Amplifier Or Repeater Operation Patents (Class 398/37)
  • Patent number: 7522842
    Abstract: A commercially viable All-Raman system, is implemented by removing the dispersion compensating Fiber (DCF) and two stage amplifier at each span, and including a transmission path dispersion compensator which performs dispersion compensation on a transmission path basis. For example, by pre-compensating for the accumulated dispersion in the electrical domain at the transmitter, the gain of the Raman pumps at each span amplifier need only compensate for the loss within the span, without needing to compensate for the loss of a DCF. In addition there is provided a low-cost method for implementing a bidirectional Service Channel by modulating/demodulating low-rate data on the Raman pump. For example, a Raman amplifier can include an information source for producing a service channel signal which includes information to be communicated; and a modulator for modulating the Raman pump signal with the service channel signal.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: April 21, 2009
    Assignee: Nortel Networks Limited
    Inventors: John McNicol, Kuang Tsan Wu
  • Patent number: 7499648
    Abstract: A method and apparatus for signal amplification and decision device operation on a signal which has a magnitude, peak value, or other average power that varies over time. In general, a peak detector detects the peak value of a received signal and responsive to the peak value, selectively enables a decision device when the signal is amplified to increase decision device accuracy. The decision may occur before the amplification forces the signal into saturation. Multi-stage amplification in combination with controlled switching or multiplexing may be utilized to selectively amplify the signal and selectively initiate decision device operation. The peak detector value may also control signal amplification levels in a multi-stage amplifier. Responsive to the peak value, a switch, which receives as its input the output from one or more amplifier stages, may be controlled to output the signal after a desired amount of amplification.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: March 3, 2009
    Assignee: Mindspeed Technologies, Inc.
    Inventors: Daniel S. Draper, Charles E. Chang, Wim F. Cops
  • Patent number: 7471895
    Abstract: A method is provided for locating a fault in one or more optical amplifiers operating in saturation and located along an optical transmission path. The method begins by generating a coherent optical time domain reflectometry (COTDR) trace representing a backscattered and/or reflected optical power level along the transmission path and comparing the trace to a reference trace to generate a difference trace that represents a change in gain. The change in gain is assigned to at least one of the optical amplifiers based on the difference trace. The method comprises assigning the difference trace to faults in the optical amplifiers, equating the difference trace with a linear combination of difference trace vectors each arising from a fault in a different one of the optical amplifiers, and iterating to determine a coefficient value associated with each difference trace vector. Each nonzero coefficient value denotes a fault in an optical amplifier.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: December 30, 2008
    Assignee: Red Sky Subsea, Ltd.
    Inventor: Jonathan A. Nagel
  • Patent number: 7463829
    Abstract: An optical transmission apparatus comprising a first detector for detecting the power of the supervisory signal light separated from received wavelength-division multiplexed signal lights; a second detector for detecting the power of the wavelength-division multiplexed signal lights after the separation of the supervisory signal light; a gain-controlled type optical amplifier for amplifying the wavelength-division multiplexed signal lights; an optical attenuator coupled to the amplifier; and a control unit for controlling the optical amplifier and the optical attenuator so as to keep the output level of the wavelength-division multiplexed signal lights to a predetermined target value, wherein the control unit restrains automatic output level control by the optical attenuator when the supervisory signal light power fluctuates within its permissible range and fluctuations in the signal light power have deviated from its permissible range.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: December 9, 2008
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Tetsuya Uda, Kenta Noda, Yasuhiro Uchiyama, Hiroshi Masuda, Hiroyuki Nakano
  • Patent number: 7444077
    Abstract: An optical transmission system includes an optical signal transmitter to output optical signal, a monitoring light transmitter to generate monitoring light, an optical multiplexer to output a multiplexed signal light by multiplexing the optical signal and monitoring light, an optical relay transmission path to amplify the multiplexed signal light by using a Raman amplification effect, an optical demultiplexer to demultiplex the multiplexed signal light, a monitoring light receiver to receive the monitoring light output from the optical demultiplexer, and a pumping light source stopping device to continuously monitor a transmission state of the monitoring light and, when the transmission of the monitoring light is interrupted, to stop emission of the pumping light from the pumping light source to be used for distributed Raman amplification.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: October 28, 2008
    Assignee: NEC Corporation
    Inventor: Hideki Okuno
  • Patent number: 7440695
    Abstract: There are provided a method and system for monitoring an optical transmission line. The system for monitoring the optical transmission line includes: an OTDR (optical time-domain reflectometer) transmitting a monitoring light to an optical transmission line, measuring a reflected light or backscattered light to monitor the optical transmission line; an optical amplification unit amplifying the monitoring light transmitted on the optical transmission line by using a gain clamped optical amplifier; and a filter unit removing a component having a wavelength outside a wavelength band of the monitoring light from a backward ASE (amplified spontaneous emission) generated by the optical amplification unit. Accordingly, it is possible to extend an optical transmission line monitoring distance of the OTDR. As a result, it is possible to prevent deterioration of the performance of the OTDR because of the backward ASE.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: October 21, 2008
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Han Hyub Lee, Donghan Lee, Hee Sang Chung, Kwangjoon Kim
  • Publication number: 20080253764
    Abstract: The present invention provides methods and systems to stabilize an optical network against nodal gain changes through two nested control loops for controlling node gain and node output power. The present invention includes two nested control-loops running at different update speeds including: an inner, faster, control-loop which sets the gains and losses within a node to achieve a node-gain target, and a node-gain target for the inner loop is set by an outer, slower, control loop that whose target is the node output power. Advantageously, the present invention reduces the problem of concatenated overshoot by minimizing the control-loop response to events that occur at other nodes.
