Fiber Adjustable Relative To Device Patents (Class 385/90)
  • Patent number: 7901145
    Abstract: A low-cost, high-speed micro-connector replacement for current electrical inter-connects and intra-connects on printed circuit boards is provided. The invention achieves its goal by including an optical transmitter module or optical receiver module mounted in close proximity to a modulator used to encode optical signals from electrical impulses or decode optical signals to electrical impulses. The micro-connector is mounted on a PCB in alignment with the transmitting or receiving modules and provides appropriate alignment and stop positioning of an optical fiber used for optical transmitting between transmitting/receiving modules.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: March 8, 2011
    Assignee: Finisar Corporation
    Inventors: Hongyu Deng, Maziar Amirkiai
  • Patent number: 7894723
    Abstract: An optical transmission control circuit includes: an analog input section which receives optical transmission states as an analog values; an A/D conversion section which converts the analog values into digital values; a value storage section which stores maximum value of the digital values provided by the A/D conversion section; an output register which outputs a value to a host apparatus; and a control section which controls the maximum value storage section to store the maximum value of the digital values therein and controls the output register to output the maximum value to the host apparatus.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: February 22, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shohei Moriwaki, Tetuhiro Fukao
  • Patent number: 7885547
    Abstract: An optical transmitter for performing high-rate data communication by means of optical space transmission is provided, which can reliably perform optical axis adjustment manually and visually, and can prevent a device from being made large in size and manufacturing cost of the device from being increased by using an simply-constructed optical transmitter. Thus, the optical transmitter of the present invention comprises an incident beam restriction section operable to allow only a visible beam which is emitted by a terminal located within a range in which an infrared beam is emitted and incident thereon to pass therethrough, a reflection section operable to reflect the visible beam which has passed through the incident beam restriction section, and a light source operable to emit the infrared beam to pass through the reflection section according to a data transmission request signal from the terminal.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: February 8, 2011
    Assignee: Panasonic Corporation
    Inventors: Mariko Nakaso, Hiroyuki Sasai
  • Patent number: 7881615
    Abstract: Alerts, such as laser driver current alarms, are triggered in an optoelectronic device based on dynamic digital diagnostics, such as operating temperature. Optoelectronic devices may execute microcode structured to represent a formulaic relation between a first parameter (e.g., temperature) and an indicator value for a second parameter (e.g., laser driver current). The microcode may further be structured to cause the optoelectronic device to access the first parameter, calculate an indicator value for the second parameter based on the accessed first parameter using the formulaic relation, access the second parameter, and compare the indicator value with the second parameter to determine whether to trigger an alert. If the second parameter exceeds the indicator value, the alert may be triggered, and may be indicative of potentially imminent optoelectronic device failure.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: February 1, 2011
    Assignee: Finisar Corporation
    Inventor: Suohai Mei
  • Patent number: 7881573
    Abstract: This document discusses, among other things, a connector for an optical imaging probe that includes one or more optical fibers communicating light along the catheter. The device may use multiple sections for simpler manufacturing and ease of assembly during a medical procedure. Light energy to and from a distal minimally-invasive portion of the probe is coupled by the connector to external diagnostic or analytical instrumentation through an external instrumentation lead. Certain examples provide a self-aligning two-section optical catheter with beveled ends, which is formed by separating an optical cable assembly. Techniques for improving light coupling include using a lens between instrumentation lead and probe portions. Techniques for improving the mechanical alignment of a multi-optical fiber catheter include using a stop or a guide.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: February 1, 2011
    Assignee: Vascular Imaging Corporation
    Inventors: Michael J. Eberle, Kenneth N. Bates, William W. Morey
  • Patent number: 7869714
    Abstract: An electronic system includes a first circuit board having a first optical element and a second circuit board having a second optical element positioned to electronically communicate with the first optical element over free space. The system also includes a cold plate having openings positioned to enable the optical communications over free space is positioned between the first circuit board and the second circuit board. The system further includes a condenser and a fluid conduit containing a cooling fluid configured to absorb heat through the cold plate and to convey the heat to the condenser, where the fluid conduit connects the cold plate and the condenser.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: January 11, 2011
