Dispersion Patents (Class 398/29)
  • Patent number: 8488961
    Abstract: A dispersion determining apparatus comprises a received waveform monitoring part (1) and a dispersion amount determining part (4). The received waveform monitoring part (1) has a waveform monitoring circuit (2) that samples data from the received waveform of a received signal having propagated along a transmission path, and a histogram extracting circuit (3) that extracts, based on the sampled data obtained by the waveform monitoring circuit (2), a histogram data representative of the intensity distribution in the voltage direction of the received waveform. The dispersion amount determining part (4) has a polarized wave dispersion estimating circuit (7) that determines the horizontally asymmetric degree of a received eye-pattern waveform of the received waveform obtained by analyzing the histogram data extracted by the received waveform monitoring part (1) and then estimates, based on the determined asymmetric degree, a polarized wave dispersion amount in the transmission path.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: July 16, 2013
    Assignee: NEC Corporation
    Inventor: Nobuhide Yoshida
  • Patent number: 8488959
    Abstract: In accordance with one embodiment of the present disclosure, a system for optical signal dispersion and parameter monitoring comprises a tunable filter configured to filter a portion of one channel of an optical signal. The system comprises a polarization beam splitter configured to split the portion into first and second polarization beams and further comprises first and second photodetectors configured to respectively convert the first and second polarization beams into first and second electrical signals. Also, the system comprises a control unit configured to determine optical dispersion in the portion based on the first and second electrical signals when the portion includes a test signal. The control unit is configured to determine optical signal parameters of the portion such as channel power, channel wavelength, optical spectrum analysis (OSA) and optical signal-to-noise ratio (OSNR) based on the first and second electrical signals when the portion does not include the test signal.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: July 16, 2013
    Assignee: Fujitsu Limited
    Inventor: Alexander Umnov
  • Publication number: 20130170831
    Abstract: A system receives a phase-modulated signal that carries client symbols and a sequence that includes first symbols on which a first tone is to be based and having a first power level, and second symbols on which a second tone is to be based and having a second power level; processes the sequence to generate the first tone and the second tone; determines a power difference based on the first power level and the second power level; retrieves condition information that identifies a threshold for determining whether a condition is associated with the signal; determines whether the power difference is greater than the threshold; and outputs an instruction, to adjust a parameter, used to transmit the signal, based on the determination that the condition is associated with the signal, where adjusting the parameter causes the power difference to decrease to a level that is less than the threshold.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: INFINERA CORPORATION
    Inventor: Jeffrey T. RAHN
  • Publication number: 20130156421
    Abstract: The invention relates to a system and method of dispersion measurement in an optical fibre network. The invention provides means for transmitting from a transmitting node, using a single tunable laser transmitter, two consecutive bursts of data at different wavelengths ?1 and ?2 to a receiver node, wherein each burst of data comprises a unique sequence of amplitude modulated data, and wherein the two sequences are injected with a fixed known delay. The delay between the two consecutive bursts of data is maintained by selective switching of the tunable laser, such that clock recovery circuitry at the receiver node remains locked during the delay between the two bursts. The dispersion measurements method of the present invention is based on walk off and bit position detection between two wavelengths suitable for fast optical burst switching network is described. This method does not require an operator, extra equipment, or traffic interruption on the network.
    Type: Application
    Filed: July 19, 2011
    Publication date: June 20, 2013
    Applicant: INTUNE NETWORKS LIMITED
    Inventors: Emilio Bravi, Giuseppe Tali, David McDonald, Michael Todd, David Bernard
  • Patent number: 8467690
    Abstract: Methods and systems are provided for cancellation of chromatic dispersion combined laser phase noise. A method may include measuring a differential of laser phase noise using two optical pilot signals, the pilot signals each having a different optical frequency, or using an optical carrier and a pilot signal. The method may also include determining an approximate laser phase noise present in an optical system based on the measured differential of laser phase noise. The method may further include compensating for laser phase noise based on the determined approximate laser phase noise.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: June 18, 2013
    Assignee: Fujitsu Limited
    Inventors: Inwoong Kim, Takao Naito, Olga I. Vassilieva
  • Patent number: 8463122
    Abstract: A method and apparatus for performing a path based quality check for a specified bit rate in a wavelength division multiplexing optical network is described. According to one embodiment of the invention, a method selects from a database one of the available paths as a currently selected path. The database stores a representation of the available paths from an access node of the optical network to other access nodes of the optical network. The method further determines a cumulative noise, cumulative chromatic dispersion, and a maximum allowable chromatic dispersion for the currently selected path. In addition, the method determines whether the currently selected path passes the path based quality check based on whether the cumulative noise is less than the maximum allowable noise at a specific bit rate and whether the chromatic dispersion is less than the maximum allowable chromatic dispersion at the specified bit rate.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: June 11, 2013