    Type: Application
    Filed: April 10, 2007
    Publication date: October 16, 2008
    Inventors: Brandon C. Collings, Douglas J. Beckett, Sanjay Choudhary
  • Patent number: 7437083
    Abstract: A wavelength converter for binary optical signals includes an interferometer structure (110) for generating an output signal by modulating a received local signal (LS) according to the modulation of a fUrther received first input signal (IS 1). When such interferometer structures (110) are operated in a standard mode it is known in the art to control the power of the input signal such that the extinction ratio of the output signal is kept minimal. The invention also controls the power of the input signals to achieve the minimal extinction ratio when the wavelength converter and in particular the interferometer structure (110) is operated in a differential mode receiving two input signals.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: October 14, 2008
    Assignee: ALCATEL
    Inventors: Bruno Lavigne, Olivier Leclerc, Jean-Luc Moncelet, Alex Bombrun, Jean-Baptiste Pomet, Fabien Seyfert
  • Patent number: 7437070
    Abstract: In each of a plurality of submarine observation apparatus (1 to n), a branching unit (63) branches fixed-wavelength light (?1) from an incoming wavelength-multiplexed light signal. An observation signal modulating unit (64) modulates the intensity of the branched fixed-wavelength light (?1) with observation information multiplexed by an observation signal multiplex unit (61). A combining unit (65) combines light signals (?2) to (?n) passing through the branching unit (63) and the fixed-wavelength light (?1a) modulated by the observation signal modulating unit (64) into a composite light signal, and outputs it to an optical fiber (12a). Therefore, in each of the plurality of submarine observation apparatus (1 to n), there is no necessity for providing a wavelength-division-multiplexing-transmission optical transmitter which requires high wavelength stability.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: October 14, 2008
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Japan Agency for Marine-Earth Science and Technology
    Inventors: Tasuku Fujieda, Hideki Goto, Kenichi Asakawa, Hitoshi Mikada, Katsuyoshi Kawaguchi
  • Patent number: 7430373
    Abstract: An optimum optical node processor is provided to a metropolitan network in which the distance of a transmission line between each optical node processor is short. The optical node processor according to the invention is provided with an optical add/drop multiplexer (OADM), variable optical control means connected to the OADM for collectively attenuating the intensity level of WDM optical signals, a controller for controlling the variable optical control means and monitoring control means for controlling the controller according to information from an external device, and enables the automatic power reduction (APR) control and the output control of an optical network system.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: September 30, 2008
    Assignee: NEC Corporation
    Inventor: Makoto Yamashita
  • Patent number: 7417792
    Abstract: An optical amplification device is disclosed that performs feedback control to maintain an amplification gain to be a constant based on measured power of input light and power of output light. The device includes a feedback control coefficient switching unit configured to, when performing the feedback control on a difference from an object amplification gain, distinguish a state of increasing or decreasing the number of frequencies of the input light and a steady state by making comparison and determination whether an amplitude of at least one of the power of the input light and the power of the output light is in a predetermined range, and switch the feedback control coefficient. Therefore, it is possible to reduce variation of the power of the output light caused by noise in the steady state without affecting operations of increasing and decreasing a number of frequencies of a light signal.
