Dispersion Patents (Class 398/29)
  • Patent number: 8014669
    Abstract: A system generates optical pulses, that include two frequencies within one optical channel, at a first end of an optical link, and receives the optical pulses at a second end of the optical link. The system also sets a frequency difference for the two frequencies of the optical pulses, calculates a relative group delay difference for the two frequencies of the optical pulses, and calculates a residual chromatic dispersion of the channel based on the frequency difference and the calculated relative group delay difference.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: September 6, 2011
    Assignee: Verizon Patent and Licensing Inc.
    Inventors: Tiejun J. Xia, Glenn Wellbrock
  • Publication number: 20110206371
    Abstract: In an apparatus for supporting designing of an optical network including a plurality of nodes and links which connect the plurality of nodes: a storage stores information indicating distances of the links and information indicating amounts of chromatic dispersion in the links; and a path selection unit selects a path for use in transmission of an optical signal, from among a plurality of paths each extending from a start node to a destination node, by reference to the storage. The path selection unit selects the path for use in transmission on the basis of deviations of amounts of chromatic dispersion accumulated by transmission to respective nodes on each of the plurality of paths, from reference amounts at the respective nodes, and the reference amounts at the respective nodes on each of the plurality of paths are determined according to distances from the start node to the respective nodes.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 25, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Kazuyuki Tajima, Tomohiro Hashiguchi, Yutaka Takita
  • Patent number: 7995918
    Abstract: A method and apparatus for a monitoring technique for the rate of change of polarization state and of the polarization mode dispersion is proposed. This technique is used for performance monitoring and fault correlation as well as for the verification of commitments to customers with respect to the transmission system's tolerance to polarization mode dispersion.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: August 9, 2011
    Assignee: Alcatel Lucent
    Inventors: Lutz Raddatz, David Stahl
  • Publication number: 20110129215
    Abstract: Described is a method and system for reducing system penalty from polarization mode dispersion. The method includes receiving a plurality of signals at a receiving end of a transmission line, each signal being received on one of a plurality of channels of the transmission line and measuring a signal degradation of at least one of the channels of the transmission line. An amount of adjustment of a polarization controller is determined based on the signal degradation, the amount of adjustment being selected to reduce the polarization mode dispersion. The amount of adjustment is then transmitted to the polarization controller.
    Type: Application
    Filed: December 1, 2010
    Publication date: June 2, 2011
    Inventors: Mikhail BORODITSKY, Mikhail Brodsky, Nicholas J. Frigo, Peter Magill
  • Publication number: 20110123191
    Abstract: A dispersion compensation device includes: an optical branching unit to branch an optical signal to be received; a first dispersion compensator to perform dispersion compensation on one part of the optical signal branched by the optical branching unit with a variable compensation amount; a second dispersion compensator to perform dispersion compensation on another part of the optical signal branched by the optical branching unit; a monitoring unit to monitor the communication quality of an output optical signal of the second dispersion compensator; and a controlling unit to determine the direction of variation in chromatic dispersion of the optical signal based on the direction of variation in communication quality monitored by the monitoring unit and control the compensation amount of the first dispersion compensator based on the result of the determination.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 26, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Makoto MURAKAMI, Toshihiro Ohtani
  • Publication number: 20110103791
    Abstract: A method is provided for dispersion compensation of an optical signal communicated in an optical network. The method may include receiving an optical signal comprising a plurality of channels. The method may further include filtering at least one channel from the plurality of channels. The method may also include analyzing the at least one channel of the plurality of channels to measure optical dispersion in the at least one channel. The method may additionally include compensating for optical dispersion based on the measured dispersion.
