and around the conical mirror. Each NLM section converts the wavelength of the spot-beam to a different wavelength while preserving the steering of the spot-beam. The LCWG may shape or move the spot-beam along the axis of the conic mirror to sequentially, time or time and spatially multiplex the spot-beam between the original and different wavelengths. This provides multispectral capability from a single laser source. The transmitter also supports steering the spot-beam at a wavelength at which the LCWG cannot steer directly.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: February 27, 2018
    Assignee: Raytheon Company
    Inventors: Gerald P. Uyeno, Sean D. Keller
  • Patent number: 9857610
    Abstract: In an optical modulator 115 of an embodiment, an optical waveguide core 121 is configured from an n? type semiconductor region 134, a gate insulating film 136 on the n? type semiconductor region 134, and a p? type semiconductor region 137 on the gate insulating film 136. Further, a width W1 of the n? type semiconductor region 134 and a width W1 of the p? type semiconductor region 137 are equally formed and are layered without being shifted. Therefore, an optical modulator having stable optical characteristics can be provided.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: January 2, 2018
    Assignee: HITACHI, LTD.
    Inventors: Hideo Arimoto, Kazuki Tani, Takashi Takahama, Daisuke Ryuzaki, Yoshitaka Sasago
  • Patent number: 9778415
    Abstract: An arrayed waveguide grating multiplexer/demultiplexer includes an array of optical waveguides ordered in sequence from a shortest waveguide up to a longest waveguide, and identical phase shifters configured to be controlled by a same control signal. Each phase shifter increases/decreases an optical path of an optical waveguide by the same quantity based on the control control signal.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: October 3, 2017
    Assignees: STMICROELECTRONICS (CROLLES 2) SAS, STMICROELECTRONICS S.R.L.
    Inventors: Antonio Fincato, Charles Baudot
  • Patent number: 9658512
    Abstract: A cycloidal diffractive waveplate (50) comprising first and second substrate layers (52, 54), a liquid crystal layer (60C, 60H) provided between the first and second substrate layers, and transparent positive electrodes (56) and transparent negative electrodes (58) provided on the first substrate layer. The liquid crystal layer has a diffractive state (60C) in which the optical axes of the liquid crystal molecules are periodically rotated across a plane of the waveplate and a non-diffractive state (60H) in which the optical axes of the liquid crystal molecules are all orientated in the same direction in the plane of the waveplate. The electrodes (56, 58) are arranged in an alternating series, such that when an electric voltage is applied to the electrodes an electric field is produced in the plane of the waveplate and the liquid crystal layer is switched from the diffractive state to the non-diffractive state. A method of manufacturing the cycloidal diffractive waveplate is also provided.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: May 23, 2017
    Assignees: Beam Engineering for Advanced Materials Co., The United States of America as Represented by the Secretary of the Army
    Inventors: Nelson V. Tabirian, Sarik R. Nersisyan, Brian R. Kimball, Diane M. Steeves
  • Patent number: 9557487
    Abstract: An arrayed waveguide grating multiplexer/demultiplexer includes an array of optical waveguides ordered in sequence from a shortest waveguide up to a longest waveguide, and identical phase shifters configured to be controlled by a same control signal. Each phase shifter increases/decreases an optical path of an optical waveguide by the same quantity based on the control signal.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: January 31, 2017
    Assignees: STMICROELECTRONICS S.R.L., STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Antonio Fincato, Charles Baudot
  • Patent number: 9494788
    Abstract: A display device includes a first electrode, a second electrode, a third electrode, a lyophobic layer, a first liquid, and a second liquid, where the lyophobic layer is lyophobic to the second liquid. A method of driving the display device includes: providing a first potential difference between the first electrode and the third electrode to thereby cause the first liquid to begin moving toward the second electrode; providing a second potential difference between the second electrode and the third electrode while reducing the first potential difference to thereby cause the first liquid to move toward the first electrode; and removing the second potential difference to thereby cause the first liquid to slow down in its movement toward the first electrode or to stop in its movement toward the first electrode.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: November 15, 2016
    Assignee: Amazon Technologies, Inc.
