Wdm Patents (Class 398/68)
  • Patent number: 8917992
    Abstract: An optical network remote node includes first and second node inputs, each receiving a multiplexed optical signal, and node outputs, each outputting a separate demultiplexed optical signal. The node includes first and second optical power splitters, each having a splitter input connected to one of the node inputs and splitter outputs connected to corresponding node outputs. The node includes an arrayed waveguide grating having first and second grating inputs connected to the first and second node inputs, respectively, and grating outputs connected to the corresponding node outputs. If the received signal at one of the node inputs is time division multiplexed, the corresponding connected optical power splitter broadcasts the received optical signal at the node outputs. If the received signal at one of the node inputs is wavelength division multiplexed, the arrayed waveguide grating demultiplexes the received optical signals in wavelength and outputs the demultiplexed signals at the node outputs.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: December 23, 2014
    Assignee: Google Inc.
    Inventors: Cedric Fung Lam, Ben Warren Segura, Ryohei Urata, Pedram Zare Dashti, Hong Liu
  • Patent number: 8917991
    Abstract: In fiber-to-the-home (FTTH) RF over Glass (RFoG) Architecture a customer-premise-equipment (CPE) includes a wavelength separator. A method includes up-converting a baseband upstream data signal to a frequency band above a frequency band of a baseband downstream data signal; combining the up-converted upstream data signal with an upstream cable return signal; transmitting the up-converted upstream data signal and the upstream cable return signal using a single upstream laser; and separating, with a wavelength separator, A) a downstream data signal and a downstream cable feed signal from B) the combined up-converted upstream data signal and upstream cable return signal.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: December 23, 2014
    Assignee: Aurora Networks, Inc.
    Inventors: Sudhesh Mysore, Charles Barker, Oleh Sniezko, Krzysztof Pradzynski
  • Patent number: 8903242
    Abstract: The invention relates to a directionless and colorless reconfigurable optical add/drop multiplexer (ROADM) for a number of clients comprising: an add/drop interface for optical signals of at least one optical network, wherein each received optical signal is split by at least one optical splitter into optical signals which are applied to a downstream cross connector distributing the split optical signals to wavelength selectors of different clients, wherein each wavelength selector performs a wavelength selection of at least one wavelength from the distributed optical signals, wherein an optical signal having a selected wavelength (?) is applied to a client transponder of a client.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: December 2, 2014
    Assignee: ADVA Optical Networking, SE
    Inventors: Dogan Atlas, Xiaoping Wu
  • Publication number: 20140348508
    Abstract: The present invention provides a method, terminal and system for fiber network management. A terminal obtains configuration information from a management system and sending an identifier of a configuration port connected to a fiber to an ODN device to allow the ODN device to indicate, according to the configuration port identifier, a corresponding configuration port into which one end of the fiber is inserted. The method includes sending, according to a received first identifier of one end of the fiber and a corresponding configuration port identifier, which are sent by the ODN device, and a second identifier of the other end of the fiber, which is sent by a detecting module, an identifier of a peer configuration port connected to the fiber to the ODN device to allow the ODN device to indicate, according to the received peer configuration port identifier, a corresponding peer configuration port into which the other end of the fiber is inserted.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 27, 2014
    Inventors: Zhenbin Weng, Huaqing Liu, De Li
  • Publication number: 20140341578
    Abstract: A multi-channel receiver optical subassembly (ROSA) such as an arrayed waveguide grating (AWG), with outputs directly optically coupled to respective photodetectors such as photodiodes. In one embodiment, an AWG may be configured such that optical components of the AWG do not interfere with direct optical coupling, and the wire bonding points on the photodiodes may also be configured such that wire bonding does not interfere with direct optical coupling. The photodetectors may also be mounted on a photodetector mounting bar with a pitch sufficiently spaced to allow connection to floating grounds. A passive alignment technique may be used to determine the mounting locations on the photodetector mounting bar such that the photodetectors are aligned with the optical outputs.
    Type: Application
    Filed: November 25, 2013
    Publication date: November 20, 2014
    Applicant: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Joyce Li
  • Publication number: 20140341579
    Abstract: An optical line terminal (OLT) in a time and wavelength division multiplexed (TWDM) passive optical network (PON). The OLT comprises a first optical port, a second optical port, and a processor. The first optical port is configured to couple to a plurality of optical network units (ONUs) via an optical distribution network (ODN). The second optical port is configured to couple to the ONUs via the ODN. The processor is coupled to the first optical port and the second optical port and is configured such that, responsive to receiving information indicating that the first optical port has experienced a greater power loss over time than the second optical port, the OLT assigns to the first optical port a first wavelength with a power greater than the power of a second wavelength assigned to the second optical port.