    Type: Grant
    Filed: March 15, 2005
    Date of Patent: August 26, 2008
    Assignee: Fujitsu Limited
    Inventors: Kazuhiko Hatae, Nobukazu Koizumi, Masato Oota
  • Patent number: 7394992
    Abstract: In an optical transmitter, continuous wave light from a laser passes through a data modulator (DM) for non-return-to-zero (NRZ) encoding of a data stream and through a pulse modulator to add return-to-zero encoding to the modulated optical signal. A modulator controller monitors the output optical signal power, optimizes the bias setting for the DM and the PM, and optimizes the phase relationship between the pulse and data components of the modulated optical signal. For each optimization, a low amplitude and low frequency dither signal is injected at appropriate points in the modulator. A single photo detector and electrical receiver are used in a multiplexed fashion to monitor the optical output signal and derive separate feedback signals. Remaining control circuitry forces a null in a respective residual dither component in the optical output signal to maintain the desired bias level or phase alignment.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: July 1, 2008
    Assignee: Mintera Corporation
    Inventors: Myles Kimmitt, John E. Kaufmann, Yuval Shohet, Kent Springer, Tina Fjelde, Pavel V. Mamyshev, Benny P. Mikkelsen
  • Patent number: 7394995
    Abstract: An optical receiver is disclosed comprising an erbium-doped fiber amplifier (EDFA) that is coupled to a photodiode and transimpedance amplifier without filtering output light signal in the EDFA. Optionally, a clock/data regenerator can be coupled to the electrical output of the transimpedance amplifier for compensating for noise distortion and timing jitter for affecting the control loop feeding back for adjusting the electrical current into a pump laser of an optical pre-amplifier. Furthermore, the optical receiver of the present invention can also be implemented in a transponder.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: July 1, 2008
    Assignee: Avanex Corporation
    Inventors: Emmanuel Audic, Franck Deblock, Elisabeth Leclerc, Gilles Sorhouetgary, Alexandre Sherr, Henri Jean Egger
  • Patent number: 7369779
    Abstract: A regenerator for restoring the originally encoded optical phase of a differential-phase-shift-keyed signal. In an embodiment, the regenerator simultaneously provides limiting amplification and reduces amplitude noise based on a phase-sensitive optical amplifier that combines a weak signal field of a degraded input data with a strong pump field supplied by a local oscillator in a nonlinear interferometer. The two fields interact through degenerate four-wave mixing, and optical energy is transferred from the pump to the signal and vice versa. The phase sensitive nature of the optical gain leads to amplification of a specific phase component of the signal, determined by the input pump-signal phase difference and the incident signal phase is restored to two distinct states, separated by 180° according to the original encoding. Simultaneously, gain saturation of the pump wave by the signal wave results in limiting amplification of the signal wave for removing signal amplitude noise.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: May 6, 2008
    Assignee: Research Foundation of the University of Central Florida
    Inventors: Kevin A. Croussore, Guifang Li, Cheolhwan Kim
  • Patent number: 7366416
    Abstract: A hub for use in a passive optical network (PON) includes a transmission fiber on which an information-bearing optical signal is received, a double-cladded, rare-earth doped fiber located along the transmission fiber for imparting gain to the information-bearing optical signal, and a combiner having an output coupled to the transmission fiber and a plurality of inputs. The output is coupled to the transmission fiber such that optical energy at pump energy wavelengths but not signal wavelengths are communicated therebetween. At least one pump source is optically coupled to one of the inputs of the combiner for providing optical pump energy to the double-cladded, rare-earth doped fiber. An optical splitter is also provided. The optical splitter has an input coupled to the transmission fiber for receiving an amplified, information-bearing optical signal and a plurality of outputs for directing portions of the amplified, information-bearing optical signal to remote nodes in the PON.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: April 29, 2008
    Assignee: General Instrument Corporation
    Inventors: Mani Ramachandran, Chandra Sekhar Jasti
  • Patent number: 7340165
    Abstract: An optical amplifying device disposed on a transmission path of a WDM signal includes an optical amplifier amplifying the WDM signal, a detecting unit detecting a change in a transmission wavelength count contained in the WDM signal and/or a change in light receiving level of the optical amplifier, a measuring unit measuring an optical signal to noise (SN) ratio of the WDM signal outputted from the optical amplifier, an update unit updating a reference value for evaluating the measurement value of the optical SN ratio obtained by the measuring unit when the detecting unit detects the change, a judging unit judging whether or not the measurement value deviates from an allowable range based on a reference value, and an output unit outputting an error of the optical amplifier if the measurement value deviates from the allowable range.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: March 4, 2008
    Assignee: Fujitsu Limited
    Inventors: Shoji Yoshida, Tooru Matsumoto
  • Patent number: 7330652
    Abstract: A system and method for selecting optical amplifier placement in an optical network is disclosed. In one embodiment, a design tool is used to configure the optical add/drop multiplexers of each nose. For nodes with more than a small number of nodes there are a large number of possible optical amplifier configurations. Consequently, a subset of optical amplifier placement configurations is formed. In one embodiment an algorithm is used to eliminate from consideration optical amplifier configurations unlikely to have satisfactory minimum power characteristics. In one embodiment the quality of service of each configuration of the subset is analyzed to determine an optical amplifier placement configuration having a minimal number of amplifier and a desirable quality of service.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: February 12, 2008
    Assignee: Ciena Corporation
    Inventor: Kenneth M Maxham
  • Patent number: 7321727
    Abstract: This invention provides a method for commissioning an optical network using internal Automatic Spontaneous Emission (ASE) light inherently present in the optical network as a light source (the ASE light source) for measuring losses inside and between nodes in the network. A modular segmented approach is adopted and the network is commissioned segment by segment. The method uses techniques for the correction of the Optical Signal to Noise Ratio induced error as well as the Spectral Filtering Error during the loss computation required for adjusting the gains of the amplifiers at each network node to an appropriate value. Since the method does not require an external laser source that needs to be moved manually from node to node, it greatly reduces the commissioning time. Since it uses only the existing components of the network nodes it also leads to a significant saving in cost.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: January 22, 2008
    Assignee: Tropic Networks Inc.
