Directional Coupler Patents (Class 385/41)
  • Patent number: 10663660
    Abstract: An optical subassembly includes a planar dielectric waveguide structure that is deposited at temperatures below 400 C. The waveguide provides low film stress and low optical signal loss. Optical and electrical devices mounted onto the subassembly are aligned to planar optical waveguides using alignment marks and stops. Optical signals are delivered to the submount assembly via optical fibers. The dielectric stack structure used to fabricate the waveguide provides cavity walls that produce a cavity, within which optical, optoelectronic, and electronic devices can be mounted. The dielectric stack is deposited on an interconnect layer on a substrate, and the intermetal dielectric can contain thermally conductive dielectric layers to provide pathways for heat dissipation from heat generating optoelectronic devices such as lasers.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: May 26, 2020
    Assignee: POET Technologies, Inc.
    Inventors: Suresh Venkatesan, Loy Yee Lam
  • Patent number: 9176277
    Abstract: An optical link may include a main optical waveguide; N sub-optical waveguides, where N is a natural number; N mode couplers, each configured to perform a mode coupling operation between the main optical waveguide and a respective one of the N sub-optical waveguide; and an optical wavelength filter connected to an output terminal of the main optical waveguide and an output terminal of each of the N sub-optical waveguides. A memory system may include a memory device, a memory controller, and the optical link. A data processing system may include the memory system and a central processing unit connected to the memory system through a bus.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: November 3, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sung Dong Suh, In Sung Joe, Seong Gu Kim, Kyoung Won Na, Kyoung Ho Ha, Yong Hwack Shin
  • Patent number: 9086608
    Abstract: A laser probe for electrically steering a light beam includes a tubular-shaped housing, an optical waveguide, and a beam steering cell. The optical waveguide is disposed within an interior region of the housing and is configured to emit a light beam travelling in a first direction. The beam steering cell is disposed within the housing and comprises an electro-optical (EO) material. The beam steering cell is configured to receive one or more voltages and electrically steer the light beam with the OE material to a second direction. The EO element has a shape of varying thickness such that a first portion of the light beam passes through a portion of EO element having a greater thickness than a second portion of the EO element passed through by a second portion of the light beam. The laser probe may be a directional laser probe or a multi-spot laser probe.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 21, 2015
    Assignee: ALCON RESEARCH, LTD.
    Inventors: Jack R. Auld, Ronald T. Smith
  • Patent number: 8965154
    Abstract: An optical coupling lens includes a body, first converging portions, second converging portions, third converging portions, and fourth converging portions. The body includes a first optical surface, a second optical surface perpendicular to the first optical surface, and a reflecting surface oblique relative to the first optical surface and the second optical surface. The first and second converging portions are formed on the first optical surface and face the reflecting surface. The third and fourth converging portions are formed on the second optical surface and face the reflecting surface. The third converging portions correspond to the first converging portions, and the fourth converging portions correspond to the second converging portions.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: February 24, 2015
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chang-Wei Kuo
  • Patent number: 8965156
    Abstract: A beam combiner is disclosed that comprises a planar lightwave circuit that is based on undoped silicon nitride-based surface waveguides, wherein the planar lightwave circuit comprises a plurality of input ports, a mixing region, and an output port, and wherein the mixing region comprises a plurality of directional couplers that are arranged in a tree structure. Embodiments of the present invention are capable of combining a plurality of light signals characterized by disparate wavelengths on irregular spacings with low loss. Further, the present invention enables high-volume, low cost production of beam combiners capable of combining three or more light signals into a single composite output beam.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: February 24, 2015
    Assignee: Octrolix BV
    Inventors: Edwin Jan Klein, Ronald Dekker, Hindrik F. Bulthuis
  • Patent number: 8923660
    Abstract: In one embodiment, an optical phase shifter includes a first phase-shifter configured to phase shift a transverse electric (TE) component of an optical signal by a first phase-shift to produce a TE component of a first signal, and a transverse magnetic (TM) component of the optical signal by a second phase-shift to produce a TM component of the first signal. The optical phase-shifter includes a polarization-rotator configured to rotate the TE component of the first signal to produce a TM component of a rotated signal, and the TM component of the first signal to produce a TE component of the rotated signal. The optical phase-shifter includes a second phase-shifter configured to phase-shift a TE component of the rotated signal by a third phase-shift, and the TM component of the rotated signal by a fourth phase-shift, where the first phase-shifter, the polarization-rotator, and the second phase-shifter are integrated on a substrate.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: December 30, 2014
    Assignee: FutureWei Technologies, Inc.