    Type: Application
    Filed: November 3, 2009
    Publication date: May 5, 2011
    Applicant: Fujitsu Limited
    Inventors: Alexander Umnov, Takao Naito, Niranjan Hanumanna
  • Patent number: 7899324
    Abstract: Monitoring an optical signal comprises sampling the optical signal from two or more distinct tap points to retrieve a sample set. Multiple such sample sets are obtained over time. A joint probability distribution or phase portrait of the sample sets is assessed for indications of optical signal quality. The tap distinction can be polarization, for example to determine OSNR, or frequency. The tap distinction can be a time delay, which can enable diagnostic differentiation between multiple impairments, such as OSNR, dispersion, PMD, jitter, Q, and the like. Machine learning algorithms are particularly suitable for such diagnosis, particularly when provided a two dimensional histogram of sample density in the phase portrait.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: March 1, 2011
    Assignee: Nicta IPR Pty Limited
    Inventors: Trevor Anderson, Sarah Dods, Adam Kowalczyk, Justin Bedo, Kenneth Paul Clarke
  • Patent number: 7885541
    Abstract: According to one aspect of the invention, an optical network including multiple optical network devices, or nodes, is provided. At each node, an optical performance monitor analyzes dispersion while a dispersion compensation module reduces the amount of dispersion in the signals. Information about the dispersion and the amount of compensation performed by the dispersion compensation module is generated by the optical performance monitor and stored in a memory. If the bit error rate of a particular path between nodes becomes too high, a new path is used. A monitoring computer then accesses the information about the dispersion stored in at least one node of the old path. The information allows a user to determine where along the path the greatest amount of dispersion is occurring.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: February 8, 2011
    Assignee: Dynamic Method Enterprises Limited
    Inventor: Christopher M. Look
  • Patent number: 7881610
    Abstract: Described is a method of transmitting an optical signal in an optical transmission system. The method comprises: providing a length of an optical fiber having a zero chromatic dispersion wavelength, wherein the optical fiber belongs to an optical fiber group and wherein the optical fiber group comprises optical fibers having a zero chromatic dispersion wavelength comprised within a wavelength range; estimating a tolerated chromatic dispersion range; and transmitting the optical signal over the length of optical fiber at a first transmission wavelength.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: February 1, 2011
    Assignee: Alcatel
    Inventors: Giovanni Bellotti, Alessandro Iachelini
  • Publication number: 20110019995
    Abstract: There is provided an optical transmission receiver includes an optical switch configured to switch between optical transmission channels, the optical transmission channels being gradually switched from one to the other, an optical amplifier configured to amplify a light propagating in the other of the optical transmission channels which is in a state subsequent to switching, and a switching speed controller configured to control a switching speed of the optical switch based on a level of the light amplified by the optical amplifier.
    Type: Application
    Filed: July 13, 2010
    Publication date: January 27, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Yuichi SUZUKI, Toshihiro Ohtani
  • Patent number: 7877010
    Abstract: An optical signal quality monitor device includes a local oscillator that generates a local oscillation signal, with which a mixer mixes an input optical signal to output a mixed signal, of which at least one beat component a filter that extracts. An intensity detector detects intensity of the extracted beat component. The monitor device may thus accurately and rapidly monitor the quality of an input optical signal transmitted even at a higher bit rate.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: January 25, 2011
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Masatoshi Kagawa
  • Patent number: 7873273
    Abstract: An apparatus for measuring the characteristics of an optical fiber is provided. An optical pulse generator generates, from a coherent light, first and second optical pulses having a time interval which is equal to or shorter tan a life time of an acoustic wave in the optical fiber. A detector couples the coherent light with a Brillouin backscattered light which includes first and second Brillouin backscattered lights belonging to the first and second optical pulses respectively, thereby generating an optical signal. The detector further converts the optical signal into an electrical signal. A signal processor takes the sum of the electrical signal and a delay electrical signal which is delayed from the electrical signal by a delay time corresponding to the time interval, thereby generating an interference signal, and finds the characteristics of the optical fiber based on the interference signal.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: January 18, 2011
    Assignees: Yokogawa Electric Corporation
    Inventor: Yahei Koyamada
  • Patent number: 7869716
    Abstract: Described is a method and system for reducing system penalty from polarization mode dispersion. The method includes receiving a plurality of signals at a receiving end of a transmission line, each signal being received on one of a plurality of channels of the transmission line and measuring a signal degradation of at least one of the channels of the transmission line. An amount of adjustment of a polarization controller is determined based on the signal degradation, the amount of adjustment being selected to reduce the polarization mode dispersion. The amount of adjustment is then transmitted to the polarization controller.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: January 11, 2011
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Mikhail Boroditsky, Mikhail Brodsky, Nicholas J. Frigo, Peter Magill
  • Patent number: 7865082
    Abstract: The optical transmitter and receiver of the invention includes: a variable dispersion compensator that performs wavelength dispersion compensation on an optical signal of a differential M-phase modulation format input from a transmission path; an optical amplifier that compensates an optical loss in the variable dispersion compensator; a delay interferometer that delays and interference processes the optical signal output from the optical amplifier; and a photoelectric conversion circuit that photoelectric converts the output light from the delay interferometer to generate a demodulated electric signal. The output level of the optical amplifier is decreased at the time of start up to deteriorate the OSNR of the optical signal input to the photoelectric conversion circuit, to thereby realize a state in which an error occurs more easily, and then optimization control of the variable dispersion compensator and the delay interferometer is started.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: January 4, 2011
    Assignee: Fujitsu Limited
    Inventors: Toshiki Honda, Takeshi Ono
  • Patent number: 7848656
    Abstract: A method of operating a WDM transmission system with at least one transmitter and at least one receiver connected by means of a dispersive transmission line.