    Type: Application
    Filed: May 15, 2014
    Publication date: November 20, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventors: Frank J. Effenberger, Lei Zong, Dekun Liu
  • Patent number: 8886043
    Abstract: The disclosure provides an optical network system, an Optical Line Terminal (OLT), an Optical Network Unit (ONU) and an Optical Distribution Network (ODN) apparatus. The system includes: an OLT configured to modulate and encode at least one line of time-division-multiplexed downlink signals, synthesize the downlink signals encoded into one line and then output it, receive uplink signals, and decode the uplink signals received and then output them; an ODN configured to separate the downlink signals received into multiple lines and then output them, synthesize the uplink signals received into one line, and then output it to the OLT; and ONUs configured to receive the downlink signals output from the ODN, decode the downlink signals received and output them, encode one line of time-division-multiplexed uplink signals, and output the uplink signals encoded to the ODN. Decoding of the downlink signals and encoding of the uplink signals can further be implemented by the ODN.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 11, 2014
    Assignee: ZTE Corporation
    Inventors: Biao Chen, Liang Cheng, Dawei Wang, Songlin Zhu, Dan Geng
  • Patent number: 8885618
    Abstract: A wireless communications system including a mobile station MS and base stations BS1 and BS2, wherein one or both of the mobile station MS and the base stations BS1 and BS2 is provided with a unit for notifying information of a frame position with the possibility of transmission of packets based on detection of deterioration of a reception quality and wherein the mobile station MS is provided with a unit for determining a frame position without the possibility of transmission of packets and shifting to a peripheral cell detection mode at this frame position based on information of a frame position with the possibility of transmission of packets, whereby it is possible to shift to a peripheral cell detection mode without lowering the transmission efficiency and without complicating the processing.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: November 11, 2014
    Assignee: Fujitsu Limited
    Inventors: Tetsuya Yano, Kazuhisa Obuchi, Shunji Miyazaki
  • Patent number: 8879911
    Abstract: There is provided an optical line terminal that dynamically allocates communication bandwidth to a plurality of optical network units in an optical communication network, the optical line terminal including a minimum bandwidth allocation unit calculating allocation bandwidth of the plurality of optical network units based on bandwidth request information notified by the plurality of optical network units, a comparison unit comparing an allocation cycle given as the sum total of allocation bandwidth allocated to the plurality of optical network units respectively with a predetermined threshold value, a best-effort bandwidth allocation unit calculating remaining bandwidth as best-effort bandwidth of the plurality of optical network units when the allocation cycle is less than the threshold value, and a bandwidth allocation unit allocating communication bandwidth of the plurality of optical network units based on the allocation bandwidth and the best-effort bandwidth.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: November 4, 2014
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Hideaki Tamai, Ryuji Hisano
  • Patent number: 8879914
    Abstract: A method and apparatus for controlling traffic in an optical network having a plurality of OLTs for communicating with a plurality of PONs. A traffic controller receives traffic information concerning current traffic volume and, preferably with reference to a rules database, calculates the number of OLTs required to support the current traffic volume. A separate determination may be made whether a network reconfiguration is permitted at this time. If a reconfiguration is permitted, the traffic controller configures a traffic control switch to route the PON traffic to an from only the calculated number of OLTs. The traffic control switch may be implemented using a voltage-controlled optical fiber coupling or electronically, routing the traffic as electrical signals to and from electro-optical converters associated with each PON. The OLTs to be used may be selected by the traffic controller.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 4, 2014
    Assignee: Alcatel Lucent
    Inventors: Dusan Suvakovic, Doutje Van Veen
  • Publication number: 20140314414
    Abstract: An apparatus comprising an arrayed waveguide grating (AWG) comprising a plurality of AWG ports, a power splitter comprising a plurality of splitter ports, and a plurality of optical interleavers, each coupled to a respective AWG port and a respective splitter port, for directing incoming optical signals to one of the AWG and the power splitter.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 23, 2014
    Applicant: Futurewei Technologies, Inc.
    Inventors: Ning Cheng, Frank J. Effenberger
  • Patent number: 8867916
    Abstract: In order to achieve a higher spectral efficiency of OFDM sub-bands, optical signals using orthogonal frequency division multiplexing are transmitted through an optical network in the form of a continuous waveband optical signal. An optical add/drop multiplexer (1) splits the continuous waveband optical signal into an express path and a drop path. A band pass filter (4) is provided in the drop path to extract a sub-band carrying at least one of said OFDM modulated optical signals (DROP). The band pass filter (4) has a filter bandwidth that covers the sub-band to be extracted. A band-stop filter (3) is provided in the express path to remove the sub-band to be extracted from the continuous waveband optical signal (IN). The band stop filter (3) has a filter bandwidth which is narrower than the band pass filter (4). An OFDM modulated optical add signal (ADD) can be added into the wavelength gap created through the band stop filter (3).