    Inventors: Sang Min Shin, Chang Ku Hua, Woo Song Kim, Uk Chul Choi, Mun-Soo Park, So-Hyun Lee
  • Patent number: 9405007
    Abstract: A distance measuring device includes a light source emitting light, and an integrated electro-optic modulator arranged such that the emitted light passes through an optical waveguide of the electro-optic modulator in a first direction before being emitted from the distance measuring device, and after being reflected from a target passes through the electro-optic modulator in a second direction which is opposite to the first direction. The forward electro-optic response of a modulating region of the electro-optic modulator is the same as the backward electro-optic response, and a center of gravity of the modulation is independent of modulation frequency.
    Type: Grant
    Filed: March 6, 2013
    Date of Patent: August 2, 2016
    Assignee: LEICA GEOSYSTEMS AG
    Inventors: Thomas Luthi, Burkhard Bockem
  • Patent number: 9322999
    Abstract: An optical device including: a waveguide of refractive index na for carrying at least one mode of at least one wavelength, and at least one resonator with a resonant wavelength. The resonator has a mode volume of less than ten cubic resonant wavelengths. In use light in the waveguide is vertically coupled into the at least one resonator, and the waveguide and resonator(s) are arranged to provide wave-vector matching between at least one mode of the resonator and at least one mode of the waveguide.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 26, 2016
    Assignee: UNIVERSITY COURT OF THE UNIVERSITY OF ST ANDREWS
    Inventors: Thomas Fraser Krauss, William Whelan-Curtin, Kapil Debnath, Karl Peter Welna
  • Patent number: 9298025
    Abstract: An optical part 20A includes a supporting body 1, an optical material substrate 2, an electrode provided on the supporting body 1, and a resin adhesive layer 4 adhering the electrode 7 and optical material substrate 2. The electrode 7 includes a chromium film 7c contacting the resin adhesive layer 4 and a gold film 7b provided between the chromium film 7c and supporting body 1.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: March 29, 2016
    Assignee: NGK INSULATORS, LTD.
    Inventors: Shoichiro Yamaguchi, Hiroshi Matsunaga, Keiichiro Asai
  • Patent number: 9236711
    Abstract: A method of manufacturing a frequency tunable terahertz transceiver including two separate distributed feedback lasers manufactured in one substrate, includes forming a lower clad layer on the substrate, forming an active layer on the lower clad layer, forming an upper clad layer on the active layer. And interposing first and second diffraction grating layers between the upper clad layers. A diffraction grating is manufactured by etching the first and second diffraction grating layers. The active layer is integrated into a passive waveguide. An electrode is formed on the upper clad layer.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: January 12, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventor: Kyung Hyun Park
  • Patent number: 9182557
    Abstract: A lens element includes a first surface, a second surface, at least one first communicating lens portion on the first surface, at least one second communicating lens portion on the second surface, and a first deflecting surface for deflecting optical signals between the at least one first communicating lens portion and the at least one second communicating lens portion. The lens element further includes a first testing lens portion, a second testing lens portion, a second deflecting surface, and a third deflecting surface. The second deflecting surface and the third deflecting surface deflect a detecting light converged by the first testing lens portion at a predetermined angle so that the detecting light passes out of the lens element through the second testing lens portion.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: November 10, 2015
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Yi Hung
  • Patent number: 9081135
    Abstract: A photonic microresonator incorporates a localized heater element within a section of an optical bus waveguide that is in proximity to the resonator structure. The application of an adjustable control voltage to the heater element provides a localized change in the refractive index value of the bus waveguide, compensating for temperature-induced wavelength drift and maintaining a stabilized value of the microresonator's resonant wavelength.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: July 14, 2015
    Assignee: Sandia Corporation
    Inventors: Adam Jones, William A. Zortman
  • Patent number: 9025919
    Abstract: A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces metalized with first metallic layers formed thereon, and encapsulated with a dielectric encapsulation material such as for example epoxy. The first metallic layers are exposed through the encapsulation via encapsulation concavities which have a known contour profile, such as a Rogowski edge profile. Second metallic layers are then formed to line the concavities and come in contact with the first metal layer, to form profiled and metalized encapsulation concavities which mitigate enhancement points at the edges of electrodes matingly seated in the concavities. One or more optical waveguides may also be bonded to the substrate for coupling light into the photo-conductive wafer, with the encapsulation also encapsulating the waveguides.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: May 5, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James S. Sullivan, David M. Sanders, Steven A. Hawkins, Stephen A. Sampayan
