Router Patents (Class 398/49)
  • Publication number: 20140355986
    Abstract: The present invention relates to an interface and method for enabling interconnection of a host device and a small-formfactor pluggable module. The interface comprises a host device connector operative to receive a mating small-formfactor pluggable module connector and a switching device connected to the host device connector and operative to selectively switch at least one signal carried over the host device connector between at least two separate signal paths of the host device depending on a selected switching mode of the switching device.
    Type: Application
    Filed: October 25, 2011
    Publication date: December 4, 2014
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Elmar Trojer, Ling Chen, Yue Sun
  • Publication number: 20140355985
    Abstract: This invention relates to methods and apparatus for routing light beams in telecommunications devices using holographic techniques, in particular by displaying kinoforms on LCOS (Liquid Crystal on Silicon) devices.
    Type: Application
    Filed: March 7, 2012
    Publication date: December 4, 2014
    Inventors: Daping Chu, Neil Collings, William Crossland, Maura Michelle Redmond, Brian Robertson
  • Patent number: 8902909
    Abstract: In the field of communications, a method, a system, and a device for implementing service forwarding are disclosed. The method includes: establishing an optical network tunnel between data communication devices; triggering physical interfaces of the data communication devices directly connected to an optical network to start a link layer protocol after the optical network tunnel is successfully established; performing, by the data communication devices, link layer negotiation through the optical network tunnel according to the link layer protocol; setting a link layer state between the data communication devices and a physical state of the physical interfaces to be valid after the link layer negotiation is performed successfully; and implementing, service forwarding, by the data communication devices through the optical network tunnel after the link layer state and the physical state of the physical interfaces are set to be valid.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: December 2, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Enfu Wang
  • Patent number: 8903242
    Abstract: The invention relates to a directionless and colorless reconfigurable optical add/drop multiplexer (ROADM) for a number of clients comprising: an add/drop interface for optical signals of at least one optical network, wherein each received optical signal is split by at least one optical splitter into optical signals which are applied to a downstream cross connector distributing the split optical signals to wavelength selectors of different clients, wherein each wavelength selector performs a wavelength selection of at least one wavelength from the distributed optical signals, wherein an optical signal having a selected wavelength (?) is applied to a client transponder of a client.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: December 2, 2014
    Assignee: ADVA Optical Networking, SE
    Inventors: Dogan Atlas, Xiaoping Wu
  • Publication number: 20140348504
    Abstract: A directionless optical architecture is described for reconfigurable optical add/drop multiplexers (ROADMs) and wavelength selective switches (WSSs). The directionless architecture utilizes a directionless wavelength switch coupled between client devices and ROADMs/WSSs to eliminate the need to hard-wire client devices to a wavelength division multiplexed (WDM) network. Accordingly, client device connections can be automatically routed without manual intervention to provide a highly resilient network design which can recover route diversity during failure scenarios. Additionally, the present invention minimizes deployments of costly optical transceivers while providing superior resiliency. Further, the present invention couples the directionless optical architecture and associated optical protection mechanisms with existing mesh restoration schemes to provide additional resiliency.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Applicant: Ciena Corporation
    Inventors: Loudon T. BLAIR, Michael Y. FRANKEL
  • Publication number: 20140348503
    Abstract: A method for optimizing an optical network includes: obtaining a lightpath demand set including multiple lightpath demands; generating multiple lightpath demand sequences with different orders from the lightpath demand set; obtaining results of the respective lightpath demand sequences in parallel by multiple processing terminals; obtaining all the results, and comparing the results to obtain an optimum result. In this embodiment, by generating multiple lightpath demand sequences with different orders for the lightpath demand set and obtaining many results, the optimum result can be selected out from the results. Furthermore, multiple processing terminals may obtain the result in parallel, thus improving an operation efficiency.