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: October 21, 2014
    Assignee: Alcatel Lucent
    Inventors: Fred Buchali, Roman Dischler
  • Patent number: 8867920
    Abstract: An electro-optical device includes an optical de-multiplexing portion operative to output a first optical signal having a first wavelength and a second optical signal having a second wavelength, an array of photodetectors, and a switching logic portion communicatively connected to the array of photodetectors, the switching logic portion operative to determine which photodetector of the array of photodetectors is converting the first optical signal into a first electrical signal and output the first electrical signal from a first output node associated with the first optical signal.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Solomon Assefa, Douglas M. Gill, Jonathan E. Proesel, Alexander V. Rylyakov, Clint L. Schow
  • Publication number: 20140308038
    Abstract: A method for allocating uplink and downlink bandwidth, includes: receiving, by a primary ONU, a primary PON downlink frame sent by a nested OLT, where the primary PON downlink frame carries a primary ONU uplink bandwidth grant and a secondary ONU uplink bandwidth grant; parsing, by the primary ONU, the primary PON downlink frame to acquire the primary ONU uplink bandwidth grant and the secondary ONU uplink bandwidth grant; and sending, by the primary ONU, a secondary PON downlink frame to a secondary ONU, where the secondary PON downlink frame carries the acquired secondary ONU uplink bandwidth grant. The present disclosure achieves an optimal overall performance for the two stages of PONs by considering general conditions of the two stages of PONs, and meanwhile ensures a maximum available bandwidth for the two stages of PONs during formulation of bandwidth grants.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventors: Ruobin Zheng, Xue Chen, Xintian Hu
  • Patent number: 8861963
    Abstract: An optical power distributor is coupled to a high-intensity broadband light source to distribute in a shared manner an output of the high-intensity broadband light source to a plurality of optical line terminals. A depolarizer is also described having an input coupled to an output of a polarized broadband light source. A first integrated module has optical transmitters and an optical wavelength router for a first band. A second integrated module has optical receivers and an optical wavelength router for a second band.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: October 14, 2014
    Assignee: Novera Optics, Inc.
    Inventors: Chang-Hee Lee, Tae Won Oh, Bong Soo Kim
  • Patent number: 8861735
    Abstract: A system and method for securing communications between a plurality of users communicating over an optical network. The system utilizes a fixed or tunable source optical generator to generate entangled photon pairs, distribute the photons and establish a key exchange between users. The distribution of entangled photon pairs is implemented via at least one wavelength selective switch.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: October 14, 2014
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Mikhail Brodsky, Mark David Feuer
  • Patent number: 8861969
    Abstract: A laser source is configured for all-optical AM-FM up-conversion. In one exemplary embodiment, an amplitude modulated (AM) optical input signal containing a baseband signal at a sub-microwave frequency, is injected into the laser source. The amplitude of the AM optical input signal and the optical carrier frequency are adjusted so as to place the laser source in a period-one dynamical state characterized by a transitioning of the laser source from a free-running optical frequency to at least two optical frequencies having a separation distance equal to a period-one microwave frequency. As a result of the period-one dynamical state, a frequency modulated (FM) optical output signal containing the baseband signal carried at the period-one microwave frequency, is propagated out of the laser source. The period-one microwave frequency is operative as a sub-carrier signal.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: October 14, 2014
    Assignee: The Regents of the University of California
    Inventors: Sze-Chun Chan, Sheng-Kwang Hwang, Jia-Ming Liu
  • Patent number: 8855492
    Abstract: An optical network unit (ONU) accesses services provided by multiple optical line terminals (OLTs) in a wavelength division multiplexing (WDM) passive optical network (PON). The ONU receives downstream signals from a first plurality of OLTs through a designated port of an arrayed waveguide (AWG). At any given time, the bandpass filter module can select any one of a first plurality of AWG cycles allocated to the first plurality of OLTs. Based on received downstream signals, the ONU transmits upstream signals to a second plurality of OLTs through the designated port of the AWG. At any given time, the bandpass filter module and a transmitter of the ONU can select any one of a second plurality of AWG cycles allocated to the second plurality of OLTs. The ONU may be configured with a plurality of receivers and transmitters, whereby it is enabled to simultaneously subscribe to a plurality of AWG cycles.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: October 7, 2014
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: David Hood, Stefan Dahlfort
  • Publication number: 20140294390
    Abstract: A fiber optic network has alarmed fiber optic lines in the cables connecting a secured junction box to plural user lock boxes. An outgoing alarm line and return alarm line in each cable connect the junction box to each user box. The outgoing alarm line is looped to the return alarm line inside the user lock box. The return alarm line is looped to the outgoing alarm line of a different cable inside the junction box to interconnect a plurality of alarm lines passing through a plurality of user boxes. A detector detects an alarm signal in the connected alarm lines to trigger an intrusion alarm.