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Chandrakant Patel, Shih-Yuan Wang, Philip J. Kuekes, R. Stanley Williams
  • Patent number: 7856185
    Abstract: An optoelectronic module for converting and coupling an information-containing electrical signal with an optical fiber including a housing having an electrical input for coupling with an external cable or information system device and for transmitting and receiving information-containing electrical signals over such input, and a fiber optic connector adapted for coupling with an external optical fiber for transmitting and receiving an optical signal; an electro-optic subassembly coupled to the information containing electrical signal and converting it to and/or from a modulated optical signal corresponding to the electrical signal; parametric data-collection means disposed in the housing acquiring environmental and/or operational data associated with the module; and a communication interface for wirelessly transferring the data to an external device, such as a portable terminal.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: December 21, 2010
    Assignee: Emcore Corporation
    Inventors: Clay E. Hudgins, Daniel McGlynn
  • Patent number: 7853150
    Abstract: An optoelectronic module for converting and coupling an information-containing electrical signal with an optical fiber including a housing having an electrical input for detachably coupling with an external cable or information system device and for transmitting and receiving information-containing electrical signals over such input, and a fiber optic connector adapted for coupling with an external optical fiber for transmitting and receiving an optical signal; an electro-optic subassembly coupled to the information containing electrical signal and converting it to and/or from a modulated optical signal corresponding to the electrical signal; a memory disposed in said housing for storing an encrypted identifier; and a communication interface disposed in said housing for electrically transferring the data to an external device when the module is authenticated using the encrypted identifier, to enable operation of the module.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: December 14, 2010
    Assignee: Emcore Corporation
    Inventors: Clay E. Hudgins, Daniel McGlynn
  • Patent number: 7850373
    Abstract: An optical module includes a circuit board, an optical element mounted on the circuit board, an electronic parts for driving the optical element, an optical block optically coupled with the optical element and adapted to be connected to an optical connector, wherein the optical block includes a protrusion including a guide pin for connecting the optical block to the optical connector, and a receiving portion formed nearly cylindrical around a root of the guide pin and having a receiving surface on which the optical block abuts the optical connector, an optical block reinforcing member including an upper lid for covering the optical block, and sidewalls for covering both sides of the optical block arranged perpendicular to a width direction of the optical connector, wherein the optical block reinforcing member includes a separate body from the optical block and is adapted to be attached on the optical block, and a casing for housing the circuit board, the optical element, the electronic parts, the optical bloc
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: December 14, 2010
    Assignee: Hitachi Cable, Ltd.
    Inventors: Yoshiaki Ishigami, Kenichi Tamura
  • Patent number: 7837397
    Abstract: A digital signal media conversion panel has a series of media converters for converting between electrical signals and fiber optic signals. The conversion panel includes a power feed for the media converters. Preferably the conversion panel includes some Power Over Ethernet receptacles thereby simplifying connection of devices such as Voice Over Internet Protocol telephones and security cameras. In this embodiment, a separate power adapter provides two voltages to the patent panel using the power feed. The use of a separate adaptor with two voltages simplifies the design and avoids heat problems.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: November 23, 2010
    Assignee: Fiber Connections Inc.
    Inventors: Laurence Henry Fingler, William Alexander Slater, Hung Van Tran
  • Publication number: 20100290745
    Abstract: A connector (100) includes an insulative housing (1) having a receiving slot (121) formed therein and a post (1221) protruding forwardly towards the receiving slot (121); a set of contacts (2) retained in the insulative housing; an optical module (3) for transmitting optical data and being movably received in the receiving slot along a front-to-back direction; and a compression coil spring (4) sandwiched between the insulative housing and the optical module, and having a front end for biasing the optical module (3) forwardly and a rear end for being retained on the post (1221).