    Type: Grant
    Filed: April 9, 2007
    Date of Patent: December 7, 2010
    Assignee: Alcatel
    Inventors: Jean-Christophe Antona, Bruno Lavigne
  • Publication number: 20100272431
    Abstract: A system may include a first measurement device configured to be coupled to a first node in an optical path being measured. The first measurement device may be configured to generate a signal at an initiating device; identify an unused channel in an optical path, wherein the optical path includes at least two spans; and transmit the signal on the unused channel. A second test device may be configured to be coupled to a last node in the optical path being measured. The second measurement device may be configured to: receive the signal at a destination device; compensate the signal for chromatic dispersion (CD) and/or polarization mode dispersion (PMD) effects; and determine CD and/or PMD measurements associated with the optical path being measured based on the compensation.
    Type: Application
    Filed: April 24, 2009
    Publication date: October 28, 2010
    Applicant: VERIZON PATENT AND LICENSING INC.
    Inventor: David Zhi CHEN
  • Publication number: 20100247095
    Abstract: When line trouble occurs in an optical network, the restoration time can be reduced. A transponder 21 includes an active line and a standby line 43, and a transponder 22 includes an active line 42 and a standby line 44. The standby line 44 of the transponder 22 is accommodated in the same optical line as the active line 41 of the transponder 21. Upon detection of line trouble, the receiving transponder 24 acquires a VDC setting value for the active line 41, and sets the VDC setting value for the standby line 44 on the basis of the acquired VDC setting value.
    Type: Application
    Filed: June 14, 2010
    Publication date: September 30, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Takehiro Fujita, Koji Takeguchi, Junji Yamamoto
  • Publication number: 20100239245
    Abstract: Systems, devices and techniques for generating and analyzing states of polarization in light using multiple adjustable polarization rotators having different discrete polarization rotation states in various applications.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 23, 2010
    Applicant: GENERAL PHOTONICS CORPORATION
    Inventor: Xiaotian Steve Yao
  • Patent number: 7787716
    Abstract: The present invention provides a polarization mode dispersion compensator comprising: a compensating portion which includes a first polarization controller which performs polarization conversion on light propagating along an optical transmission line and a DGD (Differential Group Delay) emulator which adds a DGD to the light which is polarization-converted by said first polarization controller, said compensating portion being for compensating polarization mode dispersion which occurs in the light while the light propagates along the optical transmission line; a second polarization controller for performing polarization conversion on the light, of which the polarization mode dispersion is compensated, so that a state of polarization of the light can be one linear polarization; a polarization beam splitting portion for splitting the light, which is polarization-converted by said second polarization controller, into the one linear polarization and an other linear polarization which is orthogonal to the one linea
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: August 31, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Kazuhiro Ikeda
  • Publication number: 20100209101
    Abstract: The chromatic dispersion of an optical component is measured with high accuracy using a simple set-up, which includes a pump light source, a probe light source, and a measuring means. Pump light having a wavelength ?pump and probe light having a wavelength ?probe is propagated through an optical component, with the wavelength ?probe being apart from the wavelength ?pump by a given frequency. The generation efficiency of the idler light with respect to the wavelength ?pump is calculated by measuring the power of idler light having a wavelength ?idler output from the optical component, and by seeking the pump light wavelength for making the generation efficiency a local extreme value, the chromatic dispersion of the optical component is calculated from the result of calculation of phase mismatch among the pump light wavelength having such wavelength as sought, the corresponding probe light wavelength, and the corresponding the idler light wavelength.