    Type: Application
    Filed: June 13, 2014
    Publication date: October 2, 2014
    Inventor: Christopher M. Badinelli
  • Publication number: 20140294389
    Abstract: The invention provides a method and apparatus for controlling an optical network unit to restart upon completion of downloading new software. Upon completion of downloading a new software version, an optical network terminal firstly determines a type of an active image request to be transmitted based upon stored values, of a RstDelayTimeRange attribute and of a RstDelayTrafficThreshold attribute, corresponding to the optical network unit, and then transmits the active image request to the optical network unit. The determined active image request may be a first active image request to instruct the optical network unit to immediately restart and activate the new software version that has been downloaded, or may be a second active image request to instruct the optical network unit to set an activation flag and a third active image request to instruct the optical network unit to immediately restart, both of which are used in combination.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 2, 2014
    Applicant: ALCATEL-LUCENT
    Inventors: Haijun Luo, Wenlin Zhang, Lin Li, Yijun Xu
  • Publication number: 20140294391
    Abstract: An OLT controller 90 makes each optical transceiver 21 transmit a search signal at a prescribed time so that the search signals reach all ONU connection ends of an optical transmission path 101. In the case where an ONU 10 connected to the ONU connection end of the optical transmission path 101 is unregistered, when the ONU controller 80 receives the search signal, the ONU controller 80 tunes a wavelength of an optical transmitter 11 of the ONU 10 to a wavelength corresponding to the search signal and makes the optical transmitter 11 transmit a response signal to an OLT 20.
    Type: Application
    Filed: December 18, 2012
    Publication date: October 2, 2014
    Applicant: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Shinya Tamaki, Tomoaki Yoshida, Hirotaka Nakamura, Shin Kaneko, Shunji Kimura
  • Patent number: 8849120
    Abstract: Consistent with the present disclosure, an optical communication system, such as a passive optical network (PON), is provided that includes an optical line terminal (OLT) and a plurality of optical network units (ONUs). The OLT includes a plurality of photonic integrated circuits that have both optical transmitters and receivers provided therein. Accordingly, the OLT may have fewer components and a simpler, more reliable and cost-effective design than a conventional OLT including discrete components. In addition, various ONU configurations are provided that also have a simple design and fewer components. Thus, ONUs consistent with the present disclosure may also have reduced costs.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: September 30, 2014
    Assignee: Infinera Corporation
    Inventors: Radhakrishnan L. Nagarajan, Christopher C. Liou, Masaki Kato
  • Patent number: 8837735
    Abstract: A system and method for securing communications over a wave division multiplexing optical network between a plurality of users connected to the network. The system utilizes a primary optical source generator that is either tunable, or capable of generating a plurality of wavebands of different frequencies equal to the sum of wavebands serving individual users of the network to facilitate a key exchange between the individual users of the network using summed wavebands, each of which serving an individual user.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: September 16, 2014
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Mikhail Brodsky, Mark David Feuer
  • Patent number: 8837945
    Abstract: Provided is a passive optical network (PON) providing system of an Ethernet-based packet transport layer (PTL) scheme, including: a connection management server to manage a unified PTL connection overall over the network by establishing a PTL connection between an optical network unit (ONU)/optical network terminal (ONT) of a customer termination of one party and an ONU/ONT of a customer termination of another party, and by applying a PTL-PON scheme to a PON section between the ONU/ONT and an optical line termination (OLT); an OLT to manage a connection of a received packet, and to convert a format of the packet according to a transmission direction of the packet and thereby transmit the packet; and an ONU/ONT becoming an end point of the PTL connection to convert the format of the packet according to the transmission direction of the received packet and to thereby transmit the packet to a customer terminal or the OLT.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yool Kwon, Hong Ju Kim, Byung Ho Yae, Kyung Gyu Chun, Young Boo Kim
  • Publication number: 20140255031
    Abstract: An integrated passive optical network system is disclosed. The system comprises an optical distribution network (ODN), a time-division multiplexing (TDM)-optical line terminal (OLT), a wavelength-division multiplexing (WDM)-optical line terminal (OLT), a plurality of time-division multiplexing (TDM)-optical network units (ONUs), and at least one wavelength-division multiplexing (WDM)-optical network unit (ONU) comprising a first filter. The TDM-OLT and the WDM-OLT respectively transmit a first optical signal carrying a first downstream signal and a second optical signal carrying a second downstream signal to the ONUs through the ODN, and wavelengths of the second optical signal and the first optical signal are different. The TDM-ONUs respectively retrieve the first downstream signal The WDM-ONU uses the first filter to retrieve the second downstream signal.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: CHI-WAI CHOW, CHIEN-HUNG YEH, JIUN-YU SUNG
  • Publication number: 20140255032
    Abstract: The present invention provides an apparatus, in particular an optical network unit, which comprises a first part operably coupled to an arm of an optical fiber network, the first part comprises an optical module including an optical-electric interface and/or an electric-optical interface locked on a preset wavelength band, and an interface module, and at least one second part operably coupled to a network entity of a communication network, each comprising a control unit, a signal processing unit and an interface module. One of the control units of the at least one second part is set by a optical line terminal of the optical fiber network as a master control unit configured to tune and control the optical module of the first part. The first part and the at least one second part are wireless coupled with respect to each other via the interface modules.