    Type: Application
    Filed: May 18, 2010
    Publication date: November 18, 2010
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: CHI-NAN LIAO, QI-SHENG ZHENG, JIA-YONG HE
  • Publication number: 20100278490
    Abstract: A connector (100) includes an insulative housing (1) having a receiving slot (121) formed therein; a set of contacts (2) retained in the insulative housing; an optical module (3) for transmitting optical data and being movably received in the receiving slot along a front-to-back direction; a resilient member (4) for urging the optical module moving forwardly in the receiving slot; a stopping device (124,125) for orientating the optical module backwardly and sidewardly; a resisting device (75) for orientating the optical module along a height direction of the insulative housing; and a metal shell (7,8) shielding the insulative housing.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 4, 2010
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: CHI-NAN LIAO, QI-SHENG ZHENG, JIA-YONG HE
  • Patent number: 7826739
    Abstract: Systems and methods for controlling the modulation current of a laser included as a component of an optical transmitter, such as an optical transceiver module, are disclosed. Control of the modulation current, which affects various laser operational parameters, including extinction ratio and optical modulation amplitude, enables operation of the laser to be optimized, thereby enabling reliable transceiver performance to be achieved. In one embodiment, a method for modifying the modulation current in an optical transceiver module includes first sensing analog voltage data that proportionally relates to an actual modulation current of the laser. Once sensed, the analog voltage data are converted to digital voltage data. Using the digital voltage data, the actual modulation current of the laser is determined, then a desired modulation current is determined. Should a discrepancy exist between the actual and desired modulation currents, the actual modulation current is modified to match the desired current.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: November 2, 2010
    Assignee: Finisar Corporation
    Inventors: Stephen T. Nelson, Timothy G. Moran
  • Patent number: 7824110
    Abstract: The invention relates to a data transmission cable (10; 20), in particular for motor vehicles, at at least one of whose ends a plastics housing (14; 24) is arranged, said housing having mechanical dimensions in its interface region (30; 32) which conform to the FAKRA standardisation scheme. The data transmission cable (10; 20) has an optical waveguide, wherein a holding member (40) is provided in the plastics housing (14; 24), said holding member being configured for holding an optical imaging element (42) and for connecting the optical imaging element (42) to the optical waveguide.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: November 2, 2010
    Assignee: Rosenberger Hochfrequenztechnik GmbH & Co. KG
    Inventors: Bernd Rosenberger, Clemens Wurster
  • Patent number: 7817890
    Abstract: A mechanical nanomover for optical elements alignment comprises a platform; a front supporting block and a rear supporting block; a left metal sheet and a right metal sheet installed between the two supporting blocks; a movable block installed between the two metal sheets; a weak spring and a strong spring which are interacted with the movable block. A translation stage serves to drive the weak spring to drive the movable block. The elastic coefficient of the strong spring is much greater than that of the weak spring so that the larger displacement of the weak spring will induce only a small displacement of the movable block due to the interaction of the strong spring. No electric power is needed to drive the structure of the nanomover. The mechanical nanometer can provide a sufficient precision to the operation, while it is very inexpensive.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: October 19, 2010
    Inventors: Sie-Poon Chang, Peter Chang
  • Patent number: 7813613
    Abstract: In one embodiment, method of forming fibers is provided. The method includes modifying a first exposed edge of at least one core of a first fiber. The first fiber has a first end, a second end, and a length between the first end and the second end. The second end has the first exposed edge of the core, and the first exposed edge has a first diffusion state. The first fiber may transmit light along the core. The modification of the first exposed edge includes modifying the first diffusion state of the first exposed edge of the core to a second diffusion state such that light exiting the first exposed edge in the second diffusion state is spread over a greater number of angles relative to angles of the light exiting the first exposed edge in the first diffusion state.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: October 12, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Martin Fenwick, Richard John Luebs, Terrel L. Morris, Duane A. Wegher, Jeffrey D. Yetter
  • Patent number: 7809275
    Abstract: This disclosure concerns transceivers that include CDR bypass functionality. In one example, a 10 G XFP transceiver module includes integrated CDR functionality for reducing jitter. The 10 G XFP transceiver module also implements CDR bypass functionality so that the CDR can be bypassed at rate less than about 10 Gb/s, such as the Fibre Channel 8.5 Gb/s rate for example.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: October 5, 2010
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Thomas Gordon Beck Mason, Yuxin Zhou, Huy Anh Vu, Giorgio Giaretta, Jiashu Chen
  • Publication number: 20100202738
    Abstract: A method for aligning an optical fiber and a submicronic waveguide of an integrated optical circuit, the waveguide including a core surrounded with upper and lower layers forming an optical cladding, including the steps of: (a) forming, in the upper layer, one or several openings capable of extracting light from the waveguide; (b) roughly positioning the optical fiber to send light into the waveguide; (c) finely moving the optical fiber with respect to the waveguide and detecting the position causing the extraction of a maximum amount of light at the level of the opening(s); and (d) depositing a glue binding the optical fiber to the optical circuit and filling the opening(s).