    Type: Application
    Filed: May 23, 2014
    Publication date: November 27, 2014
    Applicant: Zhangjiagang Institute of Industrial Technologies Soochow University
    Inventors: Gangxiang SHEN, Yongcheng LI, Limei PENG
  • Publication number: 20140341570
    Abstract: A laser system includes an array of lasers that emit light at a number of different, fixed wavelengths. A group of optical transport systems connect to the laser system. Each of the optical transport systems is configured to modulate data signals onto the light from the laser system to create optical signals and transmit the optical signals on one or more optical fibers.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventor: Pradeep S. SINDHU
  • Publication number: 20140341574
    Abstract: An apparatus comprising a first tunable transmitter array comprising a first tunable transmitter and a second tunable transmitter and a cyclic array waveguide grating (AWG) wavelength router coupled to the first tunable transmitter array, wherein the cyclic AWG wavelength router comprises a plurality of input ports and a plurality of output ports, wherein the cyclic AWG wavelength router is configured to receive a first optical signal emitted from a first tunable transmitter via a first input port of the plurality of input ports, receive a second optical signal emitted from a second tunable transmitter via the first input port of the plurality of input ports, and route the first optical signal and the second optical signal to the output ports dependent on one or more wavelengths used to encode the first optical signal and the second optical signal.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 20, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventor: Xuejin Yan
  • Patent number: 8891965
    Abstract: A method for automatic confirmation of an optical network element optical modules each having multiple fibers; a fiber shuffle interconnector having ports to which said optical modules are connected; and a configuration unit which performs an automatic configuration of said optical network element by controlling all optical modules connected to said fiber shuffle interconnector to transmit a fiber identifier associated with a fiber of the respective optical module to the respective port of said fiber shuffle interconnector to which said optical module is connected, wherein said fiber shuffle interconnector forwards the received fiber identifier via another port of said fiber shuffle interconnector to another optical module of said optical network element which detects said forwarded fiber identifier being monitored by said configuration unit to generate a connectivity matrix indicating the connection of said optical modules to said fiber shuffle interconnector on the basis of the detected fiber identifiers.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: November 18, 2014
    Assignee: ADVA Optical Networking SE
    Inventors: Cornelius Fuerst, Joerg-Peter Elbers, Andreas Faerbert
  • Publication number: 20140328587
    Abstract: A path computation client (PCC) can request a path computation element (PCE) to compute a path across a wavelength switched optical network. PCC sends a request which identifies end nodes. The end nodes can support a plurality of possible values of a transmission parameter, such as modulation format or Forward Error Correction (FEC) type. The PCE computes a path between the end nodes and sends a reply to the PCC. The reply identifies the path between the end nodes and identifies a selected value of the transmission parameter for the computed path. The reply can comprise a spectrum assignment for the path. The reply can be a PCE Communication Protocol (PCEP) Reply message.
    Type: Application
    Filed: November 3, 2011
    Publication date: November 6, 2014
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventors: Roberto Magri, Piero Castoldi, Filippo Cugini, Francesco Paolucci, Nicola Sambo
  • Publication number: 20140328591
    Abstract: Embodiments of the invention describe apparatuses, optical systems, and methods for utilizing a dynamically reconfigurable optical transmitter. A laser array outputs a plurality of laser signals (which may further be modulated based on electrical signals), each of the plurality of laser signals having a wavelength, wherein the wavelength of each of the plurality of laser signals is tunable based on other electrical signals. An optical router receives the plurality of (modulated) laser signals at input ports and outputs the plurality of received (modulated) laser signals to one or more output ports based on the tuned wavelength of each of the plurality of received laser signals. This reconfigurable transmitter enables dynamic bandwidth allocation for multiple destinations via the tuning of the laser wavelengths.
    Type: Application
    Filed: July 26, 2012
    Publication date: November 6, 2014
    Inventors: Brian Koch, Daniel Sparacin, Alexander Fang
  • Patent number: 8879914
    Abstract: A method and apparatus for controlling traffic in an optical network having a plurality of OLTs for communicating with a plurality of PONs. A traffic controller receives traffic information concerning current traffic volume and, preferably with reference to a rules database, calculates the number of OLTs required to support the current traffic volume. A separate determination may be made whether a network reconfiguration is permitted at this time. If a reconfiguration is permitted, the traffic controller configures a traffic control switch to route the PON traffic to an from only the calculated number of OLTs. The traffic control switch may be implemented using a voltage-controlled optical fiber coupling or electronically, routing the traffic as electrical signals to and from electro-optical converters associated with each PON. The OLTs to be used may be selected by the traffic controller.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 4, 2014
    Assignee: Alcatel Lucent
    Inventors: Dusan Suvakovic, Doutje Van Veen
  • Patent number: 8873955
    Abstract: Scheduling methods and apparatus for use with optical switches with hybrid architectures are provided. An exemplary distributed scheduling process achieves 100% throughput for any admissible Bernoulli arrival traffic. The exemplary distributed scheduling process may be easily adapted to work for any finite round trip time, without sacrificing any throughput. Simulation results also showed that this distributed scheduling process can provide very good delay performance for different traffic patterns and for different round trip times associated with current switches.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Polytechnic Institute of New York University
    Inventors: Shivendra S. Panwar, Yanming Shen, Shunyuan Ye
  • Patent number: 8873961
    Abstract: An optical de-multiplexer (de-MUX) that includes an optical device that images and diffracts an optical signal using a reflective geometry is described, where a free spectral range (FSR) of the optical device associated with a given diffraction order abuts FSRs associated with adjacent diffraction orders. Moreover, the channel spacings within diffraction orders and between adjacent diffraction orders are equal to the predefined channel spacing associated with the optical signal. As a consequence, the optical device has a comb-filter output spectrum, which reduces a tuning energy of the optical device by eliminating spectral gaps between diffraction orders of the optical device.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: October 28, 2014
    Assignee: Oracle International Corporation
    Inventors: Ying Luo, Xuezhe Zheng, Guoliang Li, Kannan Raj, Ashok V. Krishnamoorthy
  • Patent number: 8873962
    Abstract: A method includes determining a line rate selection for a flexible optical wavelength-division-multiplexing WDM network, determining a traffic routing in said network, and determining simultaneously a channel routing, wavelength assignment and spectrum allocation in said network based on an auxiliary graph.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 28, 2014
    Assignee: NEC Laboratories America, Inc.