    Inventors: Eddie Kai Ho Ng, Jason Christopher De Rocher, Derrick Remedios, James Benson Bacque, Ping Wai Wan
  • Patent number: 7315696
    Abstract: Gain setting of a receiving amplifier, is performed by detecting the necessity of gain setting when a receiving amplifier is turned on, requesting WDM transmission equipment in a preceding station to output ASE light; in a WDM transmission equipment of the preceding station, shutting off both passing-through light and added light, and outputting the ASE light corresponding to a predetermined number of wavelengths of signal light; in the receiving amplifier of the WDM transmission equipment in the station of interest, performing the gain setting by use of the ASE light; and on completion of the gain setting, the WDM transmission equipment of the station of interest, requesting the WDM transmission eouipment of the preceding station to halt the ASE light output, and the WDM transmission equipment of the preceding station, halting the ASE light output upon receiving the request and switching the output to an optical signal output.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: January 1, 2008
    Assignee: Fujitsu Limited
    Inventors: Manabu Suzuki, Miwa Taniguchi, Toshihiro Suzuki, Shingo Hara
  • Patent number: 7308208
    Abstract: An object of the invention is to realize a gain monitoring method for an optical amplifier and an apparatus thereof, capable of detecting a gain for a signal light regardless of a noise light generated inside the optical amplifier. To this end, in the gain monitoring method according to the present invention, a part of a signal light input to an optical amplifier is branched as an input monitor light, and the input monitor light is modulated, and also a part of a light output from the optical amplifier is branched as an output monitor light, so that the modulated input monitor light and the output monitor light are multiplexed. Then, the multiplexed light is converted into an electrical signal, an interference component contained in the electrical signal is extracted, and a gain for the signal light in the optical amplifier is detected based on the interference component.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: December 11, 2007
    Assignee: Fujitsu Limited
    Inventor: Manabu Watanabe
  • Patent number: 7305190
    Abstract: A transimpedance amplifier having adjustment for optical distortion in an optical communication link. The transimpedance amplifier comprises a transimpedance stage and a post amplifier stage, which has a feedback path including an optical distortion adjustment circuit.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: December 4, 2007
    Assignee: Vitesse Semiconductor Corporation
    Inventors: Balagopal Mayampurath, Byung-Jong Moon, Allan Chan, Bruce Massey
  • Patent number: 7280763
    Abstract: A terminal apparatus by which, even where BER data, for example, of an optical signal of an existing wavelength cannot be utilized, the optical output powers of the existing wavelength and an extension wavelength can be adjusted in a short period of time while eliminating quality degradation of the existing circuit. The terminal apparatus includes a level controlling section for controlling a total optical output power of an existing wavelength signal light and an extension wavelength signal light to a fixed level, a monitoring unit capable of monitoring the optical output power for each wavelength, and a controller for controlling the optical output power of the extension wavelength signal light so that the optical output power of the existing wavelength signal light monitored by the monitoring unit may not be lower than a minimum permissible optical output power.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: October 9, 2007
    Assignee: Fujitsu Limited
    Inventors: Katsuji Yamaguchi, Kenichi Shinmura, Masato Nagayama, Tadayuki Takada
  • Patent number: 7266301
    Abstract: A repeater unit is provided that includes a receiver module and a controller unit. The receiver module is responsive to an infrared signal. The controller unit is adapted to determine whether a signal based on the infrared signal corresponds to a remote control signal.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: September 4, 2007
    Assignee: Speakercraft, Inc.
    Inventors: Todd M. Stanchfield, Ernest J. Leggett, Edward A. Mangler
  • Patent number: 7251071
    Abstract: In an optical transmission system, operations of certain elements are adjusted in an individualized manner after detecting a change in the total optical power level corresponding to multiple optical channels in a link of the system in order to control transients in those channels. For example, in response to a sudden drop in the number of channels resulting from a fiber cut, the power levels of the optical pumps in a Raman amplifier in an OADM are adjusted to reduce transient gain errors in the surviving channels, where the adjustment to the pump power level for each different optical pump is a function of both the detected change in the total optical power level and at least one specified coefficient for that particular optical pump, in order to handle non-linearities in the response of the Raman amplifier to the sudden drop in the number of optical channels.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: July 31, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Daniel C. Kilper, Claude A. Martell, Narasimhan Raghavan, David A. Sadler, Christopher A. White
  • Patent number: 7248804
    Abstract: Conventionally, an adjustment of an optical power level of an input Pin of an optical amplifier module is made with an optical variable attenuator. An optical coupler for measuring the optical power level of Pin and an optical variable attenuator are replaced by a variable optical coupler. The branch ratio of the variable optical coupler is varied, whereby the input optical power level Pin to an optical amplifier module is adjusted. As a result, an optical loss is reduced by an amount corresponding to the elimination of the optical attenuator, and also the OSNR of the optical amplifier module is improved.