    Type: Application
    Filed: December 23, 2009
    Publication date: August 19, 2010
    Inventors: Masaaki Hirano, Toshiki Taru
  • Publication number: 20100142946
    Abstract: The present invention relates to chromatic dispersion monitor and method, chromatic dispersion compensator. The chromatic dispersion monitor is used for estimating a chromatic dispersion in accordance with a chromatic dispersion correlation amount sequence, comprising: a phase differential unit, for obtaining a phase difference sequence by performing a phase differential calculation in accordance with the chromatic dispersion correlation amount sequence; a phase difference differential unit, for obtaining a phase difference differential sequence by performing a phase difference differential operation; and a chromatic dispersion estimating unit, for estimating the chromatic dispersion in accordance with the phase difference differential sequence obtained by the phase difference differential unit.
    Type: Application
    Filed: November 20, 2009
    Publication date: June 10, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Ling LIU, Zhenning Tao, Takahiro Tanimura
  • Patent number: 7729619
    Abstract: In order to enhance dispersion control, the apparatus includes a dispersion controller; a quality index generator generating a quality index representing a quality of an optical signal output from the dispersion controller; and a searching unit searching for an amount of dispersion control applying to the dispersion controller which amount optimizes the quality index, wherein the searching unit includes a splitting-half searching unit roughly searching, in a splitting half method, a range in which dispersion is controllable by the dispersion controller for an amount of dispersion control such that the quality index generated by the quality index generator becomes preferable, and a sweep searching unit thoroughly searching, by sweeping, a limited range based on the amount of dispersion searched by the splitting-half searching unit for an amount of dispersion control that optimizes the quality index generated by the quality index generator.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: June 1, 2010
    Assignee: Fujitsu Limited
    Inventors: Kiyotoshi Noheji, Hiroki Ooi
  • Patent number: 7668459
    Abstract: In a wavelength division multiplexing optical transmission system, in order to know an influence amount of a temperature dependency of a dispersion slope, a method of monitoring a dispersion variation amount in two or more of wavelength channels is provided. Further, a method of compensating a wavelength dependency of a temperature dependency of the dispersion by providing an appropriate dispersion individually to the channels or summarizingly for all of bandwidths based on the monitored dispersion variation amounts is provided. According to the present invention, in the WDM optical transmission system, a deterioration in a transmission characteristic by influence of a temperature variation of the dispersion slope can be reduced.
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: February 23, 2010
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Tetsuro Inui, Hidehiko Takara, Takashi Yamamoto
  • Patent number: 7657177
    Abstract: Distortion of an optical signal transmitted over a fibre optic link is characterized by a receiver including a photodetector for converting optical radiation into an electrical signal. A delay line delays the electrical signal. At least two delay line taps drive a register that stores plural values corresponding with different delayed replicas of the electrical signal. Signals commensurate with the values are externally provided to a signal distortion analyser for analysis of the values to determine the optical signal distortion.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: February 2, 2010
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: David Healy, Richard Cronin, Andrew Bothwell
  • Patent number: 7646983
    Abstract: An apparatus and method directed to testing and optimizing performance of an optical transmission system is disclosed, including at least one broadband dispersion compensation unit (DCU) or at least one depolarization device. The depolarization device may be used alone or in combination with the at least one broadband DCU. A method for optimizing performance of data channels in initial loading (IL) and full loading (FL) configurations of the optical transmission system is also disclosed.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: January 12, 2010
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Michael Vaa, Franklin W. Kerfoot, III, Georg H. Mohs, Ekaterina A. Golovchenko, Robert L. Lynch, Stuart M. Abbott, Howard D. Kidorf, Bamdad Bakhshi
  • Publication number: 20090317079
    Abstract: A dispersion determining apparatus comprises a received waveform monitoring part (1) and a dispersion amount determining part (4). The received waveform monitoring part (1) has a waveform monitoring circuit (2) that samples data from the received waveform of a received signal having propagated along a transmission path, and a histogram extracting circuit (3) that extracts, based on the sampled data obtained by the waveform monitoring circuit (2), a histogram data representative of the intensity distribution in the voltage direction of the received waveform. The dispersion amount determining part (4) has a polarized wave dispersion estimating circuit (7) that determines the horizontally asymmetric degree of a received eye-pattern waveform of the received waveform obtained by analyzing the histogram data extracted by the received waveform monitoring part (1) and then estimates, based on the determined asymmetric degree, a polarized wave dispersion amount in the transmission path.