  • Patent number: 9002143
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: April 7, 2015
    Assignee: Harris Corporation
    Inventors: Richard Desalvo, Charles Franklin Middleton, IV
  • Patent number: 8983251
    Abstract: An apparatus with either a graphene sheet or an epsilon-near-zero layer sandwiched in a waveguide structure and a tuning device. The tuning device is configured to selectively control application of at least first and second gate voltages across the waveguide structure. The graphene sheet has a first dielectric constant which is zero and the waveguide structure operates at a first absorption state and a first propagation distance with application of the first voltage by the tuning device and has a second dielectric constant and the waveguide structure operates at a second absorption state and a second propagation distance with application of the second voltage. The second dielectric constant is larger than the first dielectric constant, the second absorption state is smaller than the first absorption state, the second propagation distance is longer than the first propagation distance, and the second voltage which is zero or smaller than the first voltage.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: March 17, 2015
    Assignee: Rochester Institute of Technology
    Inventors: Zhaolin Lu, Wangshi Zhao
  • Patent number: 8971671
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source generating an optical carrier signal, and a modulator coupled to the tunable optical source and modulating the optical carrier signal with an RF input signal. The tunable RF filter device may include first and second optical waveguide paths coupled to the modulator and having first and second dispersion slopes of opposite sign from each other, one or more of the first and second optical waveguide paths comprising an optical splitter and combiner pair therein, and an optical-to-electrical converter coupled to the first and second optical waveguide paths and generating an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: March 3, 2015
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8897607
    Abstract: A tunable Radio Frequency (RF) filter device includes a tunable optical source configured to generate an optical carrier signal, and a modulator coupled to the tunable optical source and configured to modulate the optical carrier signal with an RF input signal. The tunable RF filter device may also include first and second optical waveguides coupled to the modulator and having first and second dispersion slopes of opposite sign, and an optical-to-electrical converter coupled to the first and second optical waveguides and configured to generate an RF output signal with a frequency notch therein based upon the tunable optical source.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: November 25, 2014
    Assignee: Harris Corporation
    Inventors: Richard DeSalvo, Charles Middleton
  • Patent number: 8891916
    Abstract: A surface-plasmon-polaritons (SPPs) tunable optical resonant ring filter that includes an SPPs waveguide, an SPPs tunable directional coupler, and an SPPs tunable resonant ring. The tunabilities of the resonant frequency, the resonant depth, and the filtering bandwidth are achieved by tuning the loss and transmission phase of the resonant ring and the coupling ratio of the directional coupler. Since the metal core layer of the SPPs waveguide is capable of multiplexing electro-optical signals, the SPPs tunable optical resonant ring filter can be used not only in an integrated optics system, but also in an integrated electro-optics hybrid system.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: November 18, 2014
    Assignee: Southeast University
    Inventors: Tong Zhang, Xiaoyang Zhang, Pengqin Wu, Jianguo Chen
  • Patent number: 8873896
    Abstract: An electro-optical phase modulator, dual polarization modulator applying that modulator and a phase modulation method are disclosed. A waveguide in an electro-optical substrate has at least two electrodes for modulating the waveguide. Each electrode receives a sequential bit of a precoded digital input and forms a shifting line from a first input end through interaction lengths near the waveguide causing modulation, shifted lengths distal from the waveguide for avoiding modulating the waveguide and transitions between these lengths by shifting the electrode away from or towards the waveguide. At least one electrode has a shorter interaction length closer to the input than a longer interaction length of the same electrode. Each electrode's modulation strength is proportional to its total interaction length, which doubles for each electrode, producing well matched S21 electro-optical responses from 10 kHz to 50 GHz, when shifted to account for the doubling.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: October 28, 2014
    Assignee: JDS Uniphase Corporation
    Inventor: Karl Kissa
  • Patent number: 8867874
    Abstract: Method for modifying the splitting or combining ratio of a first multimode interference (MMI) coupler (100), which first coupler is arranged to convey light from one or several input waveguides to one or several output waveguides, wherein a film (103a) of a material is arranged over the first coupler, wherein the film is strained so that a force is applied by the film to the surface of the first coupler, and so that the refractive index profile in the material of the first coupler changes as a consequence of the force, and wherein the splitting or combining ratio is modified as a consequence of the changed refractive index profile.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: October 21, 2014
