Including Synchronization Patents (Class 398/154)
  • Patent number: 6996344
    Abstract: A video transmission system, for sending uncompressed digital video signals from an originating device such as a digital video camera to a distant location, such as a studio or editing facility and for receiving video signals sent from a distant location. The transmitter features an input for receiving an uncompressed digital video signal from a coaxial cable, an equalizer, a reclocker, and a transmitter communicating a reformed signal through a fiber optic line. A receiver system may also be employed for receiving an uncompressed digital video signal from a fiber optic cable and outputting a corresponding electrical signal to a reclocker for communication through a coaxial cable.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: February 7, 2006
    Assignee: Opticomm Corp.
    Inventors: David Caidar, Abraham Elmaleh
  • Patent number: 6990123
    Abstract: Communication between a burst manager and plural remote terminals over a first passive optical network (PON) and a second PON, with each PON having a downstream portion and an upstream portion, includes transmitting a common synchronization signal from the burst manager to the plural remote terminals over both downstream PON portions and transmitting burst data from the plural remote terminals over both upstream PON portions to the burst manager. The burst data for each remote terminal is delayed on the first and second PONs by corresponding first and second delays.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: January 24, 2006
    Assignee: Quantum Bridge Communications Inc.
    Inventor: Jeffrey A. Masucci
  • Patent number: 6980746
    Abstract: A method and system for generating both return-to-zero (RZ) and carrier suppressed return-to-zero (CSRZ) shaped signals using only a single optical modulator. The system includes: a switch for receiving a data signal and a clock signal as inputs, and outputting a voltage signal; a unit for controllably adjusting the phase of said clock signal before input to the switch; an optical modulator for receiving a continuous wave light (CW) signal and the voltage signal as inputs, and outputting one of an RZ and a CSRZ signal. To generate a CSRZ signal, the optical modulator is biased at a transmission minimum level signal. To generate an RZ signal, the optical modulator is biased at a transmission maximum level and the clock signal is phase shifted. Also disclosed is an optical communication transceiver including a plurality of optical modulator circuits generating both RZ and CSRZ signals.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: December 27, 2005
    Assignee: Dorsal Networks, Inc.
    Inventor: M. Imran Hayee
  • Patent number: 6980748
    Abstract: A synchronized optical clocking signal is provided to a plurality of optical receivers by providing a layer of a high absorption coefficient material, such as SiGe or Ge, on a front surface of a low absorption coefficient substrate, such as silicon. Diodes are formed in the germanium containing layer for receiving an optical signal and converting the optical signal into an electrical signal. An optical clocking signal is shined on the back surface of the silicon substrate. The light has a wavelength long enough so that it penetrates through the silicon substrate to the germanium containing layer. The wavelength is short enough so that the light is absorbed in the germanium containing layer and converted to the electrical clocking signal used for neighboring devices and circuits. The germanium concentration is graded so that minority carriers are quickly swept across junctions of the diodes and collected.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: December 27, 2005
    Assignee: International Business Machines Corporation
    Inventor: James M. Leas
  • Patent number: 6977966
    Abstract: A method of transmitting and rapidly recovering a burst of data without first having to establish a timing or phase lock. The signals are transmitted as modified Manchester coded signals having pulse transitions at a clocking pulse rate which is a multiple of the clocking pulse rate at which the signals are originally generated, and wherein the MOOSE coded signal is modified by ON-OFF keying.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: December 20, 2005
    Assignee: Tellabs Bedford, Inc.
    Inventors: Muneer Zuhdi, George H. Buabbud
  • Patent number: 6970480
    Abstract: A terminal device is provided for communicating data signals with a central communication device via a first signal carrying line and a second signal carrying line. The first signal carrying line is arranged for transporting a first signal and the second signal carrying line is arranged for transporting a second signal, wherein the first and second signals have equal content. The first signal carrying line has a first propagation time and the second signal carrying line has a second propagation time, such that the first propagation time is shorter than the second propagation time. The terminal device includes a signal quality comparison element for determining a first signal quality of the first signal and a second signal quality of the second signal, for comparing the first and second signal qualities, and for accepting the one of the first and second signals that has a better quality.
    Type: Grant
    Filed: August 20, 2001
    Date of Patent: November 29, 2005
    Assignee: Lucent Technologies Inc.
    Inventors: Pieter Hendrik van Heyningen, Johannes H J Maessen
  • Patent number: 6963697
    Abstract: A method of decoding a signal in an optical fiber. In one embodiment the method includes receiving the optical signal, wherein the optical signal is a pulse amplitude modulated signal. Converting the optical signal to an electrical signal. Comparing the electrical signal with a plurality of levels. Producing comparison output signals based on the comparison of the electrical signal with the plurality of levels. Processing the comparison output signals on a clock to produce processed output signals and latching the processed output signals on a clock signal to generate the plurality of serial, digital data streams.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: November 8, 2005
    Assignee: ADC Telecommunications, Inc.