    Type: Application
    Filed: October 9, 2012
    Publication date: September 11, 2014
    Applicant: XIEON NETWORKS S.A.R.L.
    Inventors: Erich Gottwald, Ernst-Dieter Schmidt, Berthold Lankl
  • Patent number: 8831433
    Abstract: A temperature controlled multi-channel transmitter optical subassembly (TOSA) may be used in a multi-channel optical transceiver. The multi-channel TOSA generally includes an array of lasers optically coupled to an arrayed waveguide grating (AWG) to combine multiple optical signals at different channel wavelengths. A temperature control system may be used to control the temperature of both the array of lasers and the AWG with the same temperature control device, e.g., a thermoelectric cooler (TEC). The multi-channel optical transceiver may also include a multi-channel receiver optical subassembly (ROSA). The optical transceiver may be used in a wavelength division multiplexed (WDM) optical system, for example, in an optical line terminal (OLT) in a WDM passive optical network (PON).
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: September 9, 2014
    Assignee: Applied Optoelectronics, Inc.
    Inventors: I-Lung Ho, Luohan Peng, Justin Lii
  • Patent number: 8817589
    Abstract: Methods and apparatus for line coding in a communications network are described. According to one embodiment of the invention, downstream communications traffic bits are received and mapped into downstream bit positions of a transmission structure. A pre-selected bit in each upstream bit positions of the transmission structure is provided to form a downstream transmission structure. A downstream optical signal carrying the downstream transmission structure is generated for transmission. Upstream communications traffic bits are also received and mapped into the upstream bit positions of the transmission structure to form an upstream transmission structure. An upstream optical signal carrying the upstream transmission structure is generated for transmission.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: August 26, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Fabio Cavaliere, Stefan Dahlfort, Luca Giorgi
  • Publication number: 20140233953
    Abstract: A method of configuring an optical network terminal, ONT, of a wavelength division multiplexed passive optical network, WDM PON. Sequentially setting a transmission wavelength of a tunable optical filter at the ONT to one or more wavelengths of a pre-selected plurality of transmission wavelengths until a wavelength is identified for which no downstream optical signal from an optical line terminal of the WDM PON is detected. Determining whether a transmitter operable at said identified transmission wavelength is present at the OLT and is available to be assigned to communicate with the ONT. If a transmitter is determined to be present and available, maintaining the transmission wavelength of the tunable optical filter at transmission wavelength and assigning the ONT to the OLT as a subscriber at said identified transmission wavelength. If a transmitter is determined to be one of not present and not available, recommencing the method.
    Type: Application
    Filed: April 20, 2011
    Publication date: August 21, 2014
    Applicant: Telefonaktiebolaget L M Ericsson (PUBL)
    Inventors: Luca Giorgi, Fabio Cavaliere
  • Publication number: 20140233952
    Abstract: A system for delivering multiple passive optical network services is disclosed. The system includes a first optical transmission service comprising a common wavelength pair routed from a source to each of a plurality of subscribers. The system further includes a second optical transmission service comprising a plurality of unique wavelength pairs, where each of the unique wavelength pairs is routed from the source to a subscriber among the plurality of subscribers. The system delivers the first optical transmission service and the second optical transmission service to the subscriber on a single optical fiber.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 21, 2014
    Applicant: ADC Telecommunications, Inc.