    Assignee: Finisar Sweden AB
    Inventors: Dave Adams, Jan-Olof Wesstrom
  • Patent number: 8861909
    Abstract: A silicon photonic photodetector structure, a method for fabricating the silicon photonic photodetector structure and a method for operating a silicon photonic photodetector device that results from the photonic photodetector structure each use a strip waveguide optically coupled with a polysilicon material photodetector layer that may be contiguous with a semiconductor material slab to which is located and formed a pair of electrical contacts separated by the polysilicon material photodetector layer. Within the foregoing silicon photonic photodetector structure and related methods the polysilicon material photodetector layer includes defect states suitable for absorbing an optical signal from the strip waveguide and generating an electrical output signal using at least one of the electrical contacts when the optical signal includes a photon energy less than a band gap energy of a polysilicon material from which is comprised the polysilicon material photodetector layer.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: October 14, 2014
    Assignee: Cornell University
    Inventors: Michal Lipson, Kyle Preston
  • Patent number: 8861902
    Abstract: A planar waveguide circuit comprises a first optical splitter to receive an input optical signal, a second optical splitter to receive a reference optical signal, a first optical signal combiner, and a second optical signal combiner. First and second optical waveguides are provided to couple first and second outputs of the first optical splitter to respective inputs of the first and second optical signal combiners. Third and fourth optical waveguides are provided to couple first and second outputs of the second optical splitter to respective inputs of the first and second optical signal combiners. A phase-shifter is provided located to affect the phase of an optical signal propagating in one of the third and fourth optical waveguides. The first and second optical splitters and the first and second optical signal combiners are arranged such that the first, second, third and fourth optical waveguides do not intersect one another.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: October 14, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Francesca Bontempi, Luca Poti, Antonella Bogoni
  • Patent number: 8861908
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 14, 2014
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8842943
    Abstract: An electro-optic modulator includes a substrate comprising a surface, a pair of transmission lines formed in the surface and extending substantially in parallel with each other, a pair of first strip electrodes formed on the surface and covering the respective transmission lines, and a pair of second strip electrodes positioned at two sides of the first strip electrodes and parallel with the first strip electrodes.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 23, 2014
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Hsin-Shun Huang
  • Patent number: 8842942
    Abstract: An optical modulator comprises a bulk-silicon substrate comprising a trench having a predetermined width and a predetermined depth. A bottom cladding layer is formed in the trench, and a plurality of waveguides and a phase modulation unit are formed on the bottom cladding layer. A top cladding layer is formed on the plurality of waveguides and the phase modulation unit.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: September 23, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-jae Shin, Kyoung-won Na, Sung-dong Suh, Kyoung-ho Ha, Seong-gu Kim, Ho-chul Ji, In-sung Joe, Jin-kwon Bok, Pil-kyu Kang
  • Patent number: 8818150
    Abstract: Method and apparatus for modulation of both the intensity and the polarization of radiation in silicon waveguides by applying a biasing voltage to the waveguide.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 26, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Matthew E. Grein, Theodore M. Lyszczarz, Michael W. Geis, Steven J. Spector, Donna M. Lennon, Yoon Jung
  • Patent number: 8805127
    Abstract: An optical waveguide device includes: a substrate which has an electro-optical effect; an optical waveguide which is formed on the substrate and/or inside the substrate; and an in-substrate electrode which is formed of a metal and provided inside the substrate.
    Type: Grant
    Filed: October 10, 2013
    Date of Patent: August 12, 2014
    Assignee: Fujitsu Limited
    Inventors: Tetsuya Miyatake, Takashi Shiraishi, Masaharu Doi
  • Patent number: 8792752
    Abstract: Provided is an optical waveguide element module which suppresses reflection of a modulation signal and attenuation of a modulation signal, even when an impedance of a modulation electrode of an optical waveguide element and an impedance of a transmission line for inputting the modulation signal from the external of the optical waveguide element are different from each other. The optical waveguide element module is provided with an optical waveguide element, which has a substrate (1) composed of a material having electro-optical effects, an optical waveguide (2) formed on the substrate, and a modulation electrode (3) which modules optical waves propagating in the optical waveguide; a connector (8), wherein an external signal line which inputs the modulation signal to the modulation electrode is connected to the modulation electrode; and a relay line which connects the connector and the modulation electrode and is formed on a relay substrate (7).