    Inventors: Aravanan Gurusami, Joseph F. Chiappetta
  • Patent number: 6961523
    Abstract: In an optical multiplexing interconnection module, first and second NRZ input signals synchronous by clock signal are inputted to its input section. The first NRZ input signal is converted to a first RZ signal according to a logical product with a clock signal CLK by a drive circuit and the second NRZ input signal is converted to a second RZ signal according to a logical product with an inversion clock signal by a drive circuit. Then, light emitting devices are driven according to the first and second RZ signals from these drive circuits and two optical signals from the light emitting devices are inputted to an optical channel and multiplexed therein and then, a multiplexed optical signal is transmitted through an optical channel.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: November 1, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideto Furuyama
  • Patent number: 6959152
    Abstract: To generate light with the degree of polarization zeroed and the spread of an optical spectrum suppressed even with temporal overlapping between optical pulses each of which is polarized orthogonally to the succeeding pulse, a polarization scrambler includes an optical pulse generator that generates optical pulses with an intensity waveform repetition period T/2 and an electrical field repetition period T in which the same intensity waveform is repeated every repetition period T/2 and in which phase is inverted every repetition period T/2, and an orthogonal polarization delay unit which receives each of the optical pulses, separates the optical pulse into two optical pulses with orthogonal states of polarization, and relatively shifts the temporal position of one of the two optical pulses from that of the other optical pulse by (2n?1)T/4 (n is a natural number) to generate light in which each pulse is polarized orthogonally to a succeeding pulse.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: October 25, 2005
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Masamichi Fujiwara, Mitsuhiro Teshima, Noboru Takachio, Katsumi Iwatsuki
  • Patent number: 6954593
    Abstract: First and second carrier modulators each modulate a carrier having a different frequency from each other with a baseband input signal. First and second variable wavelength optical modulators each convert the modulated signal into an optical signal having a first or second wavelength. An optical multiplexer multiplexes the optical signals, and sends a multiplexed signal to an optical transmission line. A wavelength separator individually outputs wavelength components of the multiplexed signal. First and second optical receivers each convert these wavelength components into an electrical signal. First and second filters each pass only the signal components of each different frequency. First and second burst demodulators each demodulate the modulated signal. With such a structure, a large-capacity optical communication apparatus which is capable of simultaneously using the same wavelength without requiring wavelength management in optical transmitting circuits can be achieved at a low cost.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: October 11, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Masaru Fuse
  • Patent number: 6954559
    Abstract: A re-generator of an optical clock signal has at least a mode-locked semiconductor laser outputting a re-generated optical clock signal from at least one end face of the mode-locked semiconductor laser, with inputted light signals having different polarized wave states respectively at both end faces of the mode-locked semiconductor laser; wherein the re-generator has a light splitter to split the light signal into two kinds of elements with respective polarized waves different by a right angle, and to emit one of the elements split from the light signal, to one of both end faces of the mode-locked semiconductor laser; and a rotator to input the other elements split from the light signal, to rotate the other elements by a right angle, and to lead the rotated element to the other end face of the mode-locked semiconductor laser.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: October 11, 2005
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Shin Arahira
  • Patent number: 6947672
    Abstract: A high-speed optical data link includes a system circuit board, a first ASIC coupled to convey electrical information to and from up level data management circuits, and a second ASIC electrically coupled to the first ASIC. A fiber optic module mounted on the system circuit board including a receiver, a transmitter and the second ASIC. The receiver includes a photo-diode positioned to receive optical signals, a trans-impedance amplifier electrically coupled to the photo diode, and a post-amplifier electrically coupled to the trans-impedance amplifier and to the second ASIC. The transmitter includes a laser positioned to convey optical signals to a remote optical receiver and a laser driver electrically coupled to the laser and to the second ASIC.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: September 20, 2005
    Assignee: JDS Uniphase Corporation
    Inventors: Wenbin Jiang, Hsing-Chung Lee, Michael J. Hartmann
  • Patent number: 6944405
    Abstract: This invention provides an optical transmission with a demultiplexer for demultiplexing an input optical signal into optical signals of different channels and a multiplexer for multiplexing the optical signals outputted from the demultiplexer.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: September 13, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Lim Lee, Byung-Jik Kim, Jun-Ho Koh, Seong-Taek Hwang, Yun-Je Oh
  • Patent number: 6931212
    Abstract: A method and apparatus for providing optical 3R regeneration involving: 1) generating an encoded optical clock signal from at least an optical signal; 2) introducing the encoded clock signal into a delay interference section of a regenerator such that an amplitude modulated clock signal is produced; andoutputting the amplitude modulated clock signal wherein the output amplitude modulated clock signal preserves information present within the input optical signal.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: August 16, 2005
    Assignee: Lucent Technologies Inc.