    Inventors: Bryce Dorin, Winnie N. Ye
  • Patent number: 8861908
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: October 14, 2014
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8805130
    Abstract: Novel integrated electro-optic structures such as modulators and switches and methods for fabrication of the same are disclosed in a variety of embodiments. In an illustrative embodiment, a device includes a substrate with a waveguide and an optical resonator comprising polycrystalline silicon positioned on the substrate. First and second doped semiconducting regions also comprise polycrystalline silicon and are positioned proximate to the first optical resonator. The first optical resonator is communicatively coupled to the waveguide.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: August 12, 2014
    Assignee: Cornell University
    Inventors: Michal Lipson, Sasikanth Manipatruni, Kyle Preston, Bradley Schmidt
  • Patent number: 8737782
    Abstract: A dynamic optical circulator device applicable to UPC-type and PC-type optical connectors is provided, including a first UPC/PC-type optical connector, a second UPC/PC-type optical connector, a third UPC/PC-type optical connector, a passive optical circulator, a reflected light detector and a transform element. The first, second and third UPC/PC-type optical connectors provide connections to optical fibers for receiving and transmitting optical signals. The first UPC/PC-type optical connector, the second UPC/PC-type optical connector and the third UPC/PC-type optical connector are connected to the three ports of the passive optical circulator, respectively, with the reflected light detector placed between the second UPC/PC-type optical connector and the second port of the passive optical circulator, while the transform element can be placed between any port of passive optical circulator and corresponding UPC-type and PC-type optical port.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: May 27, 2014
    Assignee: Browave Corporation
    Inventors: Yeongher Chen, HsiangHsi Chiang, HsienSheng Lin
  • Patent number: 8483526
    Abstract: An innovative micro-size photonic switch is presented. The photonic switch is comprised of: a mirror having a reflecting surface; an input waveguide; and an output tapered waveguide structure. The photonic switch further includes a switching mechanism disposed adjacent to the reflecting surface and operable to change the refractive index along the reflective surface and thereby shift the angle at which the optical signal reflects from the mirror. More specifically, the switching mechanism may operate to change concentration of free carrier distribution along the reflective surface and thereby displace the effective reflecting interface of the mirror. In this way, the optical signal can be directed to one of two or more output ports of the output tapered waveguide structure and finally exited by one output waveguide channel that is connected to the selected port of the output tapered waveguide structure.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: July 9, 2013
    Assignee: University of Ottawa
    Inventors: DeGui Sun, Trevor Hall
  • Patent number: 8358886
    Abstract: A low-loss waveguide that can be curved aggressively, that is, curved with a radius of curvature that is substantially zero, in the plane of propagation, without radiating, is formed by a slab of dielectric material having four metal plates, two on each opposite surface of the slab and mutually spaced to define in the dielectric slab between the four metal plates a confinement zone. In use, electromagnetic radiation injected in one end of the zone by suitable input means will propagate throughout the zone to an extraction means. Lower loss and better confinement of the radiation may be obtained by providing plugs of dielectric material adjacent the inwardly-facing edge of each of the metal plates. Embodiments of the invention can be used to implement integrated optical devices and circuits for routing or processing light signals.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: January 22, 2013
    Assignee: The University of Ottawa
    Inventors: Pierre Simon Joseph Berini, Robin Andrew Buckley
  • Patent number: 8326096
    Abstract: Disclosed herein is a digital electro-optical switch (1) comprising: an electro-optical substrate (3); a Y-shaped optical waveguide (2) formed in the substrate (3) and including an input branch (4) configured to be connected to an input optical waveguide, and two output branches (5) configured to be connected to respective output optical waveguides; and electrically conductive electrodes (6, 7) formed on the substrate (3) and including an inner electrode (7) arranged between the output branches (5), substantially at a branching area of the optical waveguide (2), and two outer electrodes (6) arranged outside the output branches (5), on opposite sides of the inner electrode (7), the outer electrodes (6) being electrically operable to make the electro-optical switch (1) operative between a first switching state wherein transmission of optical energy is enhanced between the input branch (4) and a first one of the output branches (5), and substantially inhibited in a second one of the output branches (5), and a se
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: December 4, 2012
    Assignee: Selex Sistemi Integrati S.p.A.