    Assignee: Dynamic Method Enterprise Limited
    Inventors: Santosh Kumar Sadananda, Christopher M. Look, Jeffery J. Maki
  • Patent number: 8452174
    Abstract: A system includes an optical transmitter configured to generate an optical signal that includes a scrambled polarization state; and output the optical signal via an optical fiber associated with a network path that is transporting network traffic. The system also includes an optical receiver configured to receive the optical signal; measure a polarization associated with the optical signal; determine, based on the polarization, a degree of polarization associated with the test signal; identify a differential group delay associated with the test signal based on the degree of polarization; output a notification that the optical fiber is available to carry high capacity traffic when the differential group delay is less than a threshold, where the high capacity traffic includes a data rate that his greater than another threshold; and output a notification that the optical fiber is not available to carry the high capacity traffic when the differential group delay is not less than the threshold.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: May 28, 2013
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8447190
    Abstract: A distortion compensating apparatus which compensates for distortion in a waveform of a received light signal through a digital signal processing includes a plurality of fixed amount compensators which compensate for the distortion in the waveform at respective given compensating amounts. The combination of operating states of the plurality of fixed amount compensators is changed by on/off switching of each of the plurality of fixed amount compensators, and the plurality of fixed amount compensators are cascaded.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: May 21, 2013
    Assignee: Fujitsu Limited
    Inventors: Takahito Tanimura, Takeshi Hoshida, Hisao Nakashima, Kazunari Shiota, Kiichi Sugitani
  • Patent number: 8422882
    Abstract: Techniques, devices and applications are provided for monitoring a polarization mode dispersion (PMD) effect in an optical signal.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: April 16, 2013
    Assignee: General Photonics Corporation
    Inventor: Xiaotian Steve Yao
  • Patent number: 8412045
    Abstract: A propagation apparatus includes a plurality of dispersion compensation execution units which accept a signal of a single wavelength from a wavelength-multiplexed signal which is received and execute dispersion compensation on the signal by inputting the accepted signal to a tunable dispersion compensator with an adjusted dispersion value, and a dispersion value calculation unit which acquires each dispersion value adjusted by the plurality of the dispersion compensation execution units, approximates the dispersion value of the wavelength assigned to a newly built line by using the acquired dispersion values whose signal error rates are in a tolerable range, and sets the approximated dispersion value as an initial value in the tunable dispersion compensator of the newly built line.
    Type: Grant
    Filed: December 6, 2009
    Date of Patent: April 2, 2013
    Assignee: Fujitsu Limited
    Inventors: Yuki Murakami, Katsumi Sugawa, Toshiyuki Hisano, Akihiro Horiuchi
  • Publication number: 20130077963
    Abstract: A method for nonlinearity compensation for an optical transmission link includes determining a dispersion effect of a transmission link; applying a phase conjugation to the transmission link, the phase conjugation responsive to an input wave over the transmission link and providing a conjugated version of the input wave; and configuring an optimum equivalent link responsive to the phase conjugation after the transmission link to compensate for a non-linear dispersion effect from said transmission link
    Type: Application
    Filed: September 27, 2012
    Publication date: March 28, 2013
    Applicant: NEC LABORATORIES AMERICA, INC.
    Inventor: NEC LABORATORIES AMERICA, INC.
  • Patent number: 8395762
    Abstract: Highly accurate measurement of chromatic dispersions of a device under test that is an optical component is enabled with a simple structure comprising: propagating pump light having a wavelength ?pump and probe light having a wavelength ?probe through the device; calculating the generation efficiency of the idler light with respect to the wavelength ?pump by measuring the power of idler light having a wavelength ?idler output from the device according to four-wave mixing generated in the device; seeking the frequency difference or wavelength difference between the pump light and the probe light that makes an extremum of generation efficiency of the idler light; calculating phase mismatch among the pump light wavelength having such frequency difference or wavelength difference, the probe light wavelength, and the idler light wavelength; and on the basis of such calculation results, calculating the chromatic dispersion of the device at the wavelength ?pump.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: March 12, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaaki Hirano, Toshiki Taru
  • Publication number: 20130058644
    Abstract: A device and method are disclosed for blind equalization of an optical signal to implement adaptive polarization recovery, Polarization Mode Dispersion (PMD) compensation, and residual Chromatic Dispersion (CD) compensation in a digital coherent optical communication system.
    Type: Application
    Filed: October 19, 2012
    Publication date: March 7, 2013
    Applicant: AT&T INTELLECTUAL PROPERTY I, L.P.
    Inventor: AT&T Intellectual Property l, L.P.