    Inventors: Juerg Leuthold, Pierre-Andre Besse
  • Patent number: 6925263
    Abstract: In an optical network that communicates upstream data utilizing a time division multiple access (TDMA) technique, end nodes transmit upstream data on a first wavelength in accordance with a transmission sequence. The end nodes transmit a timing signal on a second wavelength following the upstream data. The timing signals are reflected by a wavelength selective reflective element to each of the end nodes. The end nodes track the timing signals to determine when to transmit upstream data in accordance with the transmission sequence. The optical network includes an outside plant node coupled to the system head end with a distribution fiber. The outside plant node is coupled to the end nodes with drop fibers. The outside plant node includes a splitter/combiner and the wavelength selective reflective element. The wavelength selective reflective element reflects the timing signals on the second wavelength and passes upstream and downstream data on other wavelengths.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: August 2, 2005
    Assignee: Intel Corporation
    Inventor: David M. Horne
  • Patent number: 6915081
    Abstract: The invention provides a PLL circuit wherein, even if the duty ratio of an input signal varies, stabilized PLL operation is achieved. The PLL circuit includes a phase detection circuit and a frequency detection circuit. The frequency detection circuit includes a pair of D-type flip-flops for sampling first and second clock signals having different phases from each other in synchronism with an input signal at each rising or falling changing point of the input signal for each period, and a control logic circuit for logically operating the signals sampled by the D-type flip-flops and the signals sampled successively subsequently by the D-type flip-flops. The control logic circuit generates an UP pulse signal or a DOWN pulse signal based on a result of the arithmetic operation.
    Type: Grant
    Filed: October 17, 2001
    Date of Patent: July 5, 2005
    Assignee: Sony Corporation
    Inventors: Toru Takeshita, Takashi Nishimura
  • Patent number: 6909852
    Abstract: Method and apparatus for recovering a clock and data from a data signal. One method of the invention includes receiving the data signal having a first data rate and receiving a clock signal having a first clock frequency, and alternating between a first level and a second level. The data signal is stored when the clock signal alternates from the first level to the second level, and the stored data signal is provided as a first signal a first amount of time later. The first signal is stored when the clock signal alternates from the first level to the second level, and the stored first signal is provided as a second signal a second amount of time later. A third signal is provided by delaying the first signal for a third amount of time. The third signal is stored when the clock signal alternates from the second level to the first level, and the stored third signal is provided as a fourth signal a fourth amount of time later. A fifth signal is provided by delaying the data signal a fifth amount of time.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: June 21, 2005
    Assignee: Broadcom Corporation
    Inventor: Jun Cao
  • Patent number: 6909848
    Abstract: A self-healing bit rate transducer in an optical transmission system includes a demultiplexer for demultiplexing optical signals into different wavelength channels; bit rate receivers for converting the demultiplexed optical signals into the corresponding electrical signals, for generating a bit-rate error signal, and for generating a temperature reference signal; a detecting section for generating a signal indicative of the bit rate of the optical signals outputted from the demultiplexer; and a controller for comparing the detected bit rate with a predetermined data to generate a control signal that is used to adjust the bit rate of the respective bit rate receiver.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: June 21, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Ho Kim, Jun-Ho Koh, Kwang-Jin Yang
  • Patent number: 6907198
    Abstract: A high-speed and small-sized optical interconnection device uses wavelength-multiplexed light suitable therefor in order to make compatible between an increase in high-speed communication capacity of the optical interconnection device and an increase in high-speed communication distance thereof. A signal processing LSI is placed within a central portion of a main surface of a semiconductor substrate, and input/output units for transmitting and receiving optical wavelength-multiplexed lights are multi-chip integrated on the periphery of the main surface of the semiconductor substrate into a single package, and a wiring length can be reduced and a physical signal band for each connecting wiring can be enlarged. Further, the signal processing LSI is made up of CMOS and a driver circuit for each optical transmitting/receiving element is comprised of a Si—Ge transistor circuit, whereby a modulated signal band can be enlarged and the performance of the input/output optical signals from the device can be improved.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: June 14, 2005
    Assignee: Hitachi, Ltd.