    Inventors: Ankitkumar N. Patel, Philip Nan Ji, Jason P. Jue, Ting Wang, Yoshiaki Aono
  • Publication number: 20140314104
    Abstract: A computer implemented method for dynamically allocating traffic in a passive optical communication system includes employing an individual wavelength channel to carry different data services from an individual transmitter, configuring an optical network unit into optical network unit groups serving at least two community of users; and providing a flexible remote node with wavelength routing flexibility including switching wavelength traffic from optical network user groups with low capacity requirements to optical network user groups with increased wavelength traffic requirements.
    Type: Application
    Filed: April 16, 2014
    Publication date: October 23, 2014
    Applicant: NEC Laboratories America, Inc.
    Inventors: Ming-Fang Huang, Dayou Qian
  • Patent number: 8861967
    Abstract: A reconfigurable optical add/drop multiplexer and a reconfigurable optical add/drop multiplexing method are provided. The reconfigurable optical add/drop multiplexer comprises: an optical processing unit for receiving a first optical signal containing a plurality of optical channels, processing the first optical signal to generate a second optical signal which is a part of the first optical signal, and outputting the second optical signal; and a coherent detection unit for performing a coherent detection on the second optical signal so as to separate from the second optical signal an optical channel contained therein, and outputting the optical channel.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Wuhan Research Institute of Posts and Telecommunications
    Inventors: Shaohua Yu, Shanhong You, Gangxiang Shen, Zhu Yang, Qi Yang
  • Patent number: 8861957
    Abstract: An optical access network comprises L wavelength division multiplexed access sub-networks. Each of the wavelength division multiplexed access sub-networks is arranged to use a set of wavelength channels. M optical line termination apparatus, each receive traffic from a respective operator network and output traffic on the wavelength channels. A wavelength routing apparatus comprises M sets of first ports and L second ports. Each set of first ports connects to a respective one of the optical line termination apparatus and each second port connects to an optical link of a respective one of the wavelength division multiplexed access sub-networks. The wavelength routing apparatus is arranged to route the set of wavelength channels between the sets of first ports and the second ports and to route different wavelength channels of the same wavelength to different ones of the second ports.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: October 14, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Fabio Cavaliere, Luca Giorgi, Antonio D'Errico, Renato Grosso
  • Patent number: 8855487
    Abstract: The present disclosure provides a method and device for obtaining the routing information of an electro-optical multi-layer network. The ports on which an optical transmitter and an optical receiver are located are determined, and the electro-optical conversion information is added to the routing information on a port of the optical layer node side or the electro layer node side on which the optical transmitter and the optical receiver are located. The electro-optical conversion information includes but is not limited to the wavelength tuning capability and signal processing capability.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: October 7, 2014
    Assignee: ZTE Corporation
    Inventor: Gang Xie
  • Publication number: 20140294384
    Abstract: An optical wavelength path rearranging method includes detecting time that elapses since a setting of optical wavelength paths in an optical wavelength division multiplexing network; and moving to a predetermined long-period optical wavelength range, an optical wavelength path that is among the optical wavelength paths and for which the detected elapsed time is long, where the optical wavelength path rearranging method is executed by a processor.