  • Publication number: 20130034352
    Abstract: The present disclosure relates to the field of communications, and in particular, to a coherent receiver apparatus and a chromatic dispersion compensation method. The apparatus includes a polarization beam splitter and a chromatic dispersion compensation module. An optical splitter is disposed in front of the polarization beam splitter, and a chromatic dispersion monitoring module is connected between the optical splitter and the chromatic dispersion compensation module. The optical splitter is configured to split a modulated optical signal received by the coherent receiver apparatus and then transmit the split modulated optical signal to the chromatic dispersion monitoring module and the polarization beam splitter.
    Type: Application
    Filed: August 2, 2012
    Publication date: February 7, 2013
    Applicant: Huawei Technologies Co. Ltd.
    Inventor: Ning Liu
  • Patent number: 8364033
    Abstract: Changes in a signal are detected. The signal is repeatedly sampled in a synchronous manner during a predetermined interval to generate a captured eye diagram. At least one of a positive differential eye diagram or a negative differential eye diagram is generated from the captured eye diagram and a baseline eye diagram. The at least one positive or negative differential eye diagram is analyzed to determine whether a change in signal conditions is present.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: January 29, 2013
    Assignee: Telcordia Technologies, Inc.
    Inventors: Ronald A. Skoog, Marcus Pang, Paul Toliver
  • Patent number: 8351783
    Abstract: The chromatic dispersion of an optical component is measured with high accuracy using a simple set-up, which includes a pump light source, a probe light source, and a measuring means. Pump light having a wavelength ?pump and probe light having a wavelength ?probe is propagated through an optical component, with the wavelength ?probe being apart from the wavelength ?pump by a given frequency. The generation efficiency of the idler light with respect to the wavelength ?pump is calculated by measuring the power of idler light having a wavelength ?idler output from the optical component, and by seeking the pump light wavelength for making the generation efficiency a local extreme value, the chromatic dispersion of the optical component is calculated from the result of calculation of phase mismatch among the pump light wavelength having such wavelength as sought, the corresponding probe light wavelength, and the corresponding the idler light wavelength.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 8, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaaki Hirano, Toshiki Taru
  • Patent number: 8340515
    Abstract: A method is provided for dispersion compensation of an optical signal communicated in an optical network. The method may include receiving an optical signal comprising a plurality of channels. The method may further include filtering at least one channel from the plurality of channels. The method may also include analyzing the at least one channel of the plurality of channels to measure optical dispersion in the at least one channel. The method may additionally include compensating for optical dispersion based on the measured dispersion.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: December 25, 2012
    Assignee: Fujitsu Limited
    Inventors: Alexander Umnov, Takao Naito, Niranjan Hanumanna
  • Publication number: 20120321298
    Abstract: In one exemplary embodiment, a method comprises transmitting an optical signal via the optical line, measuring a relative change in spectral intensity of the optical signal near a clock frequency (or half of that frequency) while varying a polarization of the optical signal between a first state of polarization and a second state of polarization, and using the relative change in spectral intensity of the optical signal to determine and correct the DGD of the optical line. Another method comprises splitting an optical signal traveling through the optical line into a first and second portions having a first and second principal states of polarization of the optical line, converting the first and second portions into a first and second electrical signals, delaying the second electrical signal to create a delayed electrical signal that compensates for a DGD of the optical line, and combining the delayed electrical signal with the first electrical signal to produce a fixed output electrical signal.
    Type: Application
    Filed: August 29, 2012
    Publication date: December 20, 2012
    Applicant: Kailight Photonics, Inc.
    Inventors: Er'el Granot, Shalva Ben-Ezra, Gil Blecher, Shai Tzadok, Reuven Zaibel, Roni Dadon, Motti Caspi, Haim Chayet, Yehuda Ganz, Arieh Sher
  • Patent number: 8311417
    Abstract: Various example embodiments are disclosed. According to one example embodiment, a phase error is estimated in a series of digital symbols of a phase-modulated signal, where the signal is subject to a non-linear phase shift error due to transmission of the signal through an optical fiber. A phase correction of an instant digital symbol that succeeds the series of digital symbols is estimated, where the estimated phase correction is based on the estimated phase errors in the series of digital symbols. The estimated phase correction of the instant digital symbol is limited to a maximum absolute value, and the estimated phase correction is applied to the instant digital symbol of the signal.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: November 13, 2012
    Assignee: Cisco Technology, Inc.
    Inventors: Pierluigi Poggiolini, Andrea Carena, Vittorio Curri, Fabrizio Forghieri
  • Publication number: 20120281981
    Abstract: A method of monitoring chromatic dispersion when transmitting an optical signal includes: applying, to an optical signal in which the symbol rate is f, a dip in optical intensity for every n symbols by means of pseudo-RZ modulation where n is an integer equal to or greater than 2, and transmitting the optical signal to which dips have been applied to a transmission path; receiving the optical signal that is transmitted in by the transmission path and detecting the intensity of a frequency component of k*f/n from the received signal where k is an integer equal to or greater than 1; and based on the detected intensity, generating a monitor signal that represents the chromatic dispersion amount.