    Type: Application
    Filed: February 8, 2010
    Publication date: August 12, 2010
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventor: Christophe KOPP
  • Patent number: 7764885
    Abstract: Modules and signal control circuits configured to at least partially compensate for or adjust for asymmetric rise/fall time. The circuit may include a first input node configured to receive a first data signal and a second input node configured to receive a second data signal that is complementary of the first data signal. The circuit may also include a first stage having a first node coupled to the first input node and a second node coupled to the second input node and a second stage having a first node coupled to a third node of the first stage and a second node coupled to a fourth node of the first stage. The second stage may be configured to drive a load such as a laser. The circuit may further include a third input node configured to receive a third data signal and a fourth input node configured to receive a fourth data signal that is the complementary of the third data signal.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: July 27, 2010
    Assignee: Finisar Corporation
    Inventors: The'Linh Nguyen, Timothy G. Moran
  • Patent number: 7764856
    Abstract: A device for injecting light into an optical wave guide orients a focused light beam using a manipulator. The manipulator includes an adjusting plate with an outer part, an inner part, and two spring arrangements between the outer part and the inner part that are independently adjustable along two co-ordinate axes, each spring arrangement having a parallel spring arrangement guiding parallel to a certain direction, and a preliminary spring mounted in series, a fixing screw, and an axially elastic fixing disk. The inner part can be moved in the X direction and in the Y direction, and the fixing disk can be pressed into the adjusting plate by the fixing screw screwed into the housing part, in the direction of the passage of the beam, such that the adjusted position of the inner part is fixed.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: July 27, 2010
    Assignee: LASOS Lasertechnik GmbH
    Inventors: Volker Bornmann, Christoph Schaeffel, Ludwig Bergann, Ralf Malz
  • Patent number: 7731430
    Abstract: A sub-mount for mounting optical components includes a recess for mounting whose side wall is tapered. A light transmission and reception module includes the sub-mount for mounting optical component. The sub-mount is manufactured by forming a master mold of the sub-mount formed with projections and recesses including the recess for mounting of the sub-mount, applying liquid silicone rubber to the mater mold, curing the liquid silicone rubber to produce a mold for duplication, filling the curable material into the mold for duplication, curing the curable material, and separating the cured curable material from the mold for duplication.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: June 8, 2010
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Toshihiko Suzuki, Keishi Shimizu, Kazutoshi Yatsuda, Akira Fujii, Eiichi Akutsu
  • Patent number: 7729617
    Abstract: The invention is relevant to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the invention teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: June 1, 2010
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7712976
    Abstract: An active cable that is configured to communicate over much of its length using one or more optical fibers, and that includes an integrated electrical connector at least one end. The active cable includes an integrated retiming mechanism. Thus, multiple links of cable may be used while reducing the chance that the jitter will exceed allowable limits. The cable may be an electrical to optical cable, and electrical to electrical cable, or one of many other potential configurations.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: May 11, 2010
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Greta Light, The-Linh Nguyen, Darin J. Douma
  • Patent number: 7706655
    Abstract: An assembly comprises first connection units attached to a shelf and second connection units attached to cards, respectively. Each first connection unit holds at least one first optic fiber, while each second connection unit holds at least one second optic fiber. The first connection unit is connected to the second connection unit so that the first optic fiber is connected to the second optic fiber. Each first connection unit comprises a body and an optic connector. Each body is floatingly supported by the shelf. Each optic connector is floatingly supported by the corresponding body. The double floating-support structure allows “blind mate” connections between the first and the second connection units.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: April 27, 2010