    Inventors: Steven C. Zimmel, Timothy G. Badar, Trevor D. Smith
  • Patent number: 8811817
    Abstract: Restrictions, due to wavelength paths which are non-alternative combinations of wavelengths and paths, are solved.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 19, 2014
    Assignee: NEC Corporation
    Inventors: Masahiro Sakauchi, Shigeru Nakamura
  • Patent number: 8811820
    Abstract: A hub node in a wavelength division multiplexed optical network automatically discovers at least one of new client-side optical ports and new edge-side optical ports. The hub node comprises a wavelength switch network, port discovery equipment, and a controller. The wavelength switch network routes any wavelength channel that does not support a matching pair of client-side and edge-side ports to port discovery equipment at the hub node. The port discovery equipment searches for new ports, and, responsive to finding a new port, automatically discovers a predefined set of one or more attributes of the new port. The controller determines that a client-side port and an edge-side port are a matching pair of ports if discovered sets of attributes of those ports match according to one or more predefined rules. The controller then controls the wavelength switch network to re-route the wavelength channel supporting that matching pair between those ports.
    Type: Grant
    Filed: December 30, 2012
    Date of Patent: August 19, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventors: Stefan Dahlfort, Kim Laraqui, Ming Xia, Peter Öhlén
  • Patent number: 8811819
    Abstract: Provided is a passive optical network system, wherein the electric power to be consumed is reduced on the basis of the quantity of signal to be transmitted downstream in a WDM-PON where signals having different transmission rates for wavelengths are mixed. In the passive optical network system, an OLT (200) and a plurality of ONUes (300) are connected by an optical fiber network including an optical splitter (100) and a plurality of optical fibers (110 and 120). The OLT (200) indicates to the ONUes (300) the wavelength to be used, in addition to the timing for transmission to the ONUes (300). A format for signal transmission from the OLT (200) to the ONUes (300) comprises both the region, in which the timing for transmission to the ONUes (300) indicated by the OLT (200) to the ONUes (300) is stored, and the region, by which the wavelength to be used in the communication in the direction from the OLT (200) to the ONUes (300) is indicated.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: August 19, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Norihiro Sakamoto, Masaki Ohira
  • Publication number: 20140219661
    Abstract: Provided is a method of selecting a wavelength of an optical network unit including selecting a pre-loaded default wavelength as an available wavelength candidate or the wavelength that has been changed when a preset wavelength changing condition is satisfied as the available wavelength candidate, acquiring frame synchronization for a downstream signal having the same wavelength as the selected available wavelength candidate, and transmitting a registration request message to an optical line terminal (OLT) from which the downstream signal has been transmitted when the frame synchronization is acquired, assigning the available wavelength candidate to an available wavelength used for communication with the OLT and registering the terminal in the OLT when a registration allowance message is received from the OLT.
    Type: Application
    Filed: November 18, 2013
    Publication date: August 7, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Kyeong-Hwan DOO, Seung-Il MYONG, Han-Hyub LEE, Seung-Hyun CHO, Jie-Hyun LEE, Sang-Soo LEE
  • Patent number: 8798468
    Abstract: A laser system includes an array of lasers that emit light at a number of different, fixed wavelengths. A group of optical transport systems connect to the laser system. Each of the optical transport systems is configured to modulate data signals onto the light from the laser system to create optical signals and transmit the optical signals on one or more optical fibers.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: August 5, 2014
    Assignee: Juniper Networks, Inc.
    Inventor: Pradeep Sindhu
  • Patent number: 8781323
    Abstract: A packet transport layer passive optical network providing method controls an optical line termination device and an optical network terminal or an optical network unit of the subscriber end to transport packet transport layer passive optical network packets between the optical network terminals or the optical network units and the optical line termination device, and the optical network terminals or the optical network unit of the subscriber end becomes an end point of a packet transport layer connection.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 15, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yool Kwon, Hong Ju Kim, Byung Ho Yae, Kyung-Gyu Chun, Young Boo Kim
  • Patent number: 8781322
    Abstract: A hybrid passive optical network (“PON”) includes a time-division multiplexing (“TDM”) optical line terminal (“OLT”) and a wavelength-division multiplexing (“WDM”) OLT. The TDM OLT communicates with a first group of customer premises (“CPs”) via TDM signals while the WDM OLT communicates with a second group of CPs via WDM signals. A remote node power splitter is coupled to receive the TDM and WDM signals and broadcast both the TDM signals and the WDM signals on all of its ports facing towards the CPs. Optical filters are disposed between the remote node power splitter and the second group of CPs. Each optical filter is configured to pass a sub-group of the WDM signals while blocking other WDM signals such that each of the second group of CPs receives its own allocation of WDM signals but does not receive WDM signals allocated to other CPs of the second group of CPs.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: July 15, 2014
    Assignee: Google Inc.