    Type: Application
    Filed: January 5, 2011
    Publication date: November 8, 2012
    Applicant: NEC CORPORATION
    Inventors: Emmanuel Le Taillandier De Gabory, Manabu Arikawa, Kiyoshi Fukuchi
  • Patent number: 8306418
    Abstract: A distortion compensation system and method may be used to compensate for data pattern dependent signal distortion in a signal received in a coherent optical signal receiver. In general, the distortion compensation system and method compares a received signal field with stored distorted signal waveforms associated with known data patterns and selects a compensation value associated with the distorted signal waveform that corresponds most closely with the received signal field. The distortion compensation system and method compensates the received signal using the selected compensation value and thus mitigates the effects of data pattern dependent signal distortion.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: November 6, 2012
    Assignee: Tyco Electronics Subsea Communications LLC
    Inventor: Yi Cai
  • Patent number: 8295709
    Abstract: A dispersion compensation device includes a variable dispersion compensator configured to subject an input optical signal to dispersion compensation, an optical receiver configured to convert an optical signal subjected to dispersion compensation into an electrical signal, recover a clock signal and a received data signal from the electrical signal, and output clock lock information indicating whether the clock signal is locked to the electrical signal, a signal processor configured to output bit error rate information on the received data signal, and a controller configured to variably control a dispersion compensation value of the variable dispersion compensator based on the bit error rate information and the clock lock information.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: October 23, 2012
    Assignees: Fujitsu Telecom Networks Limited, Fujitsu Limited
    Inventors: Kazuhiro Kunimatsu, Tsukasa Takahashi
  • Patent number: 8290362
    Abstract: A system and method is disclosed that allows for the monitoring, analyzing and reporting on performance, availability and quality of optical network paths. The correlation of PM parameter metrics to client connections, coupled with threshold-based alarm generation provides a proactive and predictive management, reporting and analyzing of the health and effectiveness of individual path connections to alert Operational Support (OS) staff and/or customers to signal degradation and impending Network Element (NE) failures. The system and method performs in real-time processing intervals required for alarm surveillance in a telecommunications network.
    Type: Grant
    Filed: March 4, 2008
    Date of Patent: October 16, 2012
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: David Mayo, Meei-Ling Chen
  • Patent number: 8290365
    Abstract: An optical communication apparatus that includes multiple optically communicative components positioned optically in series. Some of the optically communicative components may be optical fiber segments of perhaps different types. The optical channel represented by the series of optically communicative components and approximates a transfer function of an optical channel of a longer optical fiber. Accordingly, rather than deal with a lengthy optical fiber, an apparatus having a shorter optical channel may be used instead. The construction of the optical communicative components may be calculating an input transfer function. The construction would include an ordering of discrete optically communicative components that, when placed optically in series, simulates an estimation of a particular transfer function. Testing may then occur by actually passing an optical signal through the series construction of optically communicative components, rather than through the longer optical fiber.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: October 16, 2012
    Assignee: Finisar Corporation
    Inventors: Gayle L. Noble, Lucy G. Hosking, Luke M. Ekkizogloy
  • Patent number: 8275259
    Abstract: A method for determining a value of chromatic dispersion compensation in an optical network including a plurality of nodes connected by at least one transmission line, the plurality of nodes including a plurality of dispersion compensators, the optical network including a plurality of wavelength paths between the optional nodes, the method includes determining a compensation value of the dispersion compensators in the optical network by the computer, the compensation value selecting that an error between the object value of the residual chromatic dispersion in accordance with of the first end node of the first path and the permissible value of the residual chromatic dispersion of the first end node of the first path is least, and the value of the residual chromatic dispersion of the first end is in the permissible value of the residual chromatic dispersion of the second end node of the second path.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: September 25, 2012
    Assignee: Fujitsu Limited
    Inventors: Toru Katagiri, Tomohiro Hashiguchi, Yutaka Takita, Kazuyuki Tajima
  • Publication number: 20120237214
    Abstract: A dispersion compensation design system includes a segment dividing unit to divide an optical network into segments of a linear network or a ring network, a path classifying unit to classify one of paths of the optical network, as a specific type path, the one of the paths being incapable of transmitting an optical signal and contained in a longer path having a route longer than that of the one of the paths and capable of transmitting the optical signal, a segment reconfiguration unit to reconfigure the segments so as to maximize a number of the specific type paths, a dispersion compensation amount computing unit to compute a dispersion compensation amount in any of spans of the optical network so as to minimize the number of the specific type paths within the reconfigured segment, and an update unit to update the dispersion compensation amount with the computed dispersion compensation amount.