    Inventors: Luigi Pierno, Massimiliano Dispenza
  • Patent number: 8320723
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: November 27, 2012
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 8306369
    Abstract: An optical hybrid circuit includes a multimode interference coupler; a first 2:2 optical coupler; a second 2:2 optical coupler; a third 2:2 optical coupler; and a phase controlling region. The first 2:2 optical coupler, the second 2:2 optical coupler, and the third 2:2 optical coupler are coupled to one of the pair of first output channels, the pair of second output channels, the pair of third output channels, and the pair of fourth output channels of the multimode interference coupler. The phase controlling region is provided in one or both of each pair of at least two pairs of output channels from among three pairs of output channels to which the first 2:2 optical coupler, the second 2:2 optical coupler, and the third 2:2 optical coupler are coupled, respectively.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: November 6, 2012
    Assignee: Fujitsu Limted
    Inventor: Seok Hwan Jeong
  • Patent number: 8244077
    Abstract: This invention provides a versatile unit cell as well as programmable and reconfigurable optical signal processors (such as optical-domain RF filters) that are constructed from arrays of those unit cells interconnected by optical waveguides. Each unit cell comprises an optical microdisk, an optical phase shifter, and at least one input/output optical waveguide, wherein the microdisk and the phase shifter are both optically connected to a common waveguide.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: August 14, 2012
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Patent number: 8150219
    Abstract: In an optical interferometer, polarization dependence attributable to the optical path difference has conventionally been eliminated by inserting a half-wave plate at the center of the interferometer. However, light induced by polarization coupling produced in directional couplers used in the optical interferometer causes interference having different interference conditions from those of the normal light. Polarization rotators that effect any one of 90° rotation and ?90° rotation of all states of polarization of incoming light are inserted in the optical interferometer, and thereby the interference conditions of light induced by polarization coupling are made the same as those of the normal light. Each of the polarization rotators is implemented by using two half-wave plates and by varying an angle of combination of these half-wave plates. Alternatively, each of the polarization rotators is implemented through a combination of one half-wave plate and a waveguide having birefringence properties.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 3, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Yusuke Nasu, Manabu Oguma, Yasuaki Hashizume, Yasuyuki Inoue, Hiroshi Takahashi, Kuninori Hattori, Toshikazu Hashimoto, Yohei Sakamaki
  • Patent number: 8111965
    Abstract: A waveguide and resonator are formed on a lower cladding of a thermo optic device, each having a formation height that is substantially equal. Thereafter, the formation height of the waveguide is attenuated. In this manner, the aspect ratio as between the waveguide and resonator in an area where the waveguide and resonator front or face one another decreases (in comparison to the prior art) thereby restoring the synchronicity between the waveguide and the grating and allowing higher bandwidth configurations to be used. The waveguide attenuation is achieved by photomasking and etching the waveguide after the resonator and waveguide are formed. In one embodiment the photomasking and etching is performed after deposition of the upper cladding. In another, it is performed before the deposition. Thermo optic devices, thermo optic packages and fiber optic systems having these waveguides are also taught.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 7, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Guy T. Blalock, Howard E. Rhodes, Vishnu K. Agarwal, Gurtej Singh Sandhu, James S. Foresi, Jean-Francois Viens, Dale G. Fried
  • Patent number: 8098965
    Abstract: A novel electroabsorption modulator based on tuning the Fermi level relative to mid-gap states in a semiconductor. The modulator includes a semiconductor waveguide that has an input port and an output port. Between the input port and the output port is a section of the waveguide that functions as an electroabsorptive region. Adjacent to the electroabsorptive region are electrical contacts. In operation by adjusting voltages on the electrical contacts, the quasi-Fermi level in the electroabsorptive region of the semiconductor waveguide is brought above or below mid band-gap electronic states. As these states transition between occupancy and vacancy, the absorption coefficient for optical radiation in the electroabsorptive region of the semiconductor changes.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: January 17, 2012
    Assignee: University of Washington
    Inventors: Tom Baehr-Jones, Michael J. Hochberg
  • Patent number: 8019185
    Abstract: This invention provides a versatile unit cell as well as programmable and reconfigurable optical signal processors (such as optical-domain RF filters) that are constructed from arrays of those unit cells interconnected by optical waveguides. Each unit cell comprises an optical microdisk, an optical phase shifter, and at least one input/output optical waveguide, wherein the microdisk and the phase shifter are both optically connected to a common waveguide.