    Type: Application
    Filed: January 15, 2014
    Publication date: October 2, 2014
    Applicant: FUJITSU LIMITED
    Inventor: Jun Wakabayashi
  • Patent number: 8849115
    Abstract: The present invention provides a directionless optical architecture for reconfigurable optical add/drop multiplexers (ROADMs) and wavelength selective switches (WSSs). The directionless architecture utilizes a directionless wavelength switch coupled between client devices and ROADMs/WSSs to eliminate the need to hard-wire client devices to a wavelength division multiplexed (WDM) network. Accordingly, client device connections can be automatically routed without manual intervention to provide a highly resilient network design which can recover route diversity during failure scenarios. Additionally, the present invention minimizes deployments of costly optical transceivers while providing superior resiliency. Further, the present invention couples the directionless optical architecture and associated optical protection mechanisms with existing mesh restoration schemes to provide additional resiliency.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: September 30, 2014
    Assignee: Ciena Corporation
    Inventors: Loudon Blair, Michael Y. Frankel
  • Patent number: 8849113
    Abstract: A wavelength selective switch includes a wavelength dispersing element, a wavelength converging element, multiple transmission control elements, and a controller. The wavelength dispersing element performs wavelength dispersion of input signal light. The transmission control element divides input signal light into wavelength bands within a channel band and transmits or cuts off the divided input signal light. The wavelength converging element converges signal light having respective wavelengths produced from the transmission control elements for output. The controller controls a transmittance of the transmission control element of at least one of the low and high frequency sides in a channel band.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: September 30, 2014
    Assignee: Fujitsu Limited
    Inventor: Hiroki Ooi
  • Patent number: 8849110
    Abstract: A module for routing packets of first and second optical signals comprising first and second inputs (A,B) for receiving the first and second optical signals and first and second outputs (C,D) for the optical signals. The module comprises optical switching means (8) for switching the first optical signal and the second optical signal to either one of the two outputs (C,D), and a correlator module (7). The correlator module comprises at least two optical correlators (9,10,11,12). The correlator module (7) is arranged to generate control signals for controlling the switching means (8) based on destination data in packets of the first and second signals such that if packets of the first and second optical signals overlap, the switching means directs the packet that was received first to the output (C,D) indicated by the destination data of that packet and the overlapping subsequent packet is directed to the other output (C,D) or blocked.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: September 30, 2014
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventor: Attila Bader
  • Patent number: 8837945
    Abstract: Provided is a passive optical network (PON) providing system of an Ethernet-based packet transport layer (PTL) scheme, including: a connection management server to manage a unified PTL connection overall over the network by establishing a PTL connection between an optical network unit (ONU)/optical network terminal (ONT) of a customer termination of one party and an ONU/ONT of a customer termination of another party, and by applying a PTL-PON scheme to a PON section between the ONU/ONT and an optical line termination (OLT); an OLT to manage a connection of a received packet, and to convert a format of the packet according to a transmission direction of the packet and thereby transmit the packet; and an ONU/ONT becoming an end point of the PTL connection to convert the format of the packet according to the transmission direction of the received packet and to thereby transmit the packet to a customer terminal or the OLT.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yool Kwon, Hong Ju Kim, Byung Ho Yae, Kyung Gyu Chun, Young Boo Kim
  • Publication number: 20140255026
    Abstract: A colorless, directionless ROADM includes a pair of contentioned add and drop wavelength-selective optical switches, an input wavelength-selective optical switch having one input port, and an output wavelength-selective optical switch having one output port. Unintended input-to-output port couplings, which appear in the “contentioned” add and drop switches, can be mitigated by the input and output wavelength-selective optical switches carrying the through traffic.
    Type: Application
    Filed: February 6, 2014
    Publication date: September 11, 2014
    Inventors: Peter David Roorda, Sheldon McLaughlin
  • Patent number: 8830989
    Abstract: Techniques are provided to automatically configure packet based network services over Dense Wavelength Division Multiplex (DWDM) network communication links. An optical wavelength is detected at an optical interface of a network device configured to send traffic between a packet switched network and an optical network. A message is sent to an optical control plane comprising information configured to request optical configuration information for the optical wavelength. A response to the message is received comprising the optical configuration information and the wavelength is activated at the optical interface using the optical configuration information. A frame is received over the wavelength that is formatted according to an optical protocol. Packet switched network information is extracting from an overhead portion of the frame that is configured to identify network parameters for configuring a packet switched network link and the associated routing.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 9, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Simon James Trevor Spraggs, Horia Marius Miclea, George L. Swallow, Ornan Gerstel
  • Patent number: 8831423
    Abstract: Switching architectures for WDM mesh and ring network nodes are presented. In mesh networks, the switching architectures have multiple levels—a network level having wavelength routers for add, drop and pass-through functions, an intermediate level having device units which handle add and drop signals, and a local level having port units for receiving signals dropped from the network and transmitting signals to be added to the network. The intermediate level device units are selected and arranged for performance and cost considerations. The multilevel architecture also permits the design of reconfigurable optical add/drop multiplexers for ring network nodes, the easy expansion of ring networks into mesh networks, and the accommodation of protection mechanisms in ring networks.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: September 9, 2014
    Assignee: Cisco Technology, Inc.