    Type: Grant
    Filed: July 16, 2004
    Date of Patent: July 24, 2007
    Assignee: Fujitsu Limited
    Inventors: Taizo Maeda, Takehiro Fujita, Motoyoshi Sekiya
  • Patent number: 7248398
    Abstract: The invention relates to a method and device for determining the gain spectrum of a Raman amplifier having an optical amplifier, which is connected in incoming circuit thereto, in a section of a WDM transmission system. A number of spectra are recorded at the output of the Raman amplifier during which the optical amplifier or the Raman amplifier is switched on and off and a high amplified spontaneous emission is generated at the input of the Raman amplifier. Afterwards, the gain spectrum is determined on the basis of the recorded spectra.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: July 24, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventor: Peter Krummrich
  • Patent number: 7245421
    Abstract: In a WDM optical communication system in which an optical lossy medium, optical amplifiers and Raman amplifiers for compensating for loss in the optical lossy medium are cascade-connected, means are provided for acquiring the state of use of a Raman amplifier, at a node the same as that of the optical amplifier, in a link opposing a link in which the optical amplifier resides, or the state of use of a Raman amplifier at a node downstream of the optical amplifier. Whether the optical amplifier is to be made to perform a slope correction is decided based upon the state of use of the Raman amplifier.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: July 17, 2007
    Assignee: Fujitsu Limited
    Inventor: Takeshi Sakamoto
  • Patent number: 7242864
    Abstract: A technique for maintaining a required value of power per optical communication channel in a chain of optical nodes (112, 114, 118, 116) connected by optical fiber spans (111, 119, 121), wherein at least some of the nodes include optical amplifiers (112, 114, 116) with controllable gains, the technique comprises performing automatic gain control at the optical amplifiers so that, in the frame of power gain of each particular optical amplifier (114, 116), to compensate a preceding span loss. The span loss is calculated as power loss on an optical fiber span (111,121) incoming the particular amplifier.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: July 10, 2007
    Assignee: ECI Telecom Ltd.
    Inventors: Tal Muzicant, David Harris
  • Patent number: 7242865
    Abstract: An optical transmission equipment in an optical communication system interconnecting two optical transmission equipment sets by a main transmission line and a backup transmission line. An optical amplifier amplifies and outputs optical signals from one transmission line in use, interconnecting the optical transmission equipment concerned with neighboring upstream optical transmission equipment, and outputs the optical signals including a signal component and a noise component. A controller controls an optical signal level so that a signal component in the optical signal reaches a predetermined level.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: July 10, 2007
    Assignee: Fujitsu Limited
    Inventors: Koji Hasuo, Futoshi Izumi
  • Patent number: 7239807
    Abstract: The present invention relates to a variable clamp equalization method and apparatus, the method includes measuring optical signal to noise ratio (OSNR) values for each wavelength, computing a raw power adjustment value for each wavelength, computing a raw power adjustment correction factor for each computed raw power adjustment value based on a computed OSNR range value in accordance with a pre-defined variable clamp value schedule, wherein a larger clamp is scheduled for use when the computed OSNR range value is larger, and a smaller clamp is scheduled for use when the computed OSNR range value is smaller. The method further includes determining a clamped power adjustment value for each wavelength, applying the corresponding determined clamped power adjustment value to each wavelength, and iterating the aforementioned until the computed OSNR range value is within pre-defined boundaries, whereby the signal is considered equalized.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: July 3, 2007
    Assignee: Nortel Networks Limited
    Inventors: Frederic F. Simard, Emmanuel Seitelbach
  • Patent number: 7224899
    Abstract: Disclosed herein is a system including a closed loop topology using an optical fiber applicable to WDM signal light obtained by wavelength division multiplexing a plurality of optical signals, and a plurality of nodes arranged along the closed loop topology, each node including an optical amplifier. Each node further includes a first unit for controlling the optical amplifier so that the output from the optical amplifier becomes constant, according to the number of channels of WDM signal light received from the node immediately upstream of the corresponding node, and a second unit for interrupting the optical signals other than one or more optical signals added to the corresponding node until the control by the first unit is converged. With this configuration, each node can be easily started.