    Type: Application
    Filed: August 15, 2007
    Publication date: December 24, 2009
    Inventor: Nobuhide Yoshida
  • Publication number: 20090317078
    Abstract: The signal quality of ultra high-speed signals such as 40 Gbit/s and 100 Gbit/s are significantly degraded due to wavelength dispersion and nonlinear effects in an optical fiber. Thus, there is provided a transponder unit in which a light source is polarization multiplexed in a direction mutually orthogonal to a signal direction, in order to reduce the nonlinear effects in the optical fiber and improve the signal quality. At the same time, it is possible to monitor an amount of the wavelength dispersion in the optical fiber, allowing for more precise dispersion compensation design.
    Type: Application
    Filed: June 19, 2009
    Publication date: December 24, 2009
    Applicant: HITACHI COMMUNICATION TECHNOLOGIES, LTD.
    Inventors: Tetsuya UDA, Hiroyuki NAKANO, Yasuyuki FUKASHIRO
  • Patent number: 7636524
    Abstract: A timing jitter measurement system and method is provided that acquires the timing jitter in an all-optical fashion, by extracting the timing jitter probability distribution function using auto-correlation and cross-correlation data. This makes the system and method of the present invention particularly useful for ultra-high bit rates, where power spectrum analysis cannot be applied. The resolution of the timing jitter measurement system and method is higher than the actual pulse width, and depends on the time resolution of the correlator. The system and method of the present invention facilitates the identification of deterministic or random timing jitters or combinations thereof, and therefore can be used to identify the origins of timing jitters within the optical network and to provide feedback to the optical network that can be used to actively control the timing jitter.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: December 22, 2009
    Assignee: University of Maryland, Baltimore County
    Inventors: Jochen Karl Walter Dorring, Yung Jui Chen
  • Patent number: 7634167
    Abstract: A method of assessing the feasibility of a composite optical path in an optical communications network in which the composite path is composed of two optical paths k1 and k2 is described. The method comprising the steps of defining, for each individual optical path k and with type i interface, at least one parameter indicating its feasibility, calculating a quality Q factor Q?_i,k1+k2 of the signal for the composite path, estimated considering the deterioration which affects transmission over the paths k1 and k2 and comparing this quality Q?_i,k1+k2 with a value Qbare_i which is defined as the lowest value which can be taken on by a mapping function Q_i(.) for interface i and which gives the Q factor as a function of the OSNR received evaluated under the conditions that are considered to be the worst case that can be accepted while ensuring the desired signal quality.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: December 15, 2009
    Assignee: Ericsson AB
    Inventors: Gianmarco Bruno, Fabio Cavaliere
  • Publication number: 20090297140
    Abstract: Two intensity modulated test signals are generated with precise frequency offset from a single laser source, and multiplexed into a combined test signal. The two modulated signals are demultiplexed at a receiver using a fixed periodic optical filter with complementary output ports. Group velocity dispersion/chromatic dispersion is measured over a large dynamic range, using pseudo-random intensity modulation and digital demodulation techniques.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 3, 2009
    Applicant: Actena LLC
    Inventors: Fred L. HEISMANN, Brandon C. Collings
  • Patent number: 7599625
    Abstract: A method of initializing an optical communication link between nodes. Optical transmitters adapted to pre-compensate link impairments based upon an optical compensation parameters are utilized to establish an optical communications link. Pre-compensation parameter values are selected at a node for generating an optical signal. The value is selected until confirmation from the remote node is received that the optical signal transmission has been successful. The successful pre-compensation parameter value is then used to generate the optical signal for the communications link.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: October 6, 2009
    Assignee: Nortel Networks Limited
    Inventors: James Harley, Kim B. Roberts
  • Publication number: 20090245787
    Abstract: An apparatus and method are applied to characterizing an dispersion-affecting element for use in controlling chromatic dispersion in an optical communications link. Information regarding the behavior of the dispersion-affecting element is recorded and stored in a medium that is provided for deployment with the dispersion-affecting element to enable improved management and active control of the dispersion-affecting element. The suitability of the dispersion-affecting element for operating under different conditions may also be characterized.