    Inventors: Cedric F. Lam, Hong Liu
  • Patent number: 8774630
    Abstract: A network apparatus comprising an optical gain medium, a wavelength division multiplexing (WDM) filter coupled to the optical gain medium, and a Faraday Rotator Mirror (FRM) coupled to the WDM, and wherein the optical gain medium, the WDM filter, and the FRM are coupled by single mode fibers to form a self-seeded external cavity laser for a DWDM wavelength channel.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: July 8, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Huafeng Lin, Yu Sheng Bai
  • Patent number: 8755695
    Abstract: A burst transmission method and a receiver resetting method and apparatus in a Passive Optical Network (PON) are provided. A burst receiver resetting method in a PON includes: receiving a preamble sequence and synchronizing data; after synchronizing the data, continuing to receive the data, and matching a Burst Terminator (BT); and resetting a receiver after successfully matching the BT. Meanwhile, an apparatus for implementing the method and a corresponding burst data transmission method are provided. By using the burst receiver resetting method and apparatus in the PON and the corresponding burst transmission method at an Optical Network Unit (ONU) burst transmission end, a Reach Extender (RE) does not need to unpack upstream burst bandwidth allocation information carried in downstream data.
    Type: Grant
    Filed: September 25, 2013
    Date of Patent: June 17, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jing Li, Dongning Feng, Dongyu Geng, Frank Effenberger
  • Publication number: 20140161454
    Abstract: A scalable multicast M×N optical switch (MCS) includes a non-scalable MCS having a plurality of (L+1)×1 selector switches east coupled at one of its L entrance ports to egress ports of the non-scalable MCS, the remaining L?1 entrance ports being coupled to an L*N upgrade ports, where M and N are integers ?2, and L is an integer ?1. This allows the scalable MCS to be cascaded in a daisy-chain fashion, providing scalability from the M common ports to L*M common ports. In another embodiment, the selector switches are integrated into the MCS, providing scalability of common MCS ports.
    Type: Application
    Filed: December 11, 2013
    Publication date: June 12, 2014
    Inventor: Peter David ROORDA
  • Patent number: 8750715
    Abstract: Provided herein are various schemes for transmitting out of band (OOB) signals over optical connections that may not support the transmission of such signals. One scheme may involve converting the OOB signals to different types of signals that are supported by the optical connection, while another scheme may utilize a separate parallel connection that supports the transmission of out of band signals in order to extend the optical connection. Yet another scheme modulates the reference clock of the original (in-band) signal to transmit and receive the OOB information.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: June 10, 2014
    Assignee: Emulex Corporation
    Inventors: Alan Frank Jovanovich, Jeffrey Douglas Scotten
  • Patent number: 8750722
    Abstract: Consistent with the present disclosure, a wavelength division multiplexed (WDM) optical communication system including on-off-keying (OOK) transmitters, for example, may be upgraded to include advanced modulation format transmitters, such as quadrature phase shift keying (QPSK) transmitters. Rather than replace all the OOK transmitters with QPSK transmitters at once, each OOK transmitter is replaced with a lower rate modulation format transmitter, such as a binary phase shift keying (BPSK) transmitter, as capacity needs increase. The BPSK transmitters supply (BPSK) optical signals that are more tolerant of noise caused by cross phase modulation (XPM) induced by OOK signals. Accordingly, such BPSK optical signals have fewer associated data detection errors in the receiver. Moreover, BPSK modulated optical signals induce little XPM-related noise in co-propagating QPSK modulated optical signals.