    Inventors: Ornan Gerstel, Mauro Macchi, Stefano Piciaccia
  • Patent number: 8818191
    Abstract: A method for reallocating a wavelength in an optical wavelength multiplexer transmission system is disclosed. The method includes switching a supply of a first channel electric signal from a first optical transmitter device to a second optical transmitter device, the first optical transmitter device converting the first channel electric signal into an optical signal of a first wavelength, and the second optical transmitter device converting the first channel electric signal into an optical signal of a second wavelength differing from the first wavelength, and transmitting the optical signal of the second wavelength output from the second optical transmitter device.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: August 26, 2014
    Assignee: Fujitsu Limited
    Inventors: Takeshi Sakamoto, Ryosuke Goto
  • Patent number: 8811817
    Abstract: Restrictions, due to wavelength paths which are non-alternative combinations of wavelengths and paths, are solved.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 19, 2014
    Assignee: NEC Corporation
    Inventors: Masahiro Sakauchi, Shigeru Nakamura
  • Patent number: 8811820
    Abstract: A hub node in a wavelength division multiplexed optical network automatically discovers at least one of new client-side optical ports and new edge-side optical ports. The hub node comprises a wavelength switch network, port discovery equipment, and a controller. The wavelength switch network routes any wavelength channel that does not support a matching pair of client-side and edge-side ports to port discovery equipment at the hub node. The port discovery equipment searches for new ports, and, responsive to finding a new port, automatically discovers a predefined set of one or more attributes of the new port. The controller determines that a client-side port and an edge-side port are a matching pair of ports if discovered sets of attributes of those ports match according to one or more predefined rules. The controller then controls the wavelength switch network to re-route the wavelength channel supporting that matching pair between those ports.
    Type: Grant
    Filed: December 30, 2012
    Date of Patent: August 19, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Stefan Dahlfort, Kim Laraqui, Ming Xia, Peter Öhlén
  • Patent number: 8805187
    Abstract: An optical waveguide router device with feedback control that uses the fringe frequencies of an optical data signal to derive a wavelength (e.g., temperature) control signal in order to compensate for wavelength variations due to temperature fluctuations and/or other wavelength shifting factors without the need for a reference laser. A monitoring circuit converts an output of at least one output monitoring port to an electrical signal and comparing the output of said at least one output monitoring port against 1) a reference signal, or 2) at least one output from another output monitoring port having a higher or lower frequency fringe of an optical data signal of at least one data port, or 3) at least one output from another output monitoring port having light from diffraction pattern(s), and outputting a control signal reflecting a result of the comparison to control at least one center wavelength of the waveguide router.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: August 12, 2014
    Assignee: Neophotonics Corporation
    Inventor: Kenneth McGreer
  • Publication number: 20140219657
    Abstract: Proposed is an optical node that contains a number of A optical demultiplexers. Each demultiplexer is adapted to provide at its N output ports N incoming optical signals received from N optical cores of an incoming optical multi-core fiber. Furthermore, the optical node contains a number of B optical multiplexers. Each multiplexer is adapted to receive at its N input ports N outgoing optical signals and to insert the N outgoing optical signals into N optical cores of an outgoing multi-core fiber. The optical node is configurable to switch one of the incoming optical signals simultaneously onto B input ports of different multiplexers and to combine A of the incoming optical signals from A output ports of different demultiplexers onto a same input port of one of the multiplexers. Alternatively, N incoming signals are received from N different mode signals of a spatially multiplexed multi-mode fiber and then transmitted as N multi-mode signals into a spatially multiplexed multi-mode fiber.