    Type: Grant
    Filed: June 1, 2008
    Date of Patent: September 13, 2011
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Patent number: 7936955
    Abstract: A waveguide and resonator are formed on a lower cladding of a thermo optic device, each having a formation height that is substantially equal. Thereafter, the formation height of the waveguide is attenuated. In this manner, the aspect ratio as between the waveguide and resonator in an area where the waveguide and resonator front or face one another decreases (in comparison to the prior art) thereby restoring the synchronicity between the waveguide and the grating and allowing higher bandwidth configurations to be used. The waveguide attenuation is achieved by photomasking and etching the waveguide after the resonator and waveguide are formed. In one embodiment the photomasking and etching is performed after deposition of the upper cladding. In another, it is performed before the deposition. Thermo optic devices, thermo optic packages and fiber optic systems having these waveguides are also taught.
    Type: Grant
    Filed: May 14, 2010
    Date of Patent: May 3, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Guy T. Blalock, Howard E. Rhodes, Vishnu K. Agarwal, Gurtej Singh Sandhu, James S. Foresi, Jean-Francois Viens, Dale G. Fried
  • Patent number: 7899285
    Abstract: A leaky plasmon mode directional coupler and a polarization detection module for a magneto-optical pickup head, which uses the leaky plasmon mode directional coupler, are provided. The leaky plasmon mode directional coupler is manufactured by integrating a planar waveguide and a leaky plasmon mode waveguide, which share a cladding layer with each other, into one body. The polarization detection module includes the leaky plasmon mode directional coupler, a first photo diode, which is formed on the leaky plasmon mode directional coupler, and a second photo diode, which is located at an output port of the planar waveguide.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 1, 2011
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yongwoo Park, Hyeon Bong Pyo, Dong Woo Suh, Yeungjoon Sohn, Hojun Ryu, Mun Cheol Paek
  • Patent number: 7881573
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 1, 2011
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 7881566
    Abstract: An improved laser source for use in a distributed temperature sensing (DTS) system (and DTS systems employing the same) includes a laser device and drive circuitry that cooperate to emit an optical pulse train at a characteristic wavelength between 1050 nm and 1090 nm. An optical amplifier, which is operably coupled to the laser device, is adapted to amplify the optical pulse train for output over the optical fiber sensor of the DTS system. In the preferred embodiment, the laser device operates at 1064 nm and outputs the optical pulse train via an optical fiber pigtail that is integral to its housing. The optical power of the optical pulse train generated by the laser source is greater than 100 mW, and preferably greater than 1 W, at a preferred pulse repetition frequency range between 1 and 50 kHz, and at a preferred pulse width range between 2 and 100 ns.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: February 1, 2011
    Assignee: Schlumberger Technology Corporation
    Inventors: Gareth P. Lees, Arthur H. Hartog, Peter C. Wait
  • Patent number: 7853103
    Abstract: A method comprises: forming an optical device on a device substrate; forming a first optical waveguide on the device or device substrate; forming a second, structurally discrete optical waveguide on a structurally discrete waveguide substrate; and assembling the optical device, first waveguide, or device substrate with the second waveguide or waveguide substrate. The device and first waveguide are arranged for transferring an optical signal between the device and the first waveguide. Upon assembly the first and second waveguides are positioned between the device and waveguide substrates and are relatively positioned for transferring the optical signal therebetween via optical transverse coupling. The first or second optical waveguide is arranged for transferring the optical signal therebetween via substantially adiabatic optical transverse coupling with the first and second waveguides so positioned.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: December 14, 2010
    Assignee: HOYA Corporation USA
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 7720341
    Abstract: A waveguide and resonator are formed on a lower cladding of a thermo optic device, each having a formation height that is substantially equal. Thereafter, the formation height of the waveguide is attenuated. In this manner, the aspect ratio as between the waveguide and resonator in an area where the waveguide and resonator front or face one another decreases (in comparison to the prior art) thereby restoring the synchronicity between the waveguide and the grating and allowing higher bandwidth configurations to be used. The waveguide attenuation is achieved by photomasking and etching the waveguide after the resonator and waveguide are formed. In one embodiment the photomasking and etching is performed after deposition of the upper cladding. In another, it is performed before the deposition. Thermo optic devices, thermo optic packages and fiber optic systems having these waveguides are also taught.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: May 18, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Guy T. Blalock, Howard E. Rhodes, Vishnu K. Agarwal, Gurtej Singh Sandhu, James S. Foresi, Jean-Francois Viens, Dale G. Fried