    Assignee: Japan Aviation Electronics Industry, Limited
    Inventors: Masayuki Shiratori, Shuichi Aihara
  • Patent number: 7703992
    Abstract: A single piece optoelectronic module housing is disclosed herein. The housing comprises a first receptacle configured to receive a first optical assembly, a second receptacle configured to receive a second optical assembly, and a third receptacle configured to receive an optical fiber. In some embodiments at least one angled surface configured to have a filter placed thereon is included. In other embodiments, two or more angled pocket receptacles configured to have one or more optical elements placed therein are included. Further embodiments include at least one compliant press fit feature implemented as part of one of the receptacles. The optoelectronic module housing is a single piece housing configured such that the receptacles and other components are integral parts of the single piece housing.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: April 27, 2010
    Assignee: Finisar Corporation
    Inventor: Stefan Pfnuer
  • Patent number: 7693377
    Abstract: An optical fiber module includes an optical fiber that transmits a light and a holding unit that holds the optical fiber in a state in which the optical fiber is stretched in its longitudinal direction to change optical characteristics of the optical fiber.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: April 6, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masanori Takahashi, Jiro Hiroishi, Masateru Tadakuma, Takeshi Yagi
  • Patent number: 7693424
    Abstract: A system that facilitates high-speed data transfer between integrated circuit chips. The system contains a first integrated circuit chip, which includes a capacitive receiver and an electrical-to-optical transceiver. The capacitive receiver receives a capacitively coupled voltage signal transmitted from a corresponding capacitive transmitter located on a second integrated circuit chip and converts the capacitively coupled voltage signal into an electrical signal. The electrical-to-optical transceiver converts the electrical signal to an optical signal and transmits the optical signal to an optical device through optical coupling.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: April 6, 2010
    Assignee: Sun Microsystems, Inc.
    Inventors: Ashok V. Krishnamoorthy, Danny Cohen, Robert J. Drost
  • Patent number: 7693362
    Abstract: In one embodiment, an assembly having a first board, a second board, a fiber bundle, and at least one movable stage is provided. The fiber bundle has a first end and a second end, and the first end of the fiber bundle is attached to the first board first face. The movable stage has a second optical array provided thereon or therein. The movable stage is disposed on the second board such that the at least one motor steers the movable stage. The movable stage is steered such that the second optical array is aligned with the second end of the fiber bundle in a desired manner.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: April 6, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Martin Fenwick, Richard John Luebs, Terrel L. Morris, Duane A. Wegher, Jeffrey D. Yetter
  • Patent number: 7680369
    Abstract: An optical beam steering arrangement, comprises: a moveable optical element; actuating means for causing the movement of said element; a connecting means between said element and said actuating means for transmitting movement from said actuating means to said element; and flexure means which carry said optical element and are compliant with the displacement of said optical element.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: March 16, 2010
    Assignee: Polatis Limited
    Inventors: Jonathan Horton James, Andrew Nicholas Dames
  • Patent number: 7674049
    Abstract: An optical module includes a fiber array, a laser diode array and a photodiode array. The fiber array has optical fibers which are divided to a transmitter group and a receiver group. The laser diode array has laser diodes which are grouped in a transmitter group. The photodiode array has photodiodes which are divided to a monitor group and a receiver group. The laser diode array is provided between the fiber array and the photodiode array. Each optical fiber of the transmitter group, each laser diode of the transmitter group and each photodiode of the monitor group are optically aligned, respectively. Each optical fiber of the receiver group is optically aligned with each photodiode of the receiver group, respectively.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: March 9, 2010
    Assignee: Ibiden Co., Ltd.