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: July 29, 2014
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Ryo Shimizu, Toru Sugamata
  • Patent number: 8774582
    Abstract: “Hybrid photonic devices” describe devices wherein the optical portion—i.e., the optical mode, comprises both the silicon and III-V semiconductor regions, and thus the refractive index of the semiconductor materials and the refractive index of the bonding layer region directly effects the optical function of the device. Prior art devices utilize an optically compliant layer that is the same material as the III-V substrate; however, during the final sub-process of the bonding process, the substrates must be removed by acids. These acids can etch into the bonding layer, causing imperfections to propagate at the interface of the bonded material, adversely affecting the optical mode shape and propagation loss of the device. Embodiments of the invention utilize a semiconductor etch-selective bonding layer that is not affected by the final stages of the bonding process (e.g., substrate removal), and thus protects the bonding interface layer from being affected.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: July 8, 2014
    Assignee: Aurrion, Inc.
    Inventors: Matthew Jacob-Mitos, Gregory Alan Fish, Alexander W. Fang
  • Patent number: 8774567
    Abstract: A polarization conversion device converts a polarization state of a light which is input to a first waveguide, that is, TE/TM mode of the light, to output it from the first waveguide. The polarization conversion device includes: a mode converter that performs the inter-conversion of TE/TM modes of the light which is input to the first waveguide; and a polarization separator that receives the light passed through the mode converter and separates the received light into a first light, TE/TM of which mode has been converted by the mode converter and a second light, TE/TM of which mode has not been converted, to output the first light to the first waveguide.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 8, 2014
    Assignee: Fujitsu Limited
    Inventors: Masaharu Doi, Kazuhiro Tanaka
  • Patent number: 8768114
    Abstract: An opto-electric hybrid board which is capable of suppressing the increase in light propagation losses and which is excellent in flexibility, and a method of manufacturing the same are provided. The opto-electric hybrid board includes an electric circuit board, an optical waveguide, and a metal layer. The electric circuit board includes an insulative layer having front and back surfaces, and electrical interconnect lines formed on the front surface of the insulative layer. The optical waveguide is formed on the back surface of the insulative layer of the electric circuit board. The metal layer is formed between the optical waveguide and the back surface of the insulative layer of the electric circuit board. The metal layer is patterned to have a plurality of strips. Cores of the optical waveguide are disposed in a position corresponding to a site where the metal layer is removed by the patterning.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: July 1, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Yuichi Tsujita, Yasuto Ishimura, Hiroyuki Hanazono, Naoyuki Tanaka, Yasufumi Yamamoto, Shotaro Masuda, Mayu Ozaki
  • Patent number: 8724932
    Abstract: This disclosure is directed to fiber-optic modulators that can be integrated in optical fibers to encode data in optical signals. In one aspect, a fiber-optic modulator includes a weak planar, sub-wavelength grating disposed between an end of a first optical fiber and an end of a second optical fiber. A first electrode is disposed on an edge of the grating and connected to an electronic signal source, and a second electrode is disposed on the edge of the grating opposite the first electrode and connected to the electronic signal source. The grating includes a grating pattern to reflect a channel input to the first optical fiber when a low or no current portion of an electronic signal to be generated by the electronic signal source is applied to the grating and to transmit the channel when a high current portion of the electronic signal is applied to the grating.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: May 13, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Marco Fiorentino, Raymond G. Beausolall, David A. Fattal
  • Publication number: 20140119692
    Abstract: A method for manufacturing an optical fiber includes melting an end of a crystal material and drawing the molten end of the crystal material to form a crystal filament. Conductive paint is coated on two surface sections of the crystal filament to form internal positive and negative electrodes not electrically connected to each other. The crystal filament is placed into a heat resistant tube that is heated until an outer layer of the crystal filament melts and adheres to an inner periphery of the heat resistant tube, with a center of the crystal filament remaining as a solid core. Conductive paint is adhered to two ends of the crystal filament to form external positive and negative electrodes electrically connected to the internal positive and negative electrodes, respectively. The optical fiber thus formed can serve as a photoelectric optical fiber for transmission of current signals.