  • Patent number: 7689070
    Abstract: A high frequency electrical signal control device comprises a transmitter for generating a high frequency electrical signal, a receiver, a transmission line for propagating the electrical signal, and a structure for radiating the electrical signal propagated through the transmission line to the space or receiving a signal from the space. The degree of coupling of the electrical signal between the space and the transmission line provided by the structure can be variably controlled.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 30, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toshihiko Ouchi
  • Patent number: 7684666
    Abstract: The present invention is a method and an apparatus for tuning an optical delay line. In one embodiment, an optical delay line includes at least one ring resonator in which light is guided or is confined and at least one heater positioned laterally from the ring resonator. The heater produces heat in a localized area, allowing for the tuning of individual delay elements with minimal crosstalk.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: March 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hendrik Hamann, Yurii A. Vlasov, Fengnian Xia
  • Patent number: 7680370
    Abstract: Provided is an optical wavelength coupler using a multi-mode interference. The optical wavelength coupler is a planar waveguide type optical device that can distribute or couple two optical signals having different wavelengths by using the multi-mode interference. The optical wavelength coupler is suitable for integration and is small-sized. Also, the optical wavelength coupler has a low manufacturing tolerance and a low loss, and is insensitive to TE/TM polarization.
    Type: Grant
    Filed: August 12, 2005
    Date of Patent: March 16, 2010
    Inventors: Bongjun Lee, Jongkyun Hong
  • Patent number: 7630588
    Abstract: A high frequency electrical signal control device comprises a transmitter for generating a high frequency electrical signal, a receiver, a transmission line for propagating the electrical signal, and a structure for radiating the electrical signal propagated through the transmission line to the space or receiving a signal from the space. The degree of coupling of the electrical signal between the space and the transmission line provided by the structure can be variably controlled.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: December 8, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Toshihiko Ouchi
  • Patent number: 7580594
    Abstract: An optical modulation element includes a waveguide defined based on a defect in a photonic crystal, a carrier conducting region for conducting a carrier to the waveguide, an electrode for injecting a carrier into the carrier conducting region, and a current control unit for controlling the quantity of carrier to be conducted to the waveguide, wherein the photonic crystal and the electrode are made of a material containing TiO2 as a main composition, and wherein the current control unit functions to change the refractive index of a medium constituting the waveguide in accordance with the quantity of carrier conducted to the waveguide, thereby to modulate the light propagated through the waveguide.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 25, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hikaru Hoshi
  • Patent number: 7577327
    Abstract: An optical apparatus comprises an optical device formed on a device substrate, a first optical waveguide formed on the substrate or on the optical device, and a second, mechanically discrete optical waveguide assembled with the device substrate, optical device, or first optical waveguide. The first optical waveguide is arranged for transferring an optical signal between the optical device and the first optical waveguide. The first and second optical waveguides are arranged, when the second optical waveguide is assembled with the device substrate, optical device, or first optical waveguide, for transferring the optical signal therebetween via optical transverse coupling.
    Type: Grant
    Filed: May 25, 2008
    Date of Patent: August 18, 2009
    Assignee: Hoya Corporation USA
    Inventors: Henry A. Blauvelt, Kerry J. Vahala, David W. Vernooy, Joel S. Paslaski
  • Patent number: 7574081
    Abstract: The present invention provides an optical system with waveguides, which comprises first, second and third optical input/output means (12, 14, 16), fourth and fifth multi-mode optical waveguides (20, 22) each capable of propagating light with plural propagation modes, and optical-filter mounting means (26) for mounting an optical filter (24) between the fourth and fifth multi-mode optical waveguides (20, 22) across a traveling direction of light in the fourth and fifth multi-mode optical waveguides (20, 22). The first optical input/output means (12) is connected to an end face of the fourth multi-mode optical waveguide (20) on a side thereof opposite to the optical-filter mounting means (26). Each of the second and third optical input/output means (14, 16) is connected to an end face of the fifth multi-mode optical waveguide (22) on a side opposite to the optical-filter mounting means (26).