    Type: Application
    Filed: September 14, 2012
    Publication date: August 7, 2014
    Inventors: Christian Simonneau, Francesco Vacondio
  • Publication number: 20140219656
    Abstract: An exemplary optical distribution frame includes a frame structure defining multiple positions into which multiple chassis can be inserted and a frame controller unit attached to the frame structure. The frame structure includes a frame controller and a switch communicatively coupled to the frame controller, wherein the switch includes a multiple ports. The frame structure including multiple cables, each cable being attached to a respective one of the ports of the switch and routed and attached to the optical distribution frame so that each cable can be attached to a chassis inserted into a predetermined one of the positions in the optical distribution frame, wherein the frame controller is configured to communicate port mapping information to a management entity that is communicatively coupled to the frame controller for use by the management entity in associating location information with a chassis inserted into the optical distribution frame.
    Type: Application
    Filed: December 23, 2013
    Publication date: August 7, 2014
    Applicant: ADC TELECOMMUNICATIONS, INC.
    Inventors: Jonathan T. Lawson, Joseph C. Coffey, John P. Anderson, Laxman R. Anne
  • Patent number: 8798465
    Abstract: An optical path switching type optical signal transmission/reception apparatus includes a one-to-seven compatible optically controlled optical path switching apparatus 100 that is connected to a host optical signal transmission/reception apparatus 1 via an optical fiber, a total of seven subordinate optical communication adapters 110 connected via optical fibers, user side devices 160 connected to respective subordinate optical communication adapters via an electric circuit, an optical transmission/reception control circuit provided in each of the total of seven subordinate user side optical communication adapters 110, and including an uplink optical signal transmission mechanism, a downlink optical signal reception mechanism, a control light source that can generate control light to drive the optical path switching apparatus 100, in which a wavelength of the generated control light is different from a wavelength of signal light, and an optical communication oriented transmission/reception mechanism using the
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: August 5, 2014
    Assignees: Dainichiseika Color & Chemicals Mfg. Co., Ltd., Inter Energy Co., Ltd., National Institute of Advanced Industrial Science and Technology
    Inventors: Norio Tanaka, Shigeru Takarada, Hirobumi Watanabe, Shiro Futaki, Ichiro Ueno, Takashi Hiraga, Noritaka Yamamoto
  • Patent number: 8792514
    Abstract: A packet switching system includes a plurality of switch fabrics connected in cascade and a plurality of buffers respectively connected to the plurality of switch fabrics. In the event of packet competition, the plurality of switch fabrics buffer the competing packets to the corresponding buffers through buffer connection ports, and forward the competing packets in excess of the number of buffer connection ports to an adjacent switch fabric through switch connection ports.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: July 29, 2014
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: June Koo Rhee, Chan-Kyun Lee
  • Patent number: 8792787
    Abstract: A packet switch/router including a first stage switch fabric receiving an electrical signal, a mid-stage buffer receiving and storing the electrical signal from the first stage switch fabric, and a second stage switch fabric receiving the electrical signal from the mid-stage buffer. Each switch fabric includes N layers of N×N arrayed waveguide gratings (AWGs), and each AWG has ingress ports and egress ports. A wavelength tunable device, such as a tunable laser, communicates with a source ingress port of an AWG and converts the received electrical signal to an optical signal having a wavelength selected for routing a packet from the source ingress port to a target egress port of the arrayed waveguide grating. A photoreceiver, such as a burst-mode photoreceiver, receives the propagated optical signal from the target egress port and converts the optical signal to the electrical signal.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: July 29, 2014
    Assignee: Google Inc.
    Inventors: Xiaoxue Zhao, Bikash Koley, Vijay Vusirikala, Edward Crabbe, Paul Phillip Germano, Hong Liu, Philip Michael Wells
  • Patent number: 8781323
    Abstract: A packet transport layer passive optical network providing method controls an optical line termination device and an optical network terminal or an optical network unit of the subscriber end to transport packet transport layer passive optical network packets between the optical network terminals or the optical network units and the optical line termination device, and the optical network terminals or the optical network unit of the subscriber end becomes an end point of a packet transport layer connection.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 15, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yool Kwon, Hong Ju Kim, Byung Ho Yae, Kyung-Gyu Chun, Young Boo Kim
  • Patent number: 8774625
    Abstract: Embodiments of the present invention are directed to implementing high-radix switch topologies on relatively lower-radix physical networks. In one embodiment, the method comprises constructing the physical network (702) composed of one or more optical switches connected via one or more waveguides. A desired switch topology (704) is then designed for implementation on the physical network. The switch topology is then overlain on the switch network by configuring the optical switches and waveguides (706) to implement the switch topology on the physical network. The optical switches can be reconfigured following a transmission over the physical network and can be configured to implement circuit switching or packet switch.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: July 8, 2014
    Assignee: Hewlett-Packard Development Company, L. P.