    Inventors: Takemasa Tamanuki, Chris Keller
  • Patent number: 7665907
    Abstract: The invention relates to an optical connector assembly for connecting optical waveguides to electro-optical components, in particular for producing multimedia connections in motor vehicles, for example in accordance with the MOST® standard.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: February 23, 2010
    Assignee: Molex Incorporated
    Inventors: Otto Schempp, Mathias Gerner
  • Patent number: 7664404
    Abstract: The invention relates to a rear panel bus, with a number of plugs which may be plugged into the modules and a fibre optic cable, for guiding light signals, whereby the fibre optic cable has a number of interruptions in the propagation direction of the light signals, into which means, for injection and decoupling of light signals running in the fibre optic cable may be inserted. The interruptions in the fibre optic cable are arranged such that a plug may be allocated to an interruption. The invention further comprises a module which may be plugged into an optical rear panel bus and means for injection and decoupling of light signals running in an optical fibre cable whereby the means for injecting and decoupling are arranged such as to be able to be inserted in interruptions in the fibre optic cable, to decouple light signals from the fibre optic cable and to inject light signals into the fibre optic cable in the propagation direction.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: February 16, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jürgen Maul, Herbert Reiss, Michael Staudt, Thomas Völkel
  • Patent number: 7657140
    Abstract: An optical cable module has an optical waveguide formed by surrounding a core with a clad layer and a light-receiving/emitting element, installed on a supporting substrate. A light-releasing face of the optical waveguide or a light-incident face to the optical waveguide is aligned so as to face a light-receiving face or a light-emitting face of the light-receiving/emitting element. The optical waveguide is formed into a film shape having flexibility, and provided with a reinforcing member that prevents a deflection from occurring in the optical waveguide. The optical waveguide is placed on a protruding portion from a supporting face of the optical waveguide on the supporting substrate.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: February 2, 2010
    Assignee: OMRON Corporation
    Inventors: Toshiaki Okuno, Hayami Hosokawa, Naru Yasuda, Akihiko Sano, Junichi Tanaka, Hiroto Nozawa, Hirokatsu Nakayama
  • Patent number: 7653317
    Abstract: A first light feedback element is arranged at an optical distance L1 from a front facet of a semiconductor laser from which an output light is emitted on an optical path of the output light. An i-th light feedback element is arranged at an optical distance Li from the front facet on the optical path of the output light, where i=2 to n, n is a positive integer not less than 2, and Li>L1. L1 and Li satisfies ((M?1)+0.01)<(Li/L1)<(M?0.01), where M is a positive integer not less than 2, satisfying (M?1)<(Li/L1)?M.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: January 26, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Yutaka Ohki, Naoki Tsukiji, Hidehiro Taniguchi
  • Patent number: 7641401
    Abstract: Disclosed are an optical element holder and an optical communication module. The optical element holder comprises a pedestal having a pair of fixing sections, a pair of holding sections and a stress-suppressing section. The fixing sections are formed in opposing end portions of the pedestal for being welded to a carrier. The holding sections are formed to face the pedestal in an inner position than positions where the fixing sections are formed so as to hold the optical element by pinching it therebetween. The stress-suppressing section prevents a welding stress, which is generated when the fixing sections are welded to the carrier, from affecting the holding sections.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: January 5, 2010
    Assignee: NEC Corporation
    Inventors: Masahiko Namiwaka, Mitsunori Kanemoto
  • Patent number: 7620330
    Abstract: An optoelectronic device has a bright detector and a dark detector and reduces noise in the output of the bright detector using the output of the dark detector.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: November 17, 2009
    Inventors: Tom Faska, Robert Martin
  • Patent number: 7618200
    Abstract: A photoelectric coupling assembly and manufacturing method thereof enabling a three dimensional electrical wiring pattern is provided. The assembly includes a photoelectric conversion unit equipped with a photoelectric conversion element and a molded article. The molded article has a hole configured and arranged to have an optical fiber inserted there-through such that a distal end of the fiber faces an active layer of the conversion element, a front surface on which the conversion unit is mounted, and a side surface being contiguous to the front surface. The lead being insert molded into the molded article has a first surface being exposed at the front surface and electrically connected to the conversion element, a second surface being exposed at the side surface, and an engaging portion having a width increasing in a direction away from the front surface. At least a portion of the engaging portion is contained inside the resin forming the molded article.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: November 17, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Wataru Sakurai, Kazuhito Saito
  • Patent number: 7618199
    Abstract: An optical transceiver disposed within a cage includes a main body, a handle and a sliding element. The handle is coupled with the main body. The sliding element is secured to the handle and has an arm which is slidably disposed in a track of the main body. When the handle is rotated, the sliding element slides along the track.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: November 17, 2009
    Assignee: Delta Electronics, Inc.