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: June 10, 2014
    Assignee: Infinera Corporation
    Inventors: Vinayak Dangui, Matthew L. Mitchell
  • Patent number: 8744268
    Abstract: A GPON module comprises a housing and a circuit board disposed in the housing. The circuit board further includes ground lines that substantially isolate regions of the circuit board, an electro-optical interface for converting an inbound optical signal to an electrical signal and processing circuitry that is arranged to provide an electrical RF signal to an RF interface. The RF interface comprises a three-pin RF connector exposed from the housing, wherein the RF connector is coupled directly to the circuit board, and two of the three pins are coupled to ground.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: June 3, 2014
    Assignee: Emcore Corporation
    Inventors: Xiaoming Lou, Genzao Zhang, Eric Hufstedler, Leonel Gomez, Eva Peral
  • Patent number: 8731404
    Abstract: An optical transmission system is provided. The optical transmission system includes a user side optical repeater device (ORD), a central office side ORD, and wavelength multiplexing and wavelength de-multiplexing functions (MUX/DEMUX). The user side optical repeater device (ORD) is to be connected with a user side optical network unit (ONU), transmits data in two ways, and is used for wavelength division multiplexing (WDM). The central office side ORD is to be connected with a central office side optical line terminal (OLT), transmits data in two ways, and is used for WDM. The wavelength multiplexing and a wavelength de-multiplexing functions (MUX/DEMUX), are used for relaying between the user side ORD and the central office side ORD.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 20, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventor: Masayuki Miura
  • Patent number: 8705964
    Abstract: A system and method for data synchronization in Passive Optical Networks are disclosed. According to an embodiment, the present invention provides a method for providing upstream data synchronization in an optical communication network. The method includes sending data from an Optical Network Unit. The data includes a first data frame, which includes a header sequence, a synchronization segment, and a data segment. The synchronization segment includes 66 bits, which includes a first number of bits having nonzero values and a second number of bits having a value of zero. The first number is different from the second number. The method further includes receiving at least the first data frame by an Optical Line Terminal. The method also includes processing the first data frame. The method additionally includes selecting a first segment of the first data frame, the first segment including 66 bits.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: April 22, 2014
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Raymond W. K. Leung, Dongyu Geng, Dongning Feng, Frank J Effenberger, Sergio Benedetto, Guido Montorsi, Jing Li
  • Patent number: 8705911
    Abstract: Various embodiments of the present invention are directed to arrangements of multiple optical buses to create scalable optical interconnect fabrics for computer systems. In one aspect, a multi-bus fabric (102) for transmitting optical signals between a plurality of nodes (108-111) comprises a plurality of optical buses (104-107). Each optical bus is optically coupled to each node of the plurality of nodes, and each optical bus is configured to so that one node broadcasts optical signals generated by the node to the other nodes of the plurality of nodes.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: April 22, 2014
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Moray McLaren, Michael Renne Ty Tan, Gary Gostin
  • Patent number: 8699876
    Abstract: A quantum key distribution system is deployed in an optical fiber network transporting classical data traffic. A source of entangled photon pairs is used to generate quantum keys. Classical data traffic is typically transported over channels in the C-band. If a pair of channels for transport of quantum data is available within the C-band, then the source of entangled photon pairs is tuned to emit in a pair of channels in the C-band. If a pair of channels for transport of quantum data is not available within the C-band, then the source of entangled photon pairs is tuned to emit in a pair of channels in a combined S-band and L-band. When a periodically-poled lithium niobate waveguide pumped with a laser is used for the source of entangled photon pairs, the output spectral properties are tuned by varying the temperature of the waveguide.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: April 15, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Mikhail Brodsky, Cristian Antonelli, Jungmi Oh
  • Patent number: 8699881
    Abstract: A method and apparatus for providing passive optical networks with extended reach and/or splitting ratio are disclosed. For example, the optical network comprises a first optical line termination (OLT) device having a transceiver for sending and receiving optical signals. The optical network further comprises an optical extender box comprising at least one hybrid SOA-Raman amplifier, wherein the optical extender box is coupled to the first optical line termination device via a first standard single mode fiber section. Finally, the optical network further comprises an optical splitter coupled to the optical extender box via a second standard single mode fiber section.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: April 15, 2014
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Patrick Paul Iannone, Han Hyub Lee, Kenneth Charles Reichmann, Xiang Zhou
  • Patent number: 8693871
    Abstract: A method for routing and wavelength assignment (RWA) in an optical network with improved heuristics for reducing the computational times required for the RWA. The method minimizes the number of wavelengths by packing the lightpaths using a minimum number of bins in a bin packing problem. Computational efficiency is enhanced by using several novel methods to determine shortest paths and eliminate arcs in a graph that represents the network topology.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: April 8, 2014
    Assignee: AT&T Intellectual Property I, L.P.
    Inventors: Mauricio Guilherme de Carvalho Resende, Thiago Ferreira de Noronha, Celso C. Ribeiro
  • Patent number: 8687976
    Abstract: An access network includes an access device having an optical interface module that outputs a plurality of pairs of optical communication signals, each of the pairs of optical communication signals comprising a modulated optical transmit signal and an unmodulated optical receive signal, each of the pairs of optical communication signals having a different wavelength. A customer premise equipment (CPE) comprises an optical interface module to receive the modulated optical transmit signal and the unmodulated optical receive signal for any of the plurality of pairs of optical communication signals. The optical interface module includes a receive module to demodulate the modulated optical transmit signal into inbound symbols and a transmit module having an optical modulator and reflective optics to modulate the unmodulated optical receive signal in accordance with a data signal and reflect a modulated optical receive signal to communicate outbound data symbols to the access device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 1, 2014
    Assignee: Juniper Networks, Inc.
    Inventors: Pradeep Sindhu, Jayabharat Boddu, Roberto Marcoccia, Theodore John Schmidt, Christian Malouin, Abhijit Kumar Choudhury, James Michael Murphy