    Type: Application
    Filed: February 1, 2012
    Publication date: September 20, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Yutaka TAKITA, Tomohiro HASHIGUCHI, Kazuyuki TAJIMA
  • Patent number: 8270829
    Abstract: In a network design apparatus, a full channel evaluator determines whether all wavelength channels for main signals can deliver the main signals of an existing optical network. When it is found that one or more wavelength channels cannot deliver main signals, a chromatic dispersion evaluator determines whether there are a specified number of wavelength channels that satisfy a specified chromatic dispersion condition. An optical signal-to-noise ratio (SNR) evaluator extracts a specified number of wavelength channels out of those satisfying the chromatic dispersion condition in descending order of optical SNRs thereof, and determines whether the extracted wavelength channels satisfy a specified optical SNR condition.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: September 18, 2012
    Assignee: Fujitsu Limited
    Inventors: Tomohiro Hashiguchi, Toru Katagiri, Kazuyuki Tajima, Yutaka Takita
  • Publication number: 20120230680
    Abstract: There is provided a method of determining transmission quality of a path in an optical communication network system obtained by connecting a plurality of networks, the method including: acquiring a value representing transmission performance corresponding to a network condition of each of spans in the path in the optical communication network system; and determining the transmission quality of the path on the basis of the acquired value representing transmission performance corresponding to the network condition of each of spans.
    Type: Application
    Filed: February 15, 2012
    Publication date: September 13, 2012
    Applicant: FUJITSU LIMITED
    Inventors: Takehiro Fujita, Shigeru Ishii, Takuya Miyashita
  • Patent number: 8254788
    Abstract: A method may include generating a signal at an initiating device. A channel in an optical path may be identified, with the optical path including at least two spans. Simulated polarization mode dispersion (PMD) is injected into the signal to generate a test signal. The test signal is transmitted on the channel and received at a destination device. PMD effects in the test signal are compensated, and a measurement of PMD for the test signal is determined based on the compensation, the PMD for the test signal including PMD for the channel and the injected PMD. A measurement of the PMD for the channel is determined based on the PMD for the test signal and the injected PMD.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: August 28, 2012
    Assignee: Verizon Patent and Licensing, Inc.
    Inventors: David Zhi Chen, Mark Anthony Ali
  • Publication number: 20120213512
    Abstract: A chromatic dispersion estimator for estimating a chromatic dispersion in an input signal block comprises a transformer for transforming the input signal block into a transformed signal block in frequency domain, a chromatic dispersion compensator for compensating a certain chromatic dispersion in the transformed signal block to obtain a compensated transformed signal block, an inverse transformer for inversely transforming the compensated transformed signal block into time domain to obtain an output signal, an adaptive filter for filtering the output signal to obtain a filtered signal, and a determiner for determining upon the basis of the filtered signal whether the certain chromatic dispersion corresponds to the chromatic dispersion in the input signal block.
    Type: Application
    Filed: March 28, 2012
    Publication date: August 23, 2012
    Applicant: Huawei Technologies CO., Ltd.
    Inventor: Nebojsa Stojanovic
  • Patent number: 8244127
    Abstract: A method and apparatus for implementing optical network quality using bit error rate and chromatic dispersion. According to one embodiment of the invention, a method includes the provision of quality of service in a wavelength division multiplexing optical network that supports a plurality of bit rates. As part of this method, the cumulative noise and cumulative chromatic dispersion for each available path as a whole is determined, where an available path is a series of two or more nodes each connected by an optical link on which a set of wavelengths is available for establishing a lightpath. In addition, different grades of path quality are distinguished based on bit error rate (BER), where BER is based on cumulative noise and bit rate. Furthermore, a minimum path quality is required based on chromatic dispersion decibel penalty, where chromatic dispersion decibel penalty is based on cumulative chromatic dispersion and bit rate.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: August 14, 2012
    Assignee: Dynamic Method Enterprises Limited
    Inventors: Santosh Kumar Sadananda, Christopher M. Look, Jeffery J. Maki
  • Patent number: 8229298
    Abstract: The present invention discloses a method for detecting dispersion, overcoming disadvantages of complex configuration and insensitivity to a tiny dispersion of the method and device for detecting dispersion in the prior art. The inventive method includes: obtaining a signal within a predetermined bandwidth range from an optical signal received; obtaining an operated value of power via an operation on the signal within the predetermined bandwidth range; and obtaining amount of system dispersion according to a corresponding relation between the operated value of power and the amount of system dispersion. A device for detecting dispersion is disclosed, including a photoelectric filter operational unit and a processing unit, where an output of the photoelectric filter operational unit is connected to an input of the processing unit. The device for detecting dispersion of the present invention is applicable to an adaptive dispersion compensation system. An optical signal transmission system is further disclosed.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: July 24, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yue Liu, Lijun Li, Zhihui Tao, Wei Fu
  • Patent number: 8229299
    Abstract: The present invention discloses a method for detecting dispersion, overcoming disadvantages of complex configuration and insensitivity to a tiny dispersion of the method and device for detecting dispersion in the prior art. The inventive method includes: obtaining a signal within a predetermined bandwidth range from an optical signal received; obtaining an operated value of power via an operation on the signal within the predetermined bandwidth range; and obtaining amount of system dispersion according to a corresponding relation between the operated value of power and the amount of system dispersion. A device for detecting dispersion is disclosed, including a photoelectric filter operational unit and a processing unit, where an output of the photoelectric filter operational unit is connected to an input of the processing unit. The device for detecting dispersion of the present invention is applicable to an adaptive dispersion compensation system. An optical signal transmission system is further disclosed.