    Inventor: Shinji Nishimura
  • Patent number: 6895189
    Abstract: A synchronization system in accordance with the principles of the invention includes a central synchronizing management unit, at least one synchronization distribution unit, and at least one network element. Each synchronization distribution unit receives synchronization and management information from the central synchronization management unit. This information may be transmitted directly from the central synchronization management unit, or it may be transmitted though another synchronization distribution unit in a group of a daisy-chained synchronization distribution units. The daisy-chained arrangement employs both active and passive optical paths. The central synchronizing management unit may query any synchronization distribution unit within the system to obtain performance statistics.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: May 17, 2005
    Assignee: Lucent Technologies Inc.
    Inventor: Paul Stephan Bedrosian
  • Patent number: 6876818
    Abstract: A system and method for transmission of data modulated spectrally enriched optical pulses via an error free propagation region of an optical fiber, in which the optical pulses generated by an optical transmitter have a spectrum that is substantially wider than the spectrum of Fourier-transform limit at an input of the error-free propagation region. The spectral width of the optical pulses gradually narrows while transmitting along this region and becomes comparable to the Fourier-transform limit at an output of this region. Linear and non-linear distortions are compensated within the error free propagation region respectively by deployment of dispersion compensating units and phase modulation of transmitted optical pulses for providing them with an appropriate frequency chirp having shape comparable with a frequency chirp induced by a self-phase modulation of the optical fiber but having opposite sign.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: April 5, 2005
    Assignee: FutureWei Technologies, Inc.
    Inventors: Yu Sheng Bai, Clarence Kan, Dzhakhangir V. Khaydarov, Robert Brogle, Tatiana V. Rossin, Ilya M. Fishman
  • Patent number: 6868232
    Abstract: An optical network has an optical splitter connected to (1) a working optical subscriber unit (OSU) of a working circuit via a working optical fiber, (2) a protection OSU of a protection circuit via a protection optical fiber, and (3) one or more optical network terminals (ONTs). The present invention enables fast protection switching from the working OSU to the protection OSU. In one embodiment, the arrival times of corresponding upstream ranging reply PLOAM cells are measured at both the working and protection OSUs during ranging operations of the working OSU. In another embodiment, a cell delineation procedure is initiated at the protection OSU during normal, non-ranging operations of the working OSU to enable the protection OSU to correctly delineate upstream cells and the arrival times of corresponding upstream cells are then measured at both the working and protection OSUs.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: March 15, 2005
    Assignee: Lucent Technologies Inc.
    Inventors: Peter Van Eijk, Reed K. Even, Piet Van Hevingen, Song Jiang, Kyeong-Soo Kim, Woojune Kim, Fengkun Liu, Yong-Kwan Park
  • Patent number: 6856770
    Abstract: A system and method for transmitting data modulated spectrally enriched optical pulses with a frequency chirp via an error free propagation region of an optical fiber, in which spectrum of optical pulses gradually depletes from the spectrum that is substantially wider than the spectrum of Fourier-transform limit at an input of the error-free propagation region and becomes comparable to the Fourier-transform limit at an output of this region. The gradual depletion of the spectrum is achieved by utilizing a frequency chirp converter having a dispersion sign opposite to a dispersion sign of the optical fiber.
    Type: Grant
    Filed: March 8, 2001
    Date of Patent: February 15, 2005
    Assignee: Futurewei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 6847789
    Abstract: Method and apparatus for recovering a clock and data from a data signal. One method of the invention includes receiving the data signal having a first data rate, receiving the clock signal having a first clock frequency, alternating between a first level and a second level, wherein the first data rate is twice the first clock frequency. A first signal is generated by passing the data signal when the clock signal is at the first level, and storing the data signal when the clock signal is at the second level. A second signal is generated by passing the data signal when the clock signal is at the second level, and storing the data signal when the clock signal is at the first level. A third signal is generated by passing the first signal when the clock signal is at the second level, and storing the first signal when the clock signal is at the first level.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: January 25, 2005
    Assignee: Broadcom Corporation
    Inventor: Jafar Savoj
  • Patent number: 6839521
    Abstract: A photonic arbitrary waveform modem utilizes a bipolar coding scheme. The bipolar coding scheme includes an arbitrary waveform modem which includes a plurality of tapped delay lines and is implemented by partitioning each optical frequency chip into positive and negative segments. Signals are decoded by effectively multiplying the transmit and receive code vectors and individually summing the positive and negative tap weights. The positive and negative tap weights are differenced to recreate the transmitted signal. The bipolar coding scheme allows for the use of truly orthogonal codes which decreases the interference and reduces the probability of detection.