    Type: Grant
    Filed: July 9, 2003
    Date of Patent: May 29, 2007
    Assignee: Fujitsu Limited
    Inventor: Kiyotoshi Noheji
  • Patent number: 7212335
    Abstract: An amplification medium simulation apparatus comprises a basic data retaining unit 21, an input signal beam information retaining unit 22, and a simulation executing unit 31 approximating and calculating an output signal beam power at each signal beam wavelength outputted from the amplification medium involving a fluctuation in ion population at the metastable energy level in the amplification medium due to input of the input signal beam, by using contents retained in the basic data retaining unit 21 and the input signal beam information retaining unit 22, and outputting a result of calculation as a result of simulation of performance of the amplification medium.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: May 1, 2007
    Assignee: Fujitsu Limited
    Inventors: Masato Nishihara, Yasushi Sugaya, Etsuko Hayashi
  • Patent number: 7197210
    Abstract: A method is provided for determining and setting the tilting of the spectrum of light signals in an optical fiber of an optical data transmission path having at least one part for varying the tilting of the spectrum, wherein the light signals are amplified by at least one optical amplifier and a portion of the amplified light signals is extracted, the extracted light signals are then partially guided through an influencing element with a known frequency-dependent intensity influence, the influencing element being an amplifier, a waveguide structure or a fiber with an amplifying action, the total intensity of the extracted light signals is then measured upstream and downstream of the influencing element prior to the extracted light signals being guided through the influencing element, and the control criterion is determined, based on the known frequency-dependent intensity influence of the influencing element and the measured total intensity, for setting the tilting via which the part for varying the tilting i
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: March 27, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jörg-Peter Elbers, Andreas Färbert, Christoph Glingener, Lutz Rapp, Christian Scheerer
  • Patent number: 7177541
    Abstract: It is disclosed that a method and apparatus that automatically monitors each channel's optical signal-to-noise ration (OSNR) using optical filter and polarization extinction method in wavelength division multiplexing (WDM) scheme-based optical transmission systems. OSNR is simply measured using optical filter by comparing amplified spontaneous emission (ASE) over the signal band, of which bandwidth has changed, while leaving signal intensity intact, with that original signal and, OSNR measurement is allowable over a wider range of OSNR by minimizing the ratio of signal to ASE over the signal band using polarization extinction method.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: February 13, 2007
    Assignee: TeraLink Communications, Inc.
    Inventors: Yun-Chur Chung, Jun-Haeng Lee
  • Patent number: 7177074
    Abstract: A circuit and associated method for safety shutdown of an optical amplifier, wherein the power of an amplified spontaneous emission ASE is subject to a correction factor and subtracted from a measured signal extracted from the optical signal.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: February 13, 2007
    Assignee: Siemens Aktiengesellschaft
    Inventor: Lutz Rapp
  • Patent number: 7174108
    Abstract: A transmission system is provided that recognizes occurrence of a fault efficiently so that the workability and quality of service can be improved. An optical amplifier part amplifies an optical main signal. A fault occurrence recognizing part detects a pump light used for an opposing device via an optical fiber transmission line to which an optical main signal is sent by the repeater. If the pump light is not detected, the fault occurrence recognizing part recognizes occurrence of a fault. A light cutoff control part stops the optical amplifying part outputting an amplified signal so that the light cutoff control in only one of two directions is performed when a fault occurs.
    Type: Grant
    Filed: March 19, 2002
    Date of Patent: February 6, 2007
    Assignee: Fujitsu Limited
    Inventor: Yuji Kamura
  • Patent number: 7171124
    Abstract: A connection between a source node and a destination node is automatically routed and switched in a WDM photonic network, on receipt of a connection request. A switching and routing mechanism selects a plurality of valid link paths using a path tree, where invalid branches are eliminated based on constraints received in the connection request, and on a link and path cost functions. A regenerator placement tree is used for determining a plurality of viable regenerator paths for each valid link path. On the regenerator placement tree, non-viable branches are eliminated based on constraints received with the request and on regenerator availability at the intermediate nodes along the respective path, and on the specification of these available regenerators. Next, the switching and routing mechanism assigns a set of wavelengths to each viable regenerator path, and estimates the performance of the path using a Q estimator.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: January 30, 2007
    Assignee: Lucent Technologies Inc.
    Inventors: Anthony Vernon Walker Smith, Jonathan Titchener, John Peter Guy, Robert Alain Nadon
  • Patent number: 7167652
    Abstract: An optical transmission system accomplishes optical transmission over a long distance by combining a multiplexing line terminal with optical amplifiers, linear repeaters, and regenerators with optical amplifiers combined together. The system also accomplishes the optical transmission over a short distance by directly connecting the linear terminals therebetween, with an electric-to-optic converter replaced by an electric-to-optic converter having a semiconductor amplifier, with an optic-toelectric converter by an optic-to-electric converter having an avalanche photodiode as light receiver, and with no use of any optical booster amplifier and optical preamplifier in multiplexing line terminal. With these, the optical transmission system can be easily constructed depending on the transmission distance required.