    Type: Grant
    Filed: October 5, 2011
    Date of Patent: July 24, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Yue Liu, Lijun Li, Zhihui Tao, Wei Fu
  • Publication number: 20120163807
    Abstract: To produce a representation of the physical degradation in an optical communication network comprising transparent switching nodes (1, 2, 3, 4) mutually connected by optical links (11, 12, 21, 22, 31, 32, 41, 42), the method involves: Associating a pair of counter-directional optical links as a bi-directional link (10, 20, 30, 40), Providing at least one respective physical degradation parameter for each of said counter-directional optical links of said pair, Determining at least one physical degradation parameter characteristic of said bi-directional link from said physical degradation parameters of the counter-directional optical links of said pair, Storing a descriptor of the bi-directional link comprising said at least one physical degradation parameter characteristic of said bi-directional link.
    Type: Application
    Filed: August 12, 2010
    Publication date: June 28, 2012
    Inventors: Annalisa Morea, Florence Leplingard
  • Publication number: 20120148235
    Abstract: A communication system includes a transmitter, a receiver device, and a control circuit. The transmitter transmits an optical signal. The receiver device receives the optical signal. The control circuit reduces a power consumption of the receiver device based on an accumulated chromatic dispersion of the received optical signal. The receiver device includes a receiver, an analog/digital converter, and a digital signal processor. The receiver extracts a signal indicating a complex amplitude of the optical signal. The analog/digital converter converts the signal indicating the complex amplitude into a digital signal. The digital signal processor digitally-processes the digital signal.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 14, 2012
    Applicant: Fujitsu Limited
    Inventors: Masato Nishihara, Tomoo Takahara, Toshiki Tanaka
  • Patent number: 8195046
    Abstract: A method may include generating first and second optical signals and modulating the first and second optical signals simultaneously to synchronize the signals. The method may include varying the polarization of the second optical signal and transmitting the first and second optical signals. The method may include receiving the first and second optical signals, wherein the signals traveled along a same optical path. The method may include determining a plurality of differential travel delays between the first and second optical signals over a period of varying polarizations and determining a differential group delay based on the maximum and the minimum differential travel delays.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: June 5, 2012
    Assignee: Verizon Patent and Licensing, Inc.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8190031
    Abstract: In an optical network design apparatus, a constraint setter sets a first constraint that one of alternative values given beforehand is selected as the dispersion compensation amount of each node, sets a first margin value that assumes a nonnegative value, sets a second constraint that the first margin value is equal to or greater than the difference between the residual dispersion and the lower bound of an allowable range, sets a second margin value that assumes a nonnegative value, and sets a third constraint that the second margin value is equal to or greater than the difference between the upper bound of the allowable range and the residual dispersion. A calculation controller generates an objective function including the first, second and third constraints and including a summation of the first and second margin values for all paths, and derives a solution that minimizes the objective function.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: May 29, 2012
    Assignee: Fujitsu Limited
    Inventors: Kazuyuki Tajima, Toru Katagiri, Tomohiro Hashiguchi, Yutaka Takita
  • Publication number: 20120121254
    Abstract: A polarization mode dispersion compensator that includes two stages, one for reducing or eliminating first order polarization mode dispersion of an optical signal, and second stage for reducing or eliminating higher order polarization mode dispersion of the optical signal. In each stage, the polarization is adjusted so as to reduce polarization mode dispersion. Based on the power levels of various polarization states generated at the second polarization controller, the optical signal to noise ratio may be estimated. Furthermore, based on the amount of adjustment used to control the polarization controllers and the differential group delay, the polarization mode dispersion may be estimated.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 17, 2012