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: August 11, 2009
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Nobuo Miyadera, Rei Yamamoto
  • Patent number: 7515779
    Abstract: An optical semiconductor device has a heater, an optical waveguide layer, a first electrode and a second electrode. The heater is provided on a first semiconductor region and has more than one heater segment coupled or separated to each other. The optical waveguide layer is provided in the first semiconductor region and receives heat from the heater. The first electrode is coupled to a connecting point of the heater segments adjacent to each other. The second electrodes are electrically common and are coupled to other ends of the heater segments in opposite side of the connecting point respectively.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 7, 2009
    Assignee: Eudyna Devices Inc.
    Inventor: Tsutomu Ishikawa
  • Patent number: 7492988
    Abstract: Planar AWG circuits and systems are disclosed that use air trench bends to increase planar circuit compactness.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: February 17, 2009
    Inventors: Gregory P. Nordin, Yongbin Lin, Seunghyun Kim
  • Patent number: 7492977
    Abstract: Embodiments of the present invention provide a current sensing device. The current sensing device includes, inter alia, a three-by-three (3×3) optical coupler made of polarization-maintaining (PM) fibers and thus being a PM fiber coupler; a light source and at least one photon-detector connected to a first side of the 3×3 PM fiber coupler; and a fiber coil connected to a second side of the 3×3 PM fiber coupler. The 3×3 PM fiber coupler is adapted to split an input light from the light source into first and second optical signals while maintaining their respective polarization directions; and is adapted to cause coherent interference of third and fourth optical signals, related respectively to the first and second optical signals and received from the fiber coil.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: February 17, 2009
    Inventor: Yong Huang
  • Publication number: 20080317408
    Abstract: A fibre or filament comprising an electro-optically active layer; a first electrode; a second electrode; the electro-optically active layer being positioned at least partially between the first and second electrodes; the fibre or filament further comprising control means for controllably varying the optical state of a predetermined region of the fibre or filament, such that the length of the predetermined region may be controlled.
    Type: Application
    Filed: September 15, 2005
    Publication date: December 25, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Alwin R.M. Verschueren, Martijn Krans, Sander J. Roosendaal
  • Patent number: 7463795
    Abstract: The present invention relates to an acousto-optic device capable of extending the frequency band of SAWs being able to be generated by it, the acousto-optic device comprising: a light propagation unit for propagating light; a surface acoustic wave propagation unit capable of propagating a surface acoustic wave causing interaction with light which propagates in the light propagation unit; and a transducer electrode unit provided with a plurality of electrodes configured so as to correspond to a frequency band to be generated as the surface acoustic wave which propagates in the surface acoustic wave propagation unit.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: December 9, 2008
    Assignee: Fujitsu Limited
    Inventors: Yukito Tsunoda, Hiroshi Miyata
  • Patent number: 7418173
    Abstract: A waveguide type optical control element which has an optical waveguide made of an insulating material having an electro-optic effect or a thermo-optic effect, and a control electrode provided in contact with or proximity to the optical waveguide; the optical waveguide having a propagation loss which is 1 dB/cm or less at wavelengths of from 1.3 ?m to 1.6 ?m. The control electrode is constituted of a conductive oxide film having a carrier electron concentration of 5.5×1020/cm3 or less and a resistivity of 9.5×10?4 ?cm or less, and the conductive oxide film has a coefficient of extinction of light waves, of 0.240 or less at a wavelength of 1.55 ?m.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: August 26, 2008
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yoshiyuki Abe, Hiroshi Mori, Akira Terashima
  • Patent number: 7400788
    Abstract: Invention discloses an apparatus that provides linear optical modulation of light carrier signals by an electrical modulation signal. Linearized modulation is achieved through the selection of a spacing profile between two optical transmission waveguides. The spacing profile relates to a transfer function, the parameters of which are chosen to yield linear modulation within a particular dynamic range. A preferred embodiment discloses the invention being fabricated within a monolithic structure.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: July 15, 2008
    Assignee: The United States of America as represented by the Secretary of Air Force
    Inventors: Kevin M. Magde, George A. Brost
  • Patent number: 7389025
    Abstract: An optical microresonator device is described including an optical waveguide and an optical microresonator positioned so as to optically couple to the waveguide. The waveguide includes a core and a metal cladding layer on at least part of one boundary of the core.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: June 17, 2008
    Assignee: 3M Innovative Properties Company
    Inventors: Terry L. Smith, Barry J. Koch, Michael A. Haase, Jun-Ying Zhang, Robert W. Wilson, Xudong Fan
  • Patent number: 7373046
    Abstract: A spectrally selective optical coupler is disclosed, comprising a first and a second waveguide; an external resonator defined by at least a first and a second mirror; and a respective deflecting portion in each of said waveguides for coupling light between the waveguide and the external resonator. The waveguides are arranged between the mirrors adjacent to each other in a plane that is generally parallel to said mirrors; and the external resonator is designed such that a resonant mode within the external resonator overlaps the deflecting portion in the first and the second waveguide. The inventive coupler solves some limiting geometrical problems encountered in the prior art. A lateral extension of a mode in the external resonator overlapping both waveguides is obtained using a curved resonator mirror or refractive elements or portions within the resonator.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: May 13, 2008
    Assignee: Proximion Fiber Systems A.B.