    Type: Application
    Filed: October 23, 2013
    Publication date: May 1, 2014
    Applicant: NATIONAL SUN YAT-SEN UNIVERSITY
    Inventors: Jau-Sheng Wang, Yung-Hsin Tseng
  • Patent number: 8693817
    Abstract: The present invention describes a microresonator that can be used as a 1:f variable coupler in a unit cell. It is described how a cascade of unit cells can be used to form a tunable, higher-order RF-filter with reconfigurable passbands. The disclosed filter structure can be utilized for the narrowband channelization of RF signals that have been modulated onto optical carriers. It is also disclosed how to utilize add/drop capabilities of the contemplated microdisks to confer connectivity and cascading in two dimensions. The present invention can conveniently provide a wavelength division multiplexing router, where an array of unit cells as provided herein can form a programmable optical switching matrix, through electronic programming of filter parameters.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: April 8, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Willie N. Ng, Brian N. Limketkai, Robert R. Hayes, Daniel Yap, Peter Petre
  • Patent number: 8682113
    Abstract: An electro-optic waveguide polarization modulator includes cladding layers, and a waveguide core sandwiched between the cladding layers, wherein the waveguide core has a higher refractive index than the cladding layers. The modulator further includes primary electrodes arranged on the opposite side of one cladding layer to the core and a secondary electrode arranged on the opposite side of another cladding layer to the core. The electrodes are arranged to provide an electric field having field components in perpendicular directions within the waveguide core so as to modulate the refractive index such that electromagnetic radiation propagating through the core is converted from a first polarization state to a second polarization state. The modulator further includes a grading layer sandwiched between the cladding layers and the core, the grading layer having an effective refractive index intermediate between that of the waveguide core and the cladding layer.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: March 25, 2014
    Assignee: U2T Photonics UK Limited
    Inventor: John Heaton
  • Patent number: 8655125
    Abstract: A photo-conductive switch package module having a photo-conductive substrate or wafer with opposing electrode-interface surfaces, and at least one light-input surface. First metallic layers are formed on the electrode-interface surfaces, and one or more optical waveguides having input and output ends are bonded to the substrate so that the output end of each waveguide is bonded to a corresponding one of the light-input surfaces of the photo-conductive substrate. This forms a waveguide-substrate interface for coupling light into the photo-conductive wafer. A dielectric material such as epoxy is then used to encapsulate the photo-conductive substrate and optical waveguide so that only the metallic layers and the input end of the optical waveguide are exposed. Second metallic layers are then formed on the first metallic layers so that the waveguide-substrate interface is positioned under the second metallic layers.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: February 18, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James S. Sullivan, David M. Sanders, Steven A. Hawkins, Stephen E. Sampayan
  • Publication number: 20140023321
    Abstract: An apparatus with either a graphene sheet or an epsilon-near-zero layer sandwiched in a waveguide structure and a tuning device. The tuning device is configured to selectively control application of at least first and second gate voltages across the waveguide structure. The graphene sheet has a first dielectric constant which is zero and the waveguide structure operates at a first abosrpotion state and a first propagation distance with application of the first voltage by the tuning device and has a second dielectric constant and the waveguide structure operates at a second absorption state and a second propagation distance with application of the second voltage. The second dielectric constant is larger than the first dielectric constant, the second absorption state is smaller than the first absorption state, the second propagation distance is longer than the first propagation distance, and the second voltage which is zero or smaller than the first voltage.
    Type: Application
    Filed: December 10, 2012
    Publication date: January 23, 2014
    Inventors: Zhaolin Lu, Wangshi Zhao
  • Patent number: 8620115
    Abstract: A semiconductor-based optical modulator is presented that includes a separate phase control section to adjust the amount of chirp present in the modulated output signal. At least one section is added to the modulator configuration and driven to create a pure “phase” signal that will is added to the output signal and modify the ei? term inherent in the modulation function. The phase modulation control section may be located within the modulator itself, or may be disposed “outside” of the modulator on either the input waveguiding section or the output waveguiding section. The phase control section may be formed to comprise multiple segments (of different lengths), with the overall phase added to the propagating signal controlled by selecting the different segments to be energized to impart a phase delay to a signal propagating through the energized section(s).
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: December 31, 2013
    Assignee: Cisco Technology, Inc.