    Type: Application
    Filed: June 12, 2009
    Publication date: October 1, 2009
    Applicant: VERIZON BUSINESS GLOBAL LLC
    Inventors: John A. Fee, Frank A. McKiel, JR.
  • Publication number: 20090214202
    Abstract: Selecting a wavelength and a route includes facilitating communication through routes among nodes. Each route is associated with a plurality of wavelengths and comprises one or more segments that couple one node to another node. A polarization mode dispersion value is determined for each wavelength of each route to yield polarization mode dispersion values for each route. A wavelength and a route are selected according to the polarization mode dispersion values.
    Type: Application
    Filed: October 17, 2008
    Publication date: August 27, 2009
    Applicant: Fujitsu Limited
    Inventors: Youichi Akasaka, Takao Naito
  • Patent number: 7577366
    Abstract: A dispersion compensation system includes a dispersion compensation module and a dispersion enhancement module. The dispersion compensation module receives optical input and provides optical output having a negative dispersion relative to the optical input. The dispersion enhancement module receives optical signals from a transport fiber and may increase positive dispersion in the optical signals by a configured amount such that the positive dispersion provided by the transport fiber and the dispersion enhancement module substantially equals the magnitude of the negative dispersion provided by the dispersion compensation module.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: August 18, 2009
    Assignee: Fujitsu Limited
    Inventor: David G. Way
  • Patent number: 7558478
    Abstract: A method of controlling optical signal traffic in an optical network between a transmitter and a plurality of receivers, where the transmitter is adapted to compensate optical impairments based on at least one optical parameter, includes steps of identifying each path between the transmitter and the plurality of receivers, determining a respective optical parameter for each path, selecting one of the receivers for receiving an optical signal from the transmitter, and enabling the transmitter to generate the optical signal using the respective optical parameter of the path between the transmitter and the selected receiver. By preconfiguring compensation parameters for the various paths in the network, an all-optical network can be implemented wherein optical signals can be switched, added or dropped without having to match dispersion maps or perform optical-electrical-optical regeneration.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: July 7, 2009
    Assignee: Nortel Networks Limited
    Inventors: James Harley, Kim B. Roberts, Michel Belanger
  • Patent number: 7558480
    Abstract: An optical communication system and a communication network are disclosed herein capable of transmitting optical signals with high optical launch power over unrepeatered optical fiber links. A method of transmitting optical signals is also disclosed herein which comprises transmitting optical signals at high optical launch power over unrepeatered links.
    Type: Grant
    Filed: May 3, 2004
    Date of Patent: July 7, 2009
    Assignee: Corning Incorporated
    Inventor: Scott R. Bickham
  • Patent number: 7519295
    Abstract: An apparatus and method directed to testing and optimizing performance of an optical transmission system is disclosed, including at least one broadband dispersion compensation unit (DCU) or at least one depolarization device. The depolarization device may be used alone or in combination with the at least one broadband DCU. A method for optimizing performance of data channels in initial loading (IL) and full loading (FL) configurations of the optical transmission system is also disclosed.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: April 14, 2009
    Assignee: Tyco Telecommunications (US) Inc.
    Inventors: Michael Vaa, Franklin W. Kerfoot, III, Georg H. Mohs, Ekaterina A. Golovchenko, Robert L. Lynch, Stuart M. Abbott, Howard D. Kidorf, Bamdad Bakhshi
  • Patent number: 7512343
    Abstract: A bidirectional communication system is disclosed. A single optical line amplifier is used to amplify signals in both the east and west directions. Additionally, a single dispersion compensation module is used to compensate for fiber dispersion in both directions. Using a single optical line amplifier and a single dispersion compensation module for both directions allows for reduction in the number of optical line amplifiers used in a given network.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: March 31, 2009
    Assignee: Ciena Corporation
    Inventors: Balakrishnan Sridhar, Michael Y. Frankel, Vipul Bhatnagar
  • Patent number: 7486895
    Abstract: The present invention includes apparatus and method of a variable step size dithering control algorithm for polarization mode dispersion controllers (PMDCs). The dithering step size of the PCs is adjusted according to the feedback signal including degree of polarization (DOP).