    Inventors: Bengt Sahlgren, Johan Pejnefors, Sten Helmfrid
  • Patent number: 7366379
    Abstract: An optical component may comprise a horizontal member with two side walls and a substantially transparent end wall protruding from the horizontal member. The end wall, side walls and horizontal member may partially enclose an interior volume, and optical functionality is imparted in any suitable manner on at least a portion of the end wall. An optical assembly may comprise such an optical component mounted on a waveguide substrate along with a planar waveguide and a second waveguide, which are end-coupled by either reflection from the optical component end wall or transmission through the optical component end wall. An end portion of a planar waveguide may be received within the interior volume of the mounted component. Proper positioning of the optical component relative to the waveguides may be facilitated by alignment surfaces and/or alignment marks on the component and/or waveguide substrate.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: April 29, 2008
    Assignee: Hoya Corporation USA
    Inventors: Henry A. Blauvelt, Joel S. Paslaski, David W. Vernooy
  • Patent number: 7356227
    Abstract: An optical switch, an optical modulator, and a wavelength variable filter each have a simple configuration, which requires only a low driving voltage, which is independent of polarization, and which can operate at high speed. An optical switch includes a 3-dB coupler placed on an output, a 3-dB coupler placed on an output, and two optical waveguides connecting the input-side 3-dB coupler and the output-side 3-dB coupler together. The optical switch also includes a phase modulating section that applies electric fields to one or both of the two optical waveguides. At least two optical waveguides are a crystal material including KTaxNb1-xO3 (0<x<1) and KxLi1-xTayNb1-yO3 (0<x<1, 0<y<1), or KTaxNb1-xO3 or KxLi1-xTayNb1-yO3.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: April 8, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Seiji Toyoda, Kazuo Fujiura, Masahiro Sasaura, Koji Enbutsu, Makoto Shimokozono, Tadayuki Imai, Akiyuki Tate, Touru Matsuura, Takashi Kurihara, Hiroshi Fushimi
  • Patent number: 7340116
    Abstract: An optical switch, an optical modulator, and a wavelength variable filter each have a simple configuration, which requires only a low driving voltage, which is independent of polarization, and which can operate at high speed. An optical switch includes a 3-dB coupler placed on an output, a 3-dB coupler placed on an output, and two optical waveguides connecting the input-side 3-dB coupler and the output-side 3-dB coupler together. The optical switch also includes a phase modulating section that applies electric fields to one or both of the two optical waveguides. At least two optical waveguides are a crystal material including KTaxNb1-xO3 (0<x<1) and KxLi1-xTayNb1-yO3 (0<x<1, 0<y<1), or KTaxNb1-xO3 or KxLi1-xTayNb1-yO3.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: March 4, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Seiji Toyoda, Kazuo Fujiura, Masahiro Sasaura, Koji Enbutsu, Makoto Shimokozono, Tadayuki Imai, Akiyuki Tate, Touru Matsuura, Takashi Kurihara, Hiroshi Fushimi
  • Patent number: 7336854
    Abstract: An optical switch, an optical modulator, and a wavelength variable filter each have a simple configuration, which requires only a low driving voltage, which is independent of polarization, and which can operate at high speed. An optical switch includes a 3-dB coupler placed on an output, a 3-dB coupler placed on an output, and two optical waveguides connecting the input-side 3-dB coupler and the output-side 3-dB coupler together. The optical switch also includes a phase modulating section that applies electric fields to one or both of the two optical waveguides. At least two optical waveguides are a crystal material including KTaxNb1-xO3 (0<x<1) and KxLi1-xTayNb1-yO3 (0<x<1, 0<y<1), or KTaxNb1-xO3 or KxLi1-xTayNb1-yO3.