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: January 23, 2007
    Assignee: Hitachi, Ltd
    Inventors: Keiji Tomooka, Naohiro Sakakida, Shin Nishimura, Yoshihiro Ashi, Hironari Matsuda, Satoshi Aoki, Yukio Nakano, Masahiro Takatori, Toru Kazawa, Shinya Sasaki, Ryoji Takeyari, Hiroyuki Nakano
  • Patent number: 7158728
    Abstract: An optical repeating system includes an optical transmitter and a plurality of optical amplifying repeaters. The optical transmitter specifies a part or all of the optical amplifying repeaters, and transmits a supervisory command to the specified optical amplifying repeaters as a first sub-signal via an uplink or downlink optical transmission line. The supervisory command is a command to supervise internal circuits of the optical amplifying repeaters. Receiving the supervisory command addressed thereto via the uplink or downlink optical transmission line, the optical amplifying repeaters each transmit a supervisory signal indicating a supervisory result corresponding to the supervisory command to optical receivers via the uplink and downlink optical transmission lines as a second sub-signal. The optical system can reduce the time take to acquire the supervisory information about the plurality of the optical amplifying repeaters.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: January 2, 2007
    Assignees: Mitsubishi Denki Kabushiki Kaisha, KDDI Corporation, KDDI Submarine Cable Systems Inc.
    Inventors: Yasunori Kasahara, Hideki Goto, Takashi Mizuochi, Kenkichi Shimomura, Yukio Horiuchi, Masatoshi Suzuki, Daishi Ishii, Toshio Kawazawa
  • Patent number: 7155124
    Abstract: A node for an optical network includes a demultiplexer operable to separate an ingress wavelength division multiplexed (WDM) signal into a plurality of ingress channels. An ingress amplifier array is coupled to the demultiplexer and includes a plurality of channel amplifiers. The channel amplifiers are each operable to independently amplify one of the ingress channels while maintaining a channel power variation between the channels within an operational limit of the network.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: December 26, 2006
    Assignee: Fujitsu Limited
    Inventors: Kumar V. Peddanarappagari, Paparao Palacharla
  • Patent number: 7154664
    Abstract: An amplification medium simulation apparatus comprises a basic data retaining unit 21, an input signal beam information retaining unit 22, and a simulation executing unit 31 approximating and calculating an output signal beam power at each signal beam wavelength outputted from the amplification medium involving a fluctuation in ion population at the metastable energy level in the amplification medium due to input of the input signal beam, by using contents retained in the basic data retaining unit 21 and the input signal beam information retaining unit 22, and outputting a result of calculation as a result of simulation of performance of the amplification medium.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: December 26, 2006
    Assignee: Fujitsu Limited
    Inventors: Masato Nishihara, Yasushi Sugaya, Etsuko Hayashi
  • Patent number: 7151895
    Abstract: A method for automatically setting a gain for an amplifier in an optical network includes transmitting, from a source proximate an upstream amplifier coupled to an optical span, a stable signal over the optical span. The method also includes using the stable signal at a downstream amplifier coupled to the optical span to automatically set a gain of the downstream amplifier.
    Type: Grant
    Filed: August 26, 2003
    Date of Patent: December 19, 2006
    Assignee: Fujitsu Limited
    Inventors: Jamil Omar-Hatem El-Reedy, Kumar Vijay Peddanarappagari, Emir Catovic, Paparao Palacharla
  • Patent number: 7139485
    Abstract: The invention relates to methods and arrangements for channel balancing of a wavelength division multiplexed optical signal. Channel balancing according to the invention is performed by using a resonator that provides a selection region in which a selected channel has a substantially increased poser density relative to channels out of resonance. The selected channel is attenuated a desired amount, i.e. a desired amount of power is removed therefrom, by adjusting the properties of the selection region. In a preferred embodiment, attenuation is achieved by adjusting the selection region such that destructive interference is obtained for the selected channel in a fiber carrying tile multiplexed optical signal.
    Type: Grant
    Filed: December 28, 2000
    Date of Patent: November 21, 2006
    Assignee: Proximion Fiber Systems AB
    Inventors: Adel Asseh, Simon Sandgren, Anders Henriksson, Mikael Bergman, Raoul Stubbe, Bengt Sahlgren, Ulf Öhlander
  • Patent number: 7139480
    Abstract: A method and system for multi-level power management in an optical network is provided. They include three levels of power management. The first level of power management dynamically changes equipment settings in each module of equipment so that required module setpoint values in each module are achieved. The second level of power management determines module setpoint values for each module of equipment within each node in the optical link so that required node setpoint values are achieved. The third level of power management determines node setpoint values at each node in the optical link so that the optical link meets predetermined power specifications. If any of the three levels cannot achieve the required setpoint values, an error signal is generated by that level of power management and sent to the level of power management above it, thus initiating a higher level of power management.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: November 21, 2006
    Assignee: Tropic Networks Inc.