    Applicant: Xtera Communications
    Inventors: John G. Ellison, Stephen Michael Webb, David Winterburn, Stephen Desbruslais
  • Patent number: 8175455
    Abstract: The present invention is intended to provide an optical transmission system which is applicable not only to a known signal but also to an unknown signal, and has a high reliability at a low cost. A branching device branches an optical transmission output of a transmitter, and transmits the branched signals through different optical transmission channels. A polarization mode dispersion monitor monitors the degree of polarization mode dispersion from the optical transmission channels at the receiving end. A switch control circuit and a switch select a signal which is less affected by a deterioration in quality due to polarization mode dispersion, and outputs the selected signal to receiver 8. In this way, the probability of a deterioration in the quality of a signal due to polarization mode dispersion can be reduced for a transmission signal.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: May 8, 2012
    Assignee: NEC Corporation
    Inventors: Hitoshi Takeshita, Toshiharu Ito
  • Publication number: 20120087654
    Abstract: In a polarization demultiplexing optical communication system (1000), an optical transmitter (100) provides a predetermined frequency deviation between carrier wave frequencies of optical signal to be transmitted, and provides a periodic fluctuation having a predetermined frequency to the light intensity of the optical signal to be transmitted. An optical receiver (300) extracts intensity information of a frequency component of the periodic fluctuation from the received optical signal, and calculates a wavelength dispersion value of the optical transmission line on the basis of the extracted intensity information. For this reason, it is possible to measure the wavelength dispersion value of the optical transmission line while operating the optical communication system.
    Type: Application
    Filed: March 26, 2010
    Publication date: April 12, 2012
    Applicant: NEC CORPORATION
    Inventor: Daisaku Ogasahara
  • Publication number: 20120076493
    Abstract: Embodiments of the present invention provide a method and an apparatus for compensating polarization mode dispersion. The method mainly includes: extracting an SOP (state of polarization) and a PMD (polarization mode dispersion) value of an optical signal, generating an SOP control signal according to the SOP, and adjusting the SOP of the optical signal through the SOP control signal; and generating a PMD control signal according to the PMD value, and through the PMD control signal, compensating a PMD of the optical signal whose SOP is adjusted. Through the embodiments of the present invention, a rapid change of the SOP can be adaptively tracked, a poor PMD compensation effect caused by a failure of a PMD compensation unit to track a change of the SOP is avoided, compensation performance of the PMD compensation unit is improved, and rapid PMD compensation may be achieved.
    Type: Application
    Filed: December 2, 2011
    Publication date: March 29, 2012
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventor: Guangyong ZHANG
  • Patent number: 8135275
    Abstract: Two intensity modulated test signals are generated with precise frequency offset from a single laser source, and multiplexed into a combined test signal. The two modulated signals are demultiplexed at a receiver using a fixed periodic optical filter with complementary output ports. Group velocity dispersion/chromatic dispersion is measured over a large dynamic range, using pseudo-random intensity modulation and digital demodulation techniques.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: March 13, 2012
    Inventors: Fred L. Heismann, Brandon C. Collings
  • Patent number: 8121481
    Abstract: A residual chromatic dispersion target value at a terminal node is set for each wavelength path, and also, candidates of a dispersion compensation amount settable in each chromatic dispersion compensation module on an optical network are set, and further, computation processing is executed for selecting the dispersion compensation amount in each chromatic dispersion compensation module from the candidates so that the sum of errors between the residual chromatic dispersion amounts and the set residual chromatic dispersion target values at the terminal nodes for all of wavelength paths becomes minimum. As a result, for each wavelength path on the optical network, the dispersion compensation amount in each chromatic dispersion compensation module can be designed in optimum so as to satisfy the desired optical signal quality at the terminal node, while considering the residual chromatic dispersion during the transmission.