    Type: Grant
    Filed: May 10, 2001
    Date of Patent: January 4, 2005
    Assignee: Northrop Grumman Corporation
    Inventor: Richard L. Davis
  • Patent number: 6832053
    Abstract: A delayed interference all-optical wavelength converter is arranged to convert and reshape a pulsed input signal Pin at &lgr;1 into the wavelength converted signal Pconv at &lgr;2, where &lgr;1 and &lgr;2 are different. A delayed interference all-optical wavelength regenerator is similar, but is arranged to reshape a pulsed input signal Pin into the wavelength converted signal Pconv, where the wavelengths of the input signal and the converted signal are the same. The converter/regenerator comprises an input-signal coupling unit for receiving the pulsed input signal and supplying it to one input of a modulation section, the other input to which is a carrier signal Pcw. The output of the modulation section Pint, which is generally speaking, a phase modulated signal which may also have an amplitude modulated component, is applied to a delay interference section arranged to transform Pint into a primarily amplitude-modulated signal.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: December 14, 2004
    Assignee: Lucent Technologies Inc.
    Inventor: Juerg Leuthold
  • Patent number: 6816684
    Abstract: The present invention relates to a method of generating a clock signal of exact phase from an optical input signal that is divided up optically into two channels, one for data extraction to generate an electrical data signal and one for clock extraction to generate an electrical first clock signal, so that the phase position of the first clock signal is corrected by comparison with the phase position of the data signal so that the phase position of the resulting clock signal formed after this correction is similar to the phase position of the data signal, and also a digital optical receiver therefor.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: November 9, 2004
    Assignee: Alcatel
    Inventors: Georges Grandpierre, Francois Lafranca
  • Patent number: 6807377
    Abstract: Parallel synchronous pattern signals are transmitted from other side in a plurality of parallel data channels. A skew data reception unit converts the received parallel pattern signals into electric signals in the respective parallel data channels. A skew detection circuit serves to detect the length of a skew between the parallel data channels. A skew correction circuit serves to correct and eliminate the skew in parallel data signals, transmitted from the other side, between the parallel data channels based on the detected skew. The data signals without skews are output from the skew data reception unit.
    Type: Grant
    Filed: August 5, 1998
    Date of Patent: October 19, 2004
    Assignee: Fujitsu Limited
    Inventor: Takayuki Watanabe
  • Patent number: 6798558
    Abstract: An optical clock multiplier comprises a phase modulator (12) to shift a phase in pulse duration of an input optical clock pulse by &pgr;, a polarization mode dispersion device (16) having a predetermined time difference between first and second polarizations orthogonal to each other to divide an output light from the phase modulator into the first and second polarization components, and a polarization device (20) to extract one of polarization components in a third polarization practically inclined at an angle of 45° against the first polarization and a fourth polarization orthogonal to the third polarization out of the output light from the polarization mode dispersion device.
    Type: Grant
    Filed: June 18, 2003
    Date of Patent: September 28, 2004
    Assignee: KDDI Corporation
    Inventors: Michiaki Hayashi, Tomohiro Otani, Masatoshi Suzuki
  • Patent number: 6795653
    Abstract: An apparatus for reshaping optical pulses divides an incoming optical signal (10) into a first (14) and a second (16) path. The signal in the second path (16) is converted into an electrical signal which provides information concerning the pulse power of individual pulses. An optical modulator (22) is provided in the first, purely optical path (14) for modifying the optical signal so as to attenuate the pulses by an amount which depends on the power of the pulses, higher power pulses being attenuated more than lower power pulses. This helps maintain a constant signal to noise ratio within the system and can extend the number of optical spans of an optical signal before it requires full electrical regeneration.
    Type: Grant
    Filed: December 13, 1999
    Date of Patent: September 21, 2004
    Assignee: Nortel Networks Limited
    Inventor: Jonathan P King
  • Publication number: 20040175175
    Abstract: The present invention is directed to an optical router device that is configured to route optical packets in a TDM/WDM optical network. The optical device is disposed in a node of the WDM optical network. The WDM optical network is configured to accommodate a plurality of wavelength channels. Each of the plurality of wavelength channels is configured to propagate optical packets in a time division multiplexed (TDM) arrangement. Each optical packet includes a baseband-payload and a subcarrier modulated (SCM) header. The device includes an optical WDM demultiplexer configured to demultiplex the plurality of wavelength channels. A header recovery component is coupled to the optical WDM demultiplexer. The header recovery element is configured to recover the SCM header in each optical packet propagating on each demultiplexed wavelength channel. A routing control processor (RCP) is coupled to the header recovery component.