    Inventors: Eddie Kai Ho Ng, Derrick Remedios, Colin Geoffrey Kelly, Ping Wai Wan, John Frederick Groves
  • Patent number: 7136585
    Abstract: Disclosed is a novel free space optical communication system comprising an optical amplifier configured to amplify an optical signal received from a fiber optic cable, a transmitter coupled to the optical amplifier and configured to transmit the amplified optical signal across a free space medium. The system also includes a receiver configured to receive the attenuated optical signal and a second optical amplifier coupled to the receiver configured to amplify the attenuated optical signal before transmitting the optical signal on to a fiber optic cable. The optical amplifier is preferably a Raman optical amplifier, but may also be any other optical amplifier, or combination of optical amplifiers, known in the art.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: November 14, 2006
    Assignee: Kiribati Wireless Ventures, LLC
    Inventor: Scott Harris Bloom
  • Patent number: 7133611
    Abstract: If a repeater supervisory control (SV), a pre-emphasis automatic adjustment (PE), a receiving side threshold value automatic adjustment (Vth), a transmitting side dispersion compensation value setting (VDC(T)), and a receiving side dispersion compensation value setting (VDC(R)) are executed for an optical main signal, these controls are executed in the above described priority order. Accordingly, if the controls are independently executed, or if two or more controls simultaneously occur, a control with a higher priority is executed. In this way, a transmission quality of an optical signal is prevented from being badly influenced as a result that the controls are simultaneously executed.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: November 7, 2006
    Assignee: Fujitsu Limited
    Inventor: Shinichi Kaneko
  • Patent number: 7130544
    Abstract: An optical repeating system includes an optical transmitter and an optical amplifying repeater. The optical transmitter transmits a supervisory command and a control command to the optical amplifying repeater as a first sub-signal. The supervisory command is a command to supervise internal circuits of the optical amplifying repeater, and the control command is a command to control the optical amplifying repeater. The optical amplifying repeater includes multiple sub-modules each for amplifying and repeating main signals on multiple sets of optical transmission lines. When receiving the supervisory command via the optical transmission line, each sub-module transmits a supervisory signal indicating the supervisory result associated with the supervisory command to an optical receiver as a second sub-signal.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: October 31, 2006
    Assignees: Mitsubishi Denki Kabushiki Kaisha, KDDI Corporation, KDDI Submarine Cable Systems Inc.
    Inventors: Yasunori Kasahara, Hideki Goto, Takashi Mizuochi, Kenkichi Shimomura, Masatoshi Suzuki, Yukio Horiuchi, Daishi Ishii, Toshio Kawazawa
  • Patent number: 7123405
    Abstract: An optical amplifying and relaying system capable of easily and highly accurately monitor troubles in optical amplifiers provided in an up and a down optical fiber transmission line opposing each other is disclosed. Monitoring light signal folding-back lines including variable optical attenuators 4a and 4b and wavelength selective reflecting means 5a and 5b, respectively, are provided between optical transmission lines L1 and L2, which oppose each other and on which optical amplifiers 4a and 4b are disposed each other.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: October 17, 2006
    Assignee: NEC Corporation
    Inventors: Ryu Yokoyama, Takaaki Ogata
  • Patent number: 7106969
    Abstract: An optical network terminator for terminating and reducing the accumulated noise in optical networks, particularly ring based networks. The terminator eliminates problems of noise accumulation from amplifier spontaneous emission (ASE), thermal noise, etc., while providing bi-directional communications in the optical network. The optical network may have any topology including ring, star, mesh, point-to-point, etc. In the case of an optical ring, the ring is broken and an optical terminator is placed in line therewith. The optical network terminator includes a filer such as an optical demultiplexer/multiplexer or Fiber Bragg Grating (FBG) based filter. Each individual wavelength of light is filtered and a multi-wavelength optical output is generated whereby the noise accumulation is removed. Each channel is adapted to only pass a band-limited signal around the center frequency corresponding to the wavelengths supported by the particular optical ring network.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: September 12, 2006
    Assignee: Atrica Israel Ltd.
    Inventors: Eyal Lichtman, Erik Hendell
  • Patent number: 7099595
    Abstract: The present invention provides an optical wavelength multiplexing transmission apparatus and an optical output control method for an optical wavelength multiplexing transmission apparatus in an optical wavelength multiplexing transmission system using a main signal light and an OSC light. The optical wavelength multiplexing transmission apparatus (10a) is made up of a first transmitting/receiving section (52a) a second transmitting/receiving section (52b) and an apparatus supervisory control unit (54). This can not only achieve quick restoration from troubles, but also stably calculate an optical output level even if a change of the number of wavelengths to be multiplexed takes place in a main signal light, and even save troublesome adjustments for the improvement of reliability of a transmission line while eliminating the need for a signal source for the adjustment of a receive optical level at the initial installation.
    Type: Grant
    Filed: July 19, 2004
    Date of Patent: August 29, 2006
    Assignee: Fujitsu Limited
    Inventor: Eisaku Touma