    Inventors: Nathan L. Binkert, Alan L. Davis, Moray McLaren
  • Patent number: 8774626
    Abstract: A network component comprising at least one processor configured to implement a method comprising obtaining a wavelength availability information for a path, determining whether to implement a wavelength assignment based on the wavelength availability information, updating the wavelength availability information when the wavelength assignment is to be implemented, and forwarding the wavelength availability information. Also included is a method comprising obtaining a wavelength availability information, comparing a number of wavelengths in the wavelength availability information to a threshold, determining whether to implement wavelength conversion along a path when the number of available wavelengths is less than or about equal to the threshold, and resetting the wavelength availability information when wavelength conversion is to be implemented.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: July 8, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Greg Bernstein, Young Lee
  • Publication number: 20140186037
    Abstract: A hub node in a wavelength division multiplexed optical network automatically discovers at least one of new client-side optical ports and new edge-side optical ports. The hub node comprises a wavelength switch network, port discovery equipment, and a controller. The wavelength switch network routes any wavelength channel that does not support a matching pair of client-side and edge-side ports to port discovery equipment at the hub node. The port discovery equipment searches for new ports, and, responsive to finding a new port, automatically discovers a predefined set of one or more attributes of the new port. The controller determines that a client-side port and an edge-side port are a matching pair of ports if discovered sets of attributes of those ports match according to one or more predefined rules. The controller then controls the wavelength switch network to re-route the wavelength channel supporting that matching pair between those ports.
    Type: Application
    Filed: December 30, 2012
    Publication date: July 3, 2014
    Applicant: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
    Inventor: TELEFONAKTIEBOLAGET L M ERICSSON (PUBL)
  • Patent number: 8768167
    Abstract: A single step routing and wavelength assignment method and system for automated provisioning of services on DWDM networks is presented. This novel single step solution automates design and assignment of services in DWDM networks. For an automated provisioning platform that can handle the routing and wavelength assignment in a single step, the solution avoids reconfiguration of existing services. It also takes into consideration practical aspects of DWDM transponder availability at termination sites and regeneration sites along the selected route. The methodology includes iterative computation of common channel sets to avoid multiple shortest path computations for each of the wavelengths.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: July 1, 2014
    Assignee: Telcordia Technologies, Inc.
    Inventors: Harshad Tanna, Sudha Ramesh, Ravi Vaidyanathan
  • Publication number: 20140178069
    Abstract: An optical receiver module may include a demultiplexer routing a plurality of multiplexed optical signals to different optical paths depending on their wavelengths, a photodetector provided spaced apart from the demultiplexer to convert the optical signals into electric signals, respectively, a pre-amplifier electrically connected to the photodetector to amplify intensities of the electric signals, a flexible printed circuit board including a first electrode layer, which is electrically connected to the pre-amplifier to transmit the electric signals to the external circuit, and a second electrode layer configured to supply a ground potential. The flexible printed circuit board are provided not to have any via hole between the first and second electrode layers.