    Type: Application
    Filed: March 3, 2003
    Publication date: September 9, 2004
    Inventors: Neophytos A. Antoniades, Valeria L. da Silva, June-Koo Rhee
  • Patent number: 6778730
    Abstract: Disclosed herein is an optical signal processing device which can give stable temporal order to the modulation-phases of a plurality of optical signals. The optical signal processing device includes an optical demultiplexer and an optical multiplexer for adaptation to WDM (wavelength division multiplexing). The optical demultiplexer has an input port and a plurality of output ports. The input port is adapted to accept WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths. The optical multiplexer has an output port and a plurality of input ports. The plural output ports of the optical demultiplexer and the plural input ports of the optical multiplexer are connected by a plurality of optical paths, respectively. Each optical path is provided with a delay adjuster.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: August 17, 2004
    Assignee: Fujitsu Limited
    Inventor: Kazuo Hironishi
  • Patent number: 6775481
    Abstract: An optical signal regeneration device having an interferometric structure with two arms. Each of the arms has a medium, the optical power output of which is variable with the optical power input. The first arm receives, through an input coupler, a continuous wave and the signal to be regenerated. The second arm receives through the input coupler, a continuous wave signal and a clock signal. A filter, centered on the continuous wave wavelength, receives the output signal of the interferometric structure through the coupler. The filter output signal constitutes the regenerated 3R signal.
    Type: Grant
    Filed: January 8, 2001
    Date of Patent: August 10, 2004
    Assignee: Alcatel
    Inventors: Christopher Janz, Patricia Guerber, Bruno Lavigne, David Wolfson, Tina Fjelde, Allan Kloch
  • Publication number: 20040101311
    Abstract: The invention relates to the distribution of a synchronization signal in an optical communication system which is inherently asynchronous. In order to accomplish a cost-efficient mechanism for transmitting a synchronization signal in such a system, the amplitude of a payload signal is modulated with the synchronization signal, whereby an amplitude-modulated payload signal is obtained. This amplitude-modulated payload signal is transmitted as an optical signal to the opposite end of an optical link, where the synchronization signal is separated from the payload signal.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventor: Aki Grohn
  • Patent number: 6741812
    Abstract: The synchronous digital communications system according to the invention serves to transmit electric signals optically. The electric signals to be transmitted are converted from electrical to optical form (E/O1, E/O2, E/On) and then transmitted using wavelength division multiplexing (WDM) or dense wavelength division multiplexing (DWDM). A synchronization manager and a connection manager are provided. The synchronization manager is adapted to configure dedicated optical synchronization links. The connection manager is adapted to configure switched optical communication links from a pool of wavelengths, taking account of the dedicated synchronization links only. This has the advantage that independently of the switched communication links, synchronization is constantly ensured throughout the system. Each network element (NE1, NE2, NE3) has at least one interface unit that is reserved for synchronization and that continuously receives signals at the wavelength (&lgr;1) reserved for synchronization.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: May 25, 2004
    Assignee: Alcatel
    Inventor: Michael Joachim Wolf
  • Patent number: 6738582
    Abstract: A method for communicating data over a network having a plurality of nodes thereupon is discussed. A time slot clock signal is transmitted from one node of the plurality of nodes to other nodes of the plurality of nodes. After each of the other nodes of the plurality of nodes receives the time slot clock signal, the time slot clock signal is recalculated to achieve an integer number of slots on the network. The recalculated time slot clock signal is transmitted from the one node of the plurality of nodes to the other nodes of the plurality of nodes.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: May 18, 2004
    Assignee: Martisse Networks
    Inventors: Oren Moshe, Shlomo Shachar
  • Patent number: 6738579
    Abstract: The synchronous digital communications system according to the invention serves to transmit electric signals optically. The electric signals to be transmitted are converted from electrical to optical form (E/O1, E/O2, E/On) and are transmitted using wavelength division multiplexing (WDM) or dense wavelength division multiplexing (DWDM). At least one optical connection is configured as a nonswitched connection using at least one wavelength per transmission section between optical network elements or optical and electrical network elements, and serves to transmit synchronization and information signals. This has the advantage that independently of the switched communication links, synchronization is constantly ensured throughout the network. Each network element (NE1, NE2, NE3) has at least one interface unit that is reserved for synchronization and that continuously receives signals at the wavelength (&lgr;1) reserved for synchronization.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: May 18, 2004
    Assignee: Alcatel
    Inventor: Michael Wolf
  • Publication number: 20040086278
    Abstract: Aspects of the invention provide a method and system for synchronizing a transceiver and a framer in an optical transmission network. Subsequent to achieving synchronization of an inbound data stream, an internal framer may be adapted to inform a downstream device such as a full framer, that synchronization has already been attained. Accordingly, the downstream device may not need to perform resynchronization of the inbound data and can immediately start processing the inbound data. Advantageously, the internal framer may provide expedited error checking, handling and reporting prior to receipt of the data by the downstream device.