    Inventors: Yung-Yuan Cheng, Chiung-Hung Wang, Chih-Hsiao Chen
  • Patent number: 7613026
    Abstract: Optically-coupled memory systems are disclosed. In one embodiment, a system memory includes a carrier substrate, and a controller attached to the carrier substrate and operable to transmit and receive optical signals, and first and second memory modules. The module substrate of the first memory module has an aperture formed therein, the aperture being operable to provide an optical path for optical signals between the controller and an optical transmitter/receiver unit of the second memory module. Thus, the system memory provides the advantages of “free space” optical connection in a compact arrangement of memory modules. In an alternate embodiment, the first memory module includes a beam splitter attached to the module substrate proximate the aperture. In another embodiment, the first and second memory modules are staged on the carrier substrate to provide an unobstructed path for optical signals.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: November 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Terry R. Lee, Kevin J. Ryan
  • Patent number: 7600926
    Abstract: Disclosed is a device for adjusting an optical fiber (1) or an optical fiber bundle relative to a coupling point. Said device comprises a holding apparatus (2) for the fiber/s (1) and a mechanism (3) for positioning the fiber/s (1) in said holding apparatus (2). The positioning mechanism (3) is provided with at least two positioning members (4) which act upon the fiber/s (1) at different angles, the position of the fiber/s (1) relative to the holding apparatus (2) being modifiable by actuating said at least two positioning members (4). The inventive device is characterized in that the positioning members (4) which are effective at different angles are disposed next to each other in the holding apparatus (2) in order to be actuated from one side while at least one of the positioning members (4) acts upon the fiber/s (1) via a lever assembly (5).
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: October 13, 2009
    Assignee: Leica Microsystems CMS GmbH
    Inventors: Dirk-Oliver Fehrer, Holger Birk
  • Patent number: 7580606
    Abstract: Marker grooves of an optical fiber are formed by a marker groove forming device including at least, on a substrate, a fiber guide and optical fiber pressing springs formed on a side wall surface in the fiber guide. The optical fiber pressing springs include edges contacted and pressed to the side of an optical fiber stored in the fiber guide, and plate springs for pressing the edges to the side of the optical fiber with fulcra on the side wall surface in the fiber guide. The optical fiber is pressed to a side wall surface in the fiber guide, and the edges are formed at a predetermined distance from each other.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: August 25, 2009
    Assignee: Japan Aviation Electronics Industry Limited
    Inventors: Osamu Imaki, Yoshihiko Hamada, Yoshichika Kato, Keiichi Mori, Kenji Kondou
  • Patent number: 7572068
    Abstract: A laser module includes: a chassis having a light-output window from which one or more laser beams are outputted; a hermetically sealed package which is fixed to the chassis; one or more semiconductor laser elements which are arranged in the hermetically sealed package, and emit the one or more laser beams; a transparent member which is arranged to cover the light-output window; an optical fiber which has a light-entrance end face, and is arranged outside the chassis so that the light-entrance end face is in contact with the transparent member; and an optical condensing system which is arranged inside the chassis, and makes the one or more laser beams pass through the transparent member and be condensed on the light-entrance end face. The transparent member and the optical fiber are detachably attached to the chassis.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: August 11, 2009
    Assignee: FUJIFILM Corporation
    Inventors: Kazuhiko Nagano, Shinichiro Sonoda, Masami Hatori, Hideo Miura, Shinichi Shimotsu
  • Patent number: 7572067
    Abstract: A connector for establishing a connection for use in a optical communications network, the connector comprising a plurality of optical elements, said optical elements being VCSELs, photodetectors or optical fibers, said optical elements being arranged in two or more arrays so that at least one of the arrays is moveable to ensure alignment of the members of that array when the connection is established.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: August 11, 2009
    Assignee: Emcore Corporation
    Inventor: Clay E. Hudgins
  • Patent number: 7567758
    Abstract: A transceiver module having intergrated eye diagram opening functionality for reducing jitter is describe. The transceiver module may transmitter eye opener and a receiver eye opener integrated in a single circuit. The transceiver module may also include serial control and various other integrated components. Other functionalities that may be integrated on the transceiver module include loopback modes, bypass features, bit error rate testing, and power down mode.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: July 28, 2009
    Assignee: Finisar Corporation
    Inventors: Lewis B. Aronson, Rudy Hofmeister, Christopher Madden, Mark Farley, Dan Case, Tom Lenosky
  • Patent number: 7567760
    Abstract: A method and apparatus for providing diagnostic features for an optical transceiver, in which the optical transceiver uses electronic dispersion compensation (EDC) in order to alleviate distortion of a signal caused by dispersion. A method and apparatus for monitoring the performance of an electronic dispersion compensator by monitoring one or more signals from the electronic dispersion compensator and generating an alarm in the vent that the performance of the electronic dispersion compensator falls below a certain threshold.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: July 28, 2009
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Andrew Bothwell, Richard Cronin, David Healy
  • Patent number: 7559705
    Abstract: A receiver optical amplifier assembly (ROSA) is disclosed that provides for greater tolerances in alignment. The ROSA includes a multimode fiber stub to receive a light beam from a single mode optical fiber. The light beam from the multimode fiber stub is focused by a lens system onto the active area of an optical detector chip. The multimode fiber stub acts as a GRIN lens and allows for optimization of the spot size on the active area. Additionally, in some embodiments the return loss characteristics of the ROSA can be greatly improved by including an angled surface on the multimode fiber stub and moving the active area of the optical detector chip off-axis to compensate.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: July 14, 2009
    Assignee: Opnext, Inc.