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: February 3, 2009
    Assignee: Alcatel-Lucent USA Inc.
    Inventors: Dieter Werner, Chongjin Xie
  • Patent number: 7466923
    Abstract: Methods and systems for PMD compensation in an optical communication system are implemented by transmitting multiple optical signals through a common optical conduit to an optical compensator that adjustably rotates the polarization states of the multiple optical signals and transmits the rotated optical signals to an optical receiver. The receiver, upon sensing an excessive error condition, commands the optical compensator to change the polarization state of rotation, which changes the PMD profile of the received optical signals.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: December 16, 2008
    Assignee: AT&T Corp.
    Inventors: Michael Herbert Eiselt, Jonathan A. Nagel
  • Patent number: 7466930
    Abstract: A relation between a light input power monitor value of an optical transmission signal before passing through a fiber and an input signal amplitude monitor value is recorded in advance in a storage device. Next, actual optical-transmission-waveform is inputted into an optical receiver module, and then comparisons between a light input power monitor value and an input signal amplitude monitor value, and respective monitor values in the case without having the waveform distortion as described above are performed in an operation device to calculate a waveform distortion value. According to the waveform distortion level calculated herein, an optimum threshold value and an optimum phase adjusting value, at which receiver sensitivity is maximized, are calculated in the operation device to control a threshold-value adjusting circuit and a phase-value adjusting circuit, thereby a threshold value and a phase value that are optimum for an input distortion level can be established.
    Type: Grant
    Filed: September 1, 2005
    Date of Patent: December 16, 2008
    Assignee: Opnext Japan, Inc.
    Inventors: Mitsuo Akashi, Tetsuya Aoki, Hirofumi Nakagawa
  • Patent number: 7463828
    Abstract: An optical channel monitor is provided that sequentially or selectively filters an optical channel(s) 11 of light from a (WDM) optical input signal 12 and senses predetermined parameters of the each filtered optical signal (e.g., channel power, channel presence, signal-noise-ratio). The OCM 10 is a free-space optical device that includes a collimator assembly 15, a diffraction grating 20 and a mirror 22. A launch pigtail emits into free space the input signal through the collimator assembly 15 and onto the diffraction grating 20, which separates spatially each of the optical channels 11 of the collimated light, and reflects the separated channels of light onto the mirror 22. A ?/4 plate 26 is disposed between the mirror 22 and the diffraction grating 20. The mirror reflects the separated light back through the ?/4 plate 26 to the diffraction grating 20, which reflects the channels of light back through the collimating lens 18.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: December 9, 2008
    Inventors: John Moon, Ralph Jones, Charles Winston, James Sirkis, David Fournier, Joseph Pinto, Robert Brucato, James Dunphy, Christopher Chestnut
  • Patent number: 7424191
    Abstract: A method of simultaneously specifying the wavelength dispersion and nonlinear coefficient of an optical fiber. Pulsed probe light and pulsed pump light are first caused to enter an optical fiber to be measured. Then, the power oscillation of the back-scattered light of the probe light or idler light generated within the optical fiber is measured. Next, the instantaneous frequency of the measured power oscillation is obtained, and the dependency of the instantaneous frequency relative to the power oscillation of the pump light in a longitudinal direction of the optical fiber is obtained. Thereafter, a rate of change in the longitudinal direction between phase-mismatching conditions and nonlinear coefficient of the optical fiber is obtained from the dependency of the instantaneous frequency. And based on the rate of change, the longitudinal wavelength-dispersion distribution and longitudinal nonlinear-coefficient distribution of the optical fiber are simultaneously specified.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: September 9, 2008
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masateru Tadakuma, Yu Mimura, Misao Sakano, Osamu Aso, Takeshi Nakajima, Katsutoshi Takahashi
  • Publication number: 20080212962
    Abstract: A chirp measurement apparatus includes a splitting section for splitting input signal light to two paths; a first dispersion medium with a total dispersion amount of +D (?0) at a used wavelength, and a second dispersion medium with a total dispersion amount of ?D (?0) at the used wavelength; first and second nonlinear photo-detecting sections for receiving the signal light beams passing through the first and second dispersion media, and for outputting electric signals with the intensities proportional to nth power of the intensities of the signal light beams, where n is greater than one; and a difference detecting section for computing a difference between the electric signals output from the first and second nonlinear photo-detecting sections, and for outputting a differential signal corresponding to the difference as a chirp signal of the input signal light.