    Type: Application
    Filed: December 27, 2002
    Publication date: May 6, 2004
    Inventors: Jay Proano, Sheila Oiu, Tim Chan, Hongtao Jing
  • Patent number: 6728493
    Abstract: An optical receiver arrangement comprises a phase locked loop incorporating a voltage controlled oscillator whereby the loop can be matched in frequency to a received signal frequency. A frequency detector associated with the loop produces an output comprising first or second pulses indicative of whether the loop frequency is above or below the received signal frequency. A control circuit determines a time averaged measure of difference between the loop frequency and the received signal frequency, and issues a loss of lock alarm if this averaged difference exceeds a predetermined value.
    Type: Grant
    Filed: March 29, 2000
    Date of Patent: April 27, 2004
    Assignee: Nortel Networks Limited
    Inventors: Edward Whittaker, Darrell Smith, Paul Wilson
  • Patent number: 6728492
    Abstract: A SONET framer with multiple clock-crossing capability for use in an optical cross-connect system. The input stage of the cross-connect includes a framer ASIC that performs both frame alignment of multiple data streams and retimes them with a system clock at a same frequency. The ASIC processes multiple clocks from PLL's and retimes the data with the system clock at the same frequency. The present invention nests the clock crossing function in the frame alignment function in order to align all the incoming data streams with the system clock. Advantages include reduced chip area and reduced power consumption.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: April 27, 2004
    Assignee: Alcatel
    Inventor: Clara Baroncelli
  • Publication number: 20040067063
    Abstract: A method and apparatus for optical clock recovery using optical filters with fixed reflective wavelengths is provided. In the apparatus, a first filter receives an optical signal and extracts one out of two spectral lines corresponding to two side peaks that are second in magnitude to a peak and exist at both sides of a peak on the spectrum of the received optical signal. A second filter extracts a spectral line corresponding the largest peak on the spectrum of the received optical signal. An attenuator equalizes the power levels of the two spectral lines extracted by the first and second filters. A beating generation unit receives signals corresponding to the two equalized spectral lines and generates beating between the equalized spectral lines, thereby recovering a clock component.
    Type: Application
    Filed: May 23, 2003
    Publication date: April 8, 2004
    Inventors: Jae-Myoung Lee, Je-Soo Ko
  • Patent number: 6711357
    Abstract: Information and control are synchronized as they flow through a large distributed IP router system with independent clocks. The IP router includes multiple equipment racks and shelves, each containing multiple modules. The IP router is based on a passive switching device, which in some embodiments is an optical switch. Control and data come to the switching device from different sources, which have different clocks. Timing and synchronization control are provided, such that information and control both arrive at the switching device at the proper time. A single point in the system originates timing, which is then distributed through various ASICs of the system to deliver configuration control to the switch at the appropriate time. The launch of information to the switch is also controlled with a dynamic feedback loop from an optical switch controller. Control aspects of the optical switch are aligned by this same mechanism to deliver control and data to the optical switch simultaneously.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: March 23, 2004
    Assignee: Chiaro Networks Ltd.
    Inventors: Tony Brewer, Harry C. Blackmon, Harold W. Dozier, William D. O'Leary, Dean E. Walker
  • Publication number: 20040052520
    Abstract: A node for use in a WDM optical network, the node comprising a tributary receiver unit for receiving a data signal distributed via the WDM optical network and destined for said node, a path protection switching unit for switching receipt of said data signal at the tributary receiver unit from a working path to a protection path of the WDM optical network, and a control unit for the path protection unit, wherein the control unit comprises a multi rate clock data recovery (CDR) device arranged, in use, to detect a loss of lock (LOL) in the data signal received at the tributary receiver unit based on a comparison of an actual data rate received and a pre-programmed reference rate for said data signal.
    Type: Application
    Filed: February 7, 2002
    Publication date: March 18, 2004
    Inventors: Ross Halgren, Brian Robert Brown
  • Publication number: 20040037559
    Abstract: An optical switch comprises a hub and a plurality of nodes with the hub being connected to each node by an optical communication link dedicated for clock signals and by an optical communication link dedicated or data signals. In use the hub transmits a clock signal to all of the nodes; each node re-transmits a copy of the clock signal to the hub and transmits a data signal to the hub. The hub returns each re-transmitted clock signal to its respective node and forwards a copy of each data signal to all of the nodes so that each node can receive a selected data signal by processing the re-transmitted clock signal.