    Type: Grant
    Filed: October 4, 2006
    Date of Patent: February 26, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Seiji Toyoda, Kazuo Fujiura, Masahiro Sasaura, Koji Enbutsu, Makoto Shimokozono, Tadayuki Imai, Akiyuki Tate, Touru Matsuura, Takashi Kurihara, Hiroshi Fushimi
  • Patent number: 7302140
    Abstract: The invention provides an optical switch including a substrate which has conductivity or semiconductivity, an optical waveguide layer which is formed on the substrate, and a control electrode which is formed on the optical waveguide layer. The optical waveguide layer includes an incident-side channel waveguide to which a light signal is incident and plural outgoing-side channel waveguides branched from the incident-side channel waveguide. The control electrode forms a reflection plane reflecting the incident light signal near a crossover portion of the plural outgoing-side channel waveguides by applying voltage to the optical waveguide layer with the substrate to control a refractive index of the optical waveguide layer, and switches propagation paths of the light signal.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: November 27, 2007
    Assignee: Keio University
    Inventor: Keiichi Nashimoto
  • Publication number: 20070263953
    Abstract: An optical switching element comprising: a multimode waveguide having an electro-optical effect; one or a plurality of first single mode waveguides; a plurality of second single mode waveguides; a first electrode arranged in the vicinity of one edge on one side of the multimode waveguide; a second electrode arranged in the vicinity of the other edge on the same side of the multimode waveguide; and a third electrode arranged on the other side of the multimode waveguide, over the first electrode and the second electrode being arranged so as to be positioned on luminescent spots in an optical mode field generated by the light propagating through the multimode waveguide, and an optical path being switched between the first single mode waveguide and the second single mode waveguide by applying voltage between the first electrode and the third electrode and between the second electrode and the third electrode, is provided.
    Type: Application
    Filed: November 29, 2006
    Publication date: November 15, 2007
    Applicant: FUJI XEROX CO., LTD.
    Inventors: Roshan Thapliya, Shigetoshi Nakamura, Takashi Kikuchi
  • Patent number: 7292750
    Abstract: A signal processing system (10) has a plurality of optical fibers (40, 42, 43) with their one ends (40) mounted in an array board (41) to receive electromagnetic radiation. A coupler (54) interconnects the other ends of the optical fibers (42, 43) in parallel such that electromagnetic radiation is first coupled together and then directed into two or more independent processing channels (45, 47).
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 6, 2007
    Assignee: MBDA UK Limited
    Inventors: Lee D Miller, Martyn R Jennings
  • Patent number: 7260286
    Abstract: An optical fiber coupling, for example, an optical switch, for coupling a light source with a light-receiving end face of an optical waveguide comprises a lens for focusing a light beam emitted from the light source at a focal point on the light-receiving end face of the optical waveguide. An adaptive coupler positioned in the optical path is responsive to a beam steering control signal for steering and aligning the focal point relative to the light-receiving end face of the optical waveguide.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: August 21, 2007
    Assignee: Teledyne Licensing, LLC
    Inventors: Dong-Feng Gu, Donald B. Taber, Bruce K. Winker
  • Patent number: 7257286
    Abstract: A dual comb electrode structure with spacing for increasing a driving angle of a micro mirror provided by MEMS (Micro-Electro-Mechanical system) structure and a microscanner adopting the same are provided. The dual comb electrode structure includes: a mirror unit for reflecting light; a plurality of movable comb electrodes protruded in both sides of the mirror unit; and a plurality of upper and lower static comb electrodes formed above and below the movable comb electrode so as to be alternated with the plurality of movable comb electrodes formed in both sides of the mirror unit, wherein a spacing between the upper static comb electrode and the movable comb electrode is different from a spacing between the lower static comb electrode and the movable comb electrode.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: August 14, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-chul Ko, Jin-woo Cho, Hyun-ku Jeong