    Inventors: Mark Webster, Kalpendu Shastri
  • Patent number: 8606060
    Abstract: The present invention is a method and an apparatus for dynamic manipulation and dispersion in photonic crystal devices. In one embodiment, a photonic crystal structure comprises a substrate having a plurality of apertures formed therethrough, a waveguide formed by “removing” a row of apertures, and a plurality of pairs of lateral electrical contacts, the lateral electrical contact pairs extending along the length of the waveguide in a spaced-apart manner. The lateral electrical contact pairs facilitate local manipulation of the photonic crystal structure's refractive index. Thus, optical signals of different wavelengths that propagate through the photonic crystal structure can be dynamically manipulated.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: December 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Sharee J. McNab, Martin P. O'Boyle, Yurii A. Vlasov
  • Patent number: 8582928
    Abstract: An optical waveguide device includes: a substrate which has an electro-optical effect; an optical waveguide which is formed on the substrate and/or inside the substrate; and an in-substrate electrode which is formed of a metal and provided inside the substrate.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: November 12, 2013
    Assignee: Fujitsu Limited
    Inventors: Tetsuya Miyatake, Takashi Shiraishi, Masaharu Doi
  • Patent number: 8582929
    Abstract: An electric field detection device. In one embodiment, the electric field detection device includes an interferometer having a reference arm and an active arm. The reference arm comprises a first electro-optic waveguide. The active arm comprises a first electrically conductive plate, a second electrically conductive plate spaced apart from the first electrically conductive plate defining a first gap therebetween, a third electrically conductive plate disposed in the first gap and vertically extending from the first electrically conductive plate to define a T-shape structure and a second gap between the third electrically conductive plate and the second electrically conductive plate, where the second gap is substantially smaller than the first gap; and a second electro-optic waveguide disposed in the second gap and being in electrical communication with the second and third electrically conductive plates.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: November 12, 2013
    Assignee: Northwestern University
    Inventors: Fei Yi, Seng-Tiong Ho
  • Publication number: 20130294729
    Abstract: An electromagnetic energy collecting and sensing device is described. The device uses enhanced fields to emit electrons for energy collection. The device is configured to collect energy from visible light, infrared radiation and ultraviolet electromagnetic radiation. The device includes a waveguide with a geometry selected to enhance the electric field along a conductor to create a high, localized electric field, which causes electron emission across a gap to an electron return plane.
    Type: Application
    Filed: June 8, 2011
    Publication date: November 7, 2013
    Inventors: Phillip J. Layton, Ezekiel Kruglick, Maha Achour
  • Patent number: 8559777
    Abstract: Provided is an optical modulator that modulates input light with a high frequency and low half-wave voltage. An optical device comprises a substrate; a dielectric film that is formed on the substrate and includes a first optical waveguide and a second optical waveguide that run parallel to each other; an insulating film formed on the dielectric film; a coplanar line that is formed on the insulating film and includes a signal line arranged between the first optical waveguide and the second optical waveguide, a first ground line arranged in a first region, and a second ground line arranged in a second region; and auxiliary electrodes that are arranged in the first region and the second region, are formed in contact with the dielectric film or within the insulating film, and apply bias voltages to the first optical waveguide and the second optical waveguide.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: October 15, 2013
    Assignee: Advantest Corporation
    Inventors: Hideo Hara, Shin Masuda, Atsushi Seki
  • Patent number: 8548289
    Abstract: Embodiments of a display comprising pixels formed from suitably tethered deformable membrane-based MEMS subsystems are provided that include the means to dynamically alter the in-plane tension, and thus the effective spring constant, of the deformable membrane being ponderomotively propelled between active and inactive optical states, said dynamic alteration being effected by exploiting transverse piezoelectric properties of the deformable membranes. Manipulating the spring constant can reduce the actuation force required to turn pixels on, thus significantly reducing the operational voltages for the display composed of an array of such subsystems. Since display power rises with the square of the pixel drive voltage, such architectures give rise to more power efficient display systems.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: October 1, 2013
    Assignee: Rambus Delaware LLC
    Inventors: Martin G. Selbrede, Daniel K. Van Ostrand
  • Patent number: 8526768