    Type: Grant
    Filed: March 1, 2009
    Date of Patent: February 21, 2012
    Assignee: Fujitsu Limited
    Inventors: Toru Katagiri, Tomohiro Hashiguchi, Yutaka Takita, Kazuyuki Tajima, Motoyoshi Sekiya, Takashi Toyomaki
  • Patent number: 8111988
    Abstract: A method for monitoring wavelength-division multiplexed (WDM) signal for detecting signal drift of objective signals, including generation of one or more objective signals and a guard signal. The guard signal has a wavelength that is within a range defined by a guard channel. The first and second objective signals and the guard signal are wavelength-division multiplexed to generate a wavelength-division multiplexed signal. The first objective signal, the second objective signal, and the guard signal are assigned to a first multiplexed objective channel, a second multiplexed objective channel, and a multiplexed guard channel, respectively. The wavelength-division multiplexed signal is received by a monitor and then the error rate of the multiplexed guard channel is determined.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: February 7, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Howard J. Schantz, Brian L. Uhlhorn
  • Publication number: 20120027406
    Abstract: The present invention discloses a method for detecting dispersion, overcoming disadvantages of complex configuration and insensitivity to a tiny dispersion of the method and device for detecting dispersion in the prior art. The inventive method includes: obtaining a signal within a predetermined bandwidth range from an optical signal received; obtaining an operated value of power via an operation on the signal within the predetermined bandwidth range; and obtaining amount of system dispersion according to a corresponding relation between the operated value of power and the amount of system dispersion. A device for detecting dispersion is disclosed, including a photoelectric filter operational unit and a processing unit, where an output of the photoelectric filter operational unit is connected to an input of the processing unit. The device for detecting dispersion of the present invention is applicable to an adaptive dispersion compensation system. An optical signal transmission system is further disclosed.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 2, 2012
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Yue LIU, Lijun LI, Zhihui TAO, Wei FU
  • Patent number: 8095005
    Abstract: A link probe for multimode fibers in optical networks is provided. An optical test probe signal is sent over a multimode fiber of an optical network link and a receiver converts the optical signal into an electronic signal with a trigger generated by the clock recovery section of an EDC (electronic dispersion compensation) unit. The digital signal is processed by a modified IEEE algorithm to determine a TWDP (Transmitter and Waveform Dispersion Penalty) parameter which quantifies the transmission quality of the multimode fiber and link suitability to LRM transmission.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: January 10, 2012
    Assignee: Cisco Technology, Inc.
    Inventors: Carlo Tosetti, Giuseppe Pietro Ravasio, Damiano Rossetti
  • Publication number: 20110280570
    Abstract: A device may include a group delay monitor and a signal receiver. The group delay monitor may be configured to obtain group delay data corresponding to group delay of an optical signal and provide the group delay data to a signal receiver. The signal receiver configured to obtain a time-domain digital signal corresponding to the optical signal, convert the time-domain digital signal into a frequency-domain signal, apply a digital filter constructed based on the group delay data to the frequency-domain signal to obtain an output signal, and transmit the output signal.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 17, 2011
    Applicant: VERIZON PATENT AND LICENSING INC.
    Inventors: Tiejun J. Xia, Glenn A. Wellbrock
  • Patent number: 8045856
    Abstract: The present disclosure provides polarization mode dispersion compensation (PMDC) and polarization de-multiplexing systems and methods for polarization multiplexed (PolMux) optical transmission systems. The PMDC detects an error signal before a polarization splitter in PolMux systems for controlling polarization controllers (PC) and/or DGDs in the PMDC for return-to-zero (RZ) differential m-phase shift keying (DmPSK) signals. For bit-aligned PolMux systems, the error signal could be the level of clock frequency at one, two, or more times of the baud rate at one polarization. For bit-interleaved PolMux systems, the error signal could be the level of clock frequency at two times of the baud rate at one polarization. The PMDC can operate in PolMux systems with any arbitrary time offset between the two polarizations. The polarization de-multiplexer utilizes error detection at both output arms of a polarization splitter to mitigate PDL impact on any PolMux type of signal.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: October 25, 2011
    Assignee: Ciena Corporation
    Inventors: Yunfeng Shen, Shan Zhong, Harshad Sardesai
  • Publication number: 20110229128
    Abstract: An optical node disposed along a transmission line that uses optical fiber. The optical node includes a first signal generator and a monitor. The first signal generator generates a first measurement signal for measuring polarization mode dispersion values and transmits the first measurement signal along the transmission line. The monitor detects a second measurement signal from the transmission line and measures polarization mode dispersion values by performing signal processing with respect to the second measurement signal.
    Type: Application
    Filed: January 11, 2011
    Publication date: September 22, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Takeshi SAKAMOTO, Katsumi FUKUMITSU, Kosuke KOMAKI
  • Patent number: 8014668
    Abstract: A method and apparatus for distributed measurement of chromatic dispersion in an optical network is disclosed. The network comprises optical switching nodes interconnected by optical links. An optical link may comprise multiple spans, each span ending in a transport module which comprises signal-processing components. At least one optical switching node has a probing signal generator transmitting an optical probing signal along a selected path in the network. Probing-signal detectors placed at selected transport modules determine chromatic-dispersion values and send results to a processing unit which determines appropriate placement of compensators or appropriate adjustments of compensators placed along the path. A preferred probing signal has the form of wavelength modulated optical carrier which is further intensity modulated by a periodic, preferably sinusoidal, probing tone.
    Type: Grant
    Filed: January 20, 2008
    Date of Patent: September 6, 2011
    Assignee: Alcatel Lucent
    Inventors: Ping Wai Wan, Derrick Remedios, Patrick Chilufya Chimfwembe, Colin Geoffrey Kelly, James Benson Bacque