    Type: Application
    Filed: July 11, 2013
    Publication date: June 26, 2014
    Inventors: Taeyong KIM, JiHo JOO, Gyungock KIM
  • Patent number: 8761601
    Abstract: Systems and methods are described that that dynamically configure high-speed data link lightpaths between access routers and backbone routers at geographically dispersed locations to reassign traffic when a backbone router fails or is removed from service. Embodiments reduce the quantity of backbone router ports used in dual backbone router-homed networks.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: June 24, 2014
    Inventors: Robert Duncan Doverspike, Rakesh Kumar Sinha, Peter D. Magill, Jennifer Yates
  • Publication number: 20140161449
    Abstract: A regenerator system is provided for dynamic and asymmetric bandwidth capacity adjustment when exchanging data between a first remote network device and a second remote network device. The regenerator includes first and second couplers in communication with the first and second remote network devices, respectively, using a first communication medium that provides multiple communication channels, and at least one redirecting device operable to selectively configure at least one of the channels for either transmission of a signal from the first remote network device to the second remote network device, or transmission of the signal from the second remote network device to the first remote network device.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 12, 2014
    Applicant: Level 3 Communications, LLC
    Inventor: Peter Brennan Doerr
  • Patent number: 8750706
    Abstract: A network element of an optical communications network. The network element comprises an electronic router for forwarding traffic between a set of client access ports and a plurality of I/O ports. A respective EO interface is coupled to each one of the plurality of I/O ports. Each EO interface terminates a respective optical channel. A directionally independent access (DIA) node is configured to selectively route each optical channel between its respective EO interface and a selected one of at least two optical fiber links of the optical communications network.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: June 10, 2014
    Assignee: Ciena Corporation
    Inventors: David Boertjes, Gerard Swinkels, Serge Asselin, Ryan Amenta
  • Patent number: 8744262
    Abstract: The present invention includes novel techniques, apparatus, and systems for optical WDM communications. Tunable lasers are employed to generate subcarrier frequencies representing subchannels of an ITU channel to which client signals can be mapped. Client circuits can be divided and combined before being mapped, independent of one another, to individual subchannels within and across ITU channels. Subchannels may be independently routed to a single subchannel receiver filter, such that each subchannel detected at the receiver may come from a different source location. Network architectures and subchannel transponders, muxponders and crossponders are disclosed, and techniques are employed (at the subchannel level/layer), to facilitate the desired optical routing, switching, concatenation and protection of client circuits mapped to these subchannels across the nodes of a WDM network. Subchannel hopping may also be used to increase the optical network security.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: June 3, 2014
    Assignee: Vello Systems, Inc.
    Inventor: Chris Wilhelm Barnard
  • Publication number: 20140140696
    Abstract: Bidirectional wavelength cross connects include a plurality of ports, each configured to receive an input optical signals, each input optical signal having a plurality of spectral bands. At least one of the plurality of ports is disposed to simultaneously transmit an output optical signal having at least one of the spectral bands. A plurality of wavelength routing elements are configured to selectively route input optical signal spectral bands to output optical signals.
    Type: Application
    Filed: January 30, 2014
    Publication date: May 22, 2014
    Applicant: Altera Corporation
    Inventors: Edward J. Bortolini, Dirk Barthel, Robert T. Weverka, Samuel Paul Weaver, Paulo E. Silveira
  • Patent number: 8731403
    Abstract: A multicast optical switch includes a free-space optical assembly of discrete splitters, cylindrical optics, and a linear array of reflective switching devices, such as microelectromechanical systems (MEMS) mirrors, to provide low-loss, high-performance multicast switching in a compact configuration. The assembly of optical splitters may include multiple planar lightwave circuit splitters or a multi-reflection beam splitter that includes a linear array of partially reflecting mirrors, each of a different reflectivity.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: May 20, 2014
    Assignee: II-VI Incorporated
    Inventors: Massimo Martinelli, Manish Sharma, Ruipeng Sun, Mark H. Garrett, Aravanan Gurusami
  • Patent number: 8724988
    Abstract: A synchronous packet switch comprises output modules, input modules, optical connections and a switch control unit. The output modules comprise optical receivers each configured to receive optical signals at a different wavelength. The input modules receive electric signals carrying data cells to be routed. Each input module comprises optical transmitters, each configurable to generate an optical signal at a different wavelength, and routing apparatus comprising output ports. Each output module has at least one output port allocated to it. The routing apparatus is configurable to route a received optical signal to a selected output port. The optical connections are arranged to couple output ports to respective output modules. The switch control unit controls routing of the optical signals from the transmitters to the output modules and generates a routing control signal for configuring the routing apparatus to route an optical signal from a transmitter to a selected output port.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: May 13, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Nicola Andriolli, Antonella Bogoni, Alberto Bianchi, Piero Castoldi, Luca Poti, Pier Giorgio Raponi
  • Patent number: 8718469
    Abstract: An apparatus comprising a path computation element (PCE) configured for at least partial impairment aware routing and wavelength assignment (RWA) and to communicate with a path computation client (PCC) based on a PCE protocol (PCEP) that supports path routing, wavelength assignment (WA), and impairment validation (IV). Also disclosed is a network component comprising at least one processor configured to implement a method comprising establishing a PCEP session with a PCC, receiving path computation information comprising RWA information and constraints from the PCC, establishing impairment aware RWA (IA-RWA) based on the path computation information and a private impairment information for a vendor's equipment, and sending a path and an assigned wavelength based on the IA-RWA to the PCC. Disclosed is a method comprising establishing impairment aware routing and wavelength assignment for a plurality of network elements (NEs) in an optical network using routing and combined WA and IV.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: May 6, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Young Lee, Greg Bernstein