    Abstract: A light control device with a reduced electric loss is provided which can suppress a phenomenon of electrically reflecting a high-frequency signal even when it employs a dielectric anisotropic substrate. A light control device includes a signal electrode formed on a dielectric anisotropic substrate and ground electrodes disposed with the signal electrode interposed therebetween. Here, the signal electrode includes at least two signal electrode portions disposed in directions in which the dielectric constant of the substrate is different from each other and a curved connecting portion connecting the at least two signal electrode portions. The connecting portion is configured so that the characteristic impedance in parts connected to the at least two signal electrode portions is equal to that of the corresponding signal electrode portion, and the characteristic impedance in the connecting portion between the at least two signal electrode portions continuously varies.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: September 3, 2013
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Yuhki Kinpara, Masayuki Ichioka, Junichiro Ichikawa, Satoshi Oikawa, Yasuhiro Ishikawa
  • Patent number: 8520984
    Abstract: A silicon-based optical modulator exhibiting improved modulation efficiency and control of “chirp” (i.e., time-varying optical phase) is provided by separately biasing a selected, first region of the modulating device (e.g., the polysilicon region, defined as the common node). In particular, the common node is biased to shift the voltage swing of the silicon-based optical modulator into its accumulation region, which exhibits a larger change in phase as a function of applied voltage (larger OMA) and improved extinction ratio. The response in the accumulation region is also relatively linear, allowing for the chirp to be more easily controlled. The electrical modulation input signal (and its inverse) are applied as separate inputs to the second region (e.g., the SOI region) of each arm of the modulator.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 27, 2013
    Assignee: Cisco Technology, Inc.
    Inventors: Mark Webster, Russell Romano, Kalpendu Shastri
  • Patent number: 8483523
    Abstract: An optical waveguide electro-optic device including: a support substrate; an optical waveguide which has a core layer formed of a ferroelectric material, and is formed on an upper side of the support substrate; a lower electrode layer formed on a lower side of the core layer and which is adhered to the support substrate through an adhesion layer; an upper electrode layer formed on an upper side of the core layer; and an external electrode part, wherein the optical waveguide has an incidence plane from where light enters and an outgoing plane from where the light exits, the core layer has a polarization inversion region and a polarization non-inversion region, the upper electrode layer has a plane in such a shape that a width of the plane expands from a side of the incidence plane toward a side of the outgoing plane, to cover the polarization inversion region of the core layer, and the lower electrode layer is connected electrically to the external electrode part on the side of the incidence plane.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: July 9, 2013
    Assignee: Ricoh Company, Ltd.
    Inventors: Jun Nakagawa, Shuichi Suzuki, Atsushi Sakai, Koichiro Nakamura
  • Patent number: 8483526
    Abstract: An innovative micro-size photonic switch is presented. The photonic switch is comprised of: a mirror having a reflecting surface; an input waveguide; and an output tapered waveguide structure. The photonic switch further includes a switching mechanism disposed adjacent to the reflecting surface and operable to change the refractive index along the reflective surface and thereby shift the angle at which the optical signal reflects from the mirror. More specifically, the switching mechanism may operate to change concentration of free carrier distribution along the reflective surface and thereby displace the effective reflecting interface of the mirror. In this way, the optical signal can be directed to one of two or more output ports of the output tapered waveguide structure and finally exited by one output waveguide channel that is connected to the selected port of the output tapered waveguide structure.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: July 9, 2013
    Assignee: University of Ottawa
    Inventors: DeGui Sun, Trevor Hall
  • Patent number: 8467637
    Abstract: In a waveguide path coupling-type photodiode, a semiconductor light absorbing layer and an optical waveguide path core are adjacently arranged. An electrode formed of at least one layer is installed in a boundary part of the semiconductor light absorbing layer and the optical waveguide path core. The electrodes are arranged at an interval of (1/100)? to ? [?: wavelength of light transmitted through optical waveguide path core]. At least a part of the electrodes is embedded in the semiconductor light absorbing layer. Embedding depth from a surface of the semiconductor light absorbing layer is a value not more than ?/(2 ns) [ns: refractive index of semiconductor light absorbing layer]. At least one layer of the electrode is constituted of a material which can surface plasmon-induced.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: June 18, 2013
    Assignees: NEC Corporation, Nippon Telegraph and Telephone Corporation
    Inventors: Junichi Fujikata, Jun Ushida, Daisuke Okamoto, Kenichi Nishi, Keishi Ohashi, Tai Tsuchizawa, Seiichi Itabashi