    Type: Application
    Filed: June 24, 2003
    Publication date: February 26, 2004
    Inventor: Paul Gunning
  • Patent number: 6690891
    Abstract: A method for synchronizing optical signals conducted via different optical waveguides to an optical network node, wherein the variations in propagation time of the optical signals are compensated by adjustable optical delay circuits of a synchronizing device. To set a new delay for one of the optical waveguides, one of the adjustable delay circuits, already switched into the passive state, is set at the desired delay. This delay circuit is then switched into the active state by means of a high-speed optical switch, and the previously active delay circuit is switched into a passive state.
    Type: Grant
    Filed: October 4, 2000
    Date of Patent: February 10, 2004
    Assignee: Alcatel
    Inventors: Nicolas Le Sauze, Dominique Chiaroni, An Ge, Amaury Jourdan
  • Patent number: 6690889
    Abstract: The present invention is a device to increase the bit rate and distance at which data can be transmitted by optical fiber. The device compensates the polarization dispersion of the line by processing a received optical signal with the use of a polarization controller, the generation of a differential group delay between two orthogonal polarization modes and a control unit for the polarization controller. The data that is sent is redundant to enable detection of errors affecting the data received and the control unit is adapted to minimize the error rate calculated in real time by using the redundant data. The application of the device is to long-haul optical transmission, in particular over stranded fibers.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: February 10, 2004
    Assignee: Alcatel
    Inventors: Bertrand Desthieux, François-Xavier Ollivier, Denis Penninckx
  • Publication number: 20040018020
    Abstract: An all-optical 3R regenerator (AO3R) and a method for using the AO3R to retime, reshape and retransmit an optical signal are described herein. The AO3R includes a polarizer that receives an input optical signal which is of unknown, potentially varying phase and outputs a stable polarized input optical signal. The AO3R also includes a first interferometer (e.g., interferometric converter module) that retimes and reshapes the polarized input optical signal and transmits the retimed and reshaped polarized input optical signal as a polarized output optical signal. The first interferometer is able to retime the polarized input optical signal with the aid of a laser and a clock recovery mechanism.
    Type: Application
    Filed: July 29, 2002
    Publication date: January 29, 2004
    Applicant: Alcatel Optronics USA, Inc.
    Inventor: Brian A. Chaput
  • Patent number: 6665498
    Abstract: A high-speed optical data link includes a system circuit board, a first ASIC coupled to convey electrical information to and from up level data management circuits, and a second ASIC electrically coupled to the first ASIC. A fiber optic module mounted on the system circuit board including a receiver, a transmitter and the second ASIC. The receiver includes a photo-diode positioned to receive optical signals, a trans-impedance amplifier electrically coupled to the photo diode, and a post-amplifier electrically coupled to the trans-impedance amplifier and to the second ASIC. The transmitter includes a laser positioned to convey optical signals to a remote optical receiver and a laser driver electrically coupled to the laser and to the second ASIC.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: December 16, 2003
    Inventors: Wenbin Jiang, Hsing-Chung Lee, Michael J. Hartmann
  • Patent number: 6665499
    Abstract: Parallel synchronous pattern signals are transmitted from other side in a plurality of parallel data channels. A skew data reception unit converts the received parallel pattern signals into electric signals in the respective parallel data channels. A skew detection circuit serves to detect the length of a skew between the parallel data channels. A skew correction circuit serves to correct and eliminate the skew in parallel data signals, transmitted from the other side, between the parallel data channels based on the detected skew. The data signals without skews are output from the skew data reception unit.
    Type: Grant
    Filed: November 19, 2001
    Date of Patent: December 16, 2003
    Assignee: Fujitsu Limited
    Inventor: Takayuki Watanabe
  • Publication number: 20030215244
    Abstract: In a first J/B 11 and a second J/B 12 in a vehicle, first photoelectric conversion sections 21 to 23 are disposed corresponding to respective electric apparatuses, a fourth photoelectric conversion section 24 is disposed to be connected to an optical transmission line, and first switch circuits 31 to 34 are disposed corresponding to the first photoelectric conversion sections 21 to 24, respectively. In these first J/B 11 and second 12, for example, if a break occurs in the optical transmission line which connects the first photoelectric conversion section 21 to the electric apparatus, a system is rebuilt, in which the first switch circuit 31 is closed to relay an electric signal by bypassing the first photoelectric conversion section 21.
    Type: Application
    Filed: May 15, 2003
    Publication date: November 20, 2003
    Applicant: YAZAKI CORPORATION
    Inventors: Akira Norizuki, Yoshikazu Saito