    Inventors: Joseph Indhiran Vanniasinkam, Lijun Zhu
  • Patent number: 7553091
    Abstract: The connector modules that are designed and shaped to mate with one side of the receptacle of the panel have mating devices that enable them to be stacked one atop the other inside of the receptacle in a relatively rigid stack. The connector modules that are designed and shaped to mate with the other side of the receptacle of the panel have mating devices that enable them to be held in slots that are slightly separated from one another by air gaps to allow them to “float” in the receptacle. By floating the connector modules in one side of the receptacle while having a relative rigid stack of connector modules in the other side of the receptacle, it is ensured that very precise optical alignment will be maintained between the respective lenses in the connector modules that face each other in the receptacle.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: June 30, 2009
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventor: Laurence Ray McColloch
  • Patent number: 7551812
    Abstract: An optical module includes a fiber array, a laser diode array and a photodiode array. The fiber array has optical fibers which are divided to a transmitter group and a receiver group. The laser diode array has laser diodes which are grouped in a transmitter group. The photodiode array has photodiodes which are divided to a monitor group and a receiver group. The laser diode array is provided between the fiber array and the photodiode array. Each optical fiber of the transmitter group, each laser diode of the transmitter group and each photodiode of the monitor group are optically aligned, respectively. Each optical fiber of the receiver group is optically aligned with each photodiode of the receiver group, respectively.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: June 23, 2009
    Assignee: Ibiden Co., Ltd.
    Inventors: Takemasa Tamanuki, Chris Keller
  • Patent number: RE41742
    Abstract: In an optoelectronic conversion header, a ferrule holds an optical waveguide in a predetermined position so that an end face of the optical waveguide protrudes from an mounting surface of the ferrule. An electric wire is provided on the mounting surface of the ferrule, a optical semiconductor device is mounted on the mounting surface of the ferrule and electrically connected to the electric wire. From the end face of the optical waveguide, an optical signal is transferred in a transfer direction and the mounting surface of the ferrule is so arranged as to be deviated two degrees or more from a plane vertical to the transfer direction.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: September 21, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideto Furuyama, Hiroshi Hamasaki
  • Patent number: RE41840
    Abstract: A method and apparatus for maintaining an alignment of a laser diode with an optical fiber is disclosed. A mounting plate is made of a first material, and mounted on the mounting plate is a first substrate made of a second material. A semiconductor laser, with a light emitting side, is mounted on the first substrate. Separated from the first substrate by a predetermined distance is a second substrate made of a third material, and mounted on the second substrate is an optical fiber. The optical fiber is mounted, such that, the optical fiber is adjacent to and aligned with the light emitting side of the semiconductor laser. The first, second, and third materials making up the mounting plate, the first substrate, and the second substrate respectively, facilitate maintenance of the alignment between the optical fiber and the light emitting side of the semiconductor laser.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: October 19, 2010
    Inventors: Ernest Charles Gilman, Dana L. Patelzick, Edward L. Hershberg, Richard A. Booman