    Type: Application
    Filed: May 2, 2008
    Publication date: September 4, 2008
    Inventors: Tetsuro Inui, Kunihiko Mori, Kohichi Robert Tamura
  • Patent number: 7418206
    Abstract: It is an object of the present invention to provide a control technique for reducing wavelength dependence of wavelength dispersion values and also for suppressing a change in wavelength transmission characteristic with a temperature variation or the like, in a VIPA-type wavelength dispersion compensator.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: August 26, 2008
    Assignee: Fujitsu Limited
    Inventor: Yuichi Kawahata
  • Patent number: 7418212
    Abstract: A system and method for detecting digital symbols carried in a received optical signal. The system comprises a functional element operative to receive a stream of samples of an electrical signal derived from the received optical signal and to evaluate a non-linear function of each received sample, thereby to produce a stream of processed samples. The system also comprises a detector operative to render decisions about individual symbols present in the received optical signal on the basis of the stream of processed samples. In an embodiment, the non-linear function computes substantially the square root of each received sample.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: August 26, 2008
    Assignee: Nortel Networks Limited
    Inventor: Chandra Bontu
  • Publication number: 20080159739
    Abstract: The present invention provides a polarization mode dispersion compensator comprising: a compensating portion which includes a first polarization controller which performs polarization conversion on light propagating along an optical transmission line and a DGD (Differential Group Delay) emulator which adds a DGD to the light which is polarization-converted by said first polarization controller, said compensating portion being for compensating polarization mode dispersion which occurs in the light while the light propagates along the optical transmission line; a second polarization controller for performing polarization conversion on the light, of which the polarization mode dispersion is compensated, so that a state of polarization of the light can be one linear polarization; a polarization beam splitting portion for splitting the light, which is polarization-converted by said second polarization controller, into the one linear polarization and an other linear polarization which is orthogonal to the one linea
    Type: Application
    Filed: February 27, 2008
    Publication date: July 3, 2008
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventor: Kazuhiro Ikeda
  • Patent number: 7389049
    Abstract: The dispersion monitoring device of the present invention detects a change in dispersion caused in a system by performing the decision process of a received signal using a data flip-flop in which required decision phase and decision threshold are set, averaging the output signal of the data flip-flop using an integration circuit and determining a received waveform, based on a change in a level of an output signal from the integration circuit. In another preferred embodiment, a signal is inputted to a chromatic dispersion change sign monitor. If a chirping parameter is correctly set, residual chromatic dispersion shifts in the negative direction when the peak value of a received signal is large, and it shifts in the positive direction when the peak value of a received signal is small. Using this fact, optimum dispersion compensation is conducted.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: June 17, 2008
    Assignee: Fujitsu Limited
    Inventors: Tomoo Takahara, Hiroki Ooi, George Ishikawa
  • Patent number: 7382979
    Abstract: The present invention discloses a design method of wavelength dispersion compensation of a desired link that is extracted from an optical network, the link including two or more spans, and two or more nodes (N1, N4) that are equipped with an add/drop function, as shown in FIG. 2. All residual dispersion ranges of paths that reach corresponding nodes are adjusted to fall within predetermined tolerable residual dispersion ranges that are set up for all the paths of the link by adjusting wavelength dispersion compensators provided to each of the spans.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: June 3, 2008
    Assignee: Fujitsu Limited
    Inventors: Yuichi Akiyama, Takafumi Terahara, Takeshi Hoshida, Hisao Nakashima
  • Patent number: 7369777
    Abstract: A dispersion compensator is provided that includes an input port 102 for receiving a WDM optical signal and a dispersion compensating element 110 coupled to the input port for substantially compensating the WDM optical signal for dispersion that has accumulated along an external transmission path. The dispersion compensator also includes an output port 104 for directing the dispersion compensated WDM optical signal to an external element and a dynamic power controller 106, 108, 112, 114, 116 for maintaining a total power of the WDM signal below a prescribed level prior to receipt of the WDM optical signal by the dispersion compensating element.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: May 6, 2008
    Assignee: General Instrument Corporation
    Inventors: Chandra Sekhar Jasti, Hermann Gysel, Mani Ramachandran