Bidirectional Patents (Class 398/72)
  • Patent number: 7796888
    Abstract: A method and system for ensuring confidentiality of signal transmission in a point-to-multipoint data transmission network like Ethernet passive optical network, including at least one hub, at least one transmission medium and at least one station connected to the hub via the transmission medium. When an upstream signal is transmitted from a first station, the upstream signal is reflected by at least one disturbing reflector for producing a disturbing reflection. The disturbing reflection combines with a second reflection of the upstream signal and renders the second reflection undecodable by a second station.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: September 14, 2010
    Inventors: Olli Pekka Pohjola, Ari Tervonen
  • Publication number: 20100226649
    Abstract: An apparatus comprising a wavelength division multiplexing (WDM) coupler configured to couple an optical line terminal (OLT) comprising a transmitter and a receiver, wherein the WDM coupler is coupled to the transmitter via a first fiber and to the receiver via a second fiber. An apparatus comprising a WDM coupler for a passive optical network (PON) comprising a plurality of filters and a plurality of ports, wherein the WDM coupler comprises fewer filters than ports. A method comprising receiving a downstream optical signal intended for an optical network terminal (ONT) via a first fiber, and transmitting an upstream optical signal received from the ONT via a second fiber.
    Type: Application
    Filed: February 22, 2010
    Publication date: September 9, 2010
    Applicant: FUTUREWEI TECHNOLOGIES, INC.
    Inventors: Ning Cheng, Zhishan Feng, Frank Effenberger
  • Patent number: 7792429
    Abstract: Provided are a hybrid optical transceiver module having an optical amplifier packaged thereto for outputting a high-power optical signal to remove problems regarding narrow emission angle and optical alignment, and a passive optical network (PON) system having an improved optical network terminal (ONT) accommodation capability using the hybrid optical transceiver module. The hybrid optical transceiver module includes a first package in which an LD (laser diode) is packaged, and a second package in which SOA (semiconductor optical amplifier) and a PD (photo diode) are packaged. The first and second packages are coupled to be one package so as to output a high-power optical signal.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: September 7, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Sung Woong Park, Bong Kyu Kim, Bin Yeong Yoon, Dong Soo Lee, Jong Deog Kim, Mun Seob Lee
  • Publication number: 20100221008
    Abstract: The present invention relates to a wavelength-division multiplexed passive optical network (WDM-PON) for reducing degradation in noise characteristic of a wavelength-locked Fabry-Perot Laser Diode (F-P LD).
    Type: Application
    Filed: August 29, 2006
    Publication date: September 2, 2010
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Chang-Hee Lee, Sil-Gu Mun, Kun-Youl Park
  • Patent number: 7787774
    Abstract: An optical transceiver module, having the ability to authenticate itself to a host is disclosed. The transceiver comprises a receive signal line for transferring data from the transceiver to the host and a transmit signal line for transferring data from the host to the transceiver in preparation for transmission to a communications network. The transceiver includes a controller having a processor in communication with the host, and a first memory register assignable by the processor. A consolidated laser driver/post amplifier is also included and features a pattern generator and a data switch. The pattern generator produces a string of bit values that serve as an authenticating data portion. The data switch selectively inputs the authenticating data portion to the receive signal line of the transceiver according to the state of the first memory register, enabling the authenticating data portion to be received by the host, thereby authenticating the transceiver.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: August 31, 2010
    Assignee: Finisar Corporation
    Inventor: Stephen T. Nelson
  • Patent number: 7787772
    Abstract: By using wavelength division multiplexing technologies, redundant star topology network is constructed on a ring-shaped optical fiber network. Edge-switches 5a, 5b, 5c, and 5d are connected to client station groups 6a, 6b, 6c, and 6d are connected, respectively. The edge-switches 5a, 5b, 5c, and 5d are connected to edge optical transport device 2a, 2b, 2c, and 2d. Core-switches 4a and 4b are connected to a core optical transport device 1. The edge optical transport device 2a, 2b, 2c, 2d, and the core optical transport device 1 are connected to a ring-shaped single optical fiber 3. A communication circuit 7 is formed among core optical transport device 1, edge optical transport devices 2a, 2b, 2c, and 2d, by using wavelength division multiplexing technologies.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: August 31, 2010
    Assignee: Canare Electric Co., Ltd.
    Inventor: Takeshi Ota
  • Patent number: 7783198
    Abstract: A passive optical network includes: a central office for generating multiplexed downstream optical signals and receiving an upstream optical signal; a plurality of optical network units for receiving a corresponding downstream optical signal and generating subcarrier channels carrying electrical data of an assigned frequency; and a remote node for photoelectrically converting the channels into electrical data, electro-optically converting the electrical data into at least one upstream optical signal.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Kwang Jung, Yun-Je Oh, Jin-Woo Park, Sang-Rok Lee, Il-Lae Kim
  • Patent number: 7783201
    Abstract: An optical repeater device of the present invention comprises: a preamble compensating circuit 53, for taking out a normal data signal from burst signals propagating through a communication transmission path, and for adding a preamble signal before and/or after the data signal. Furthermore, the preamble compensating circuit 53 comprises: a detector circuit 53a, for inputting the burst signal, and for outputting only the normal data signal; a buffer circuit 53b, for storing the data signal output from the detector circuit 53a, and for outputting thereof; a preamble signal generation circuit 53d, for outputting at least one type of the preamble signal; and an data output select circuit 53e, for outputting the data signal at the time of the data signal input from the buffer circuit 53b, and for outputting the preamble signal from the preamble signal generation circuit 53d at any other time thereof.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: August 24, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masayuki Miura, Kunio Odaka, Fuyuki Takeuchi
  • Patent number: 7783195
    Abstract: Systems and methods for signal conversion with smart multitap are disclosed. Embodiments of the systems can be scalable to model different signal topologies, transmission frequencies, bandwidths, and distances. An exemplary embodiment of the systems and methods includes a fiber optic to RF converter and a smart multitap. Although a fiber optic to RF converter is used in exemplary embodiments throughout the disclosure, conversion between other signal topologies is within the scope of the disclosure. The smart multitap includes a multiple tap for distributing a signal to multiple terminals and a microprocessor to select a particular terminal for a signal. Exemplary embodiments include downstream implementations in which a stream is typically sent from a service provider server to a user. Alternative embodiments include downstream implementations as well as upstream implementations in which a user typically sends a stream to a service provider server.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: August 24, 2010
    Assignee: Scientific-Atlanta, LLC
    Inventor: Robert R. Riggsby
  • Patent number: 7783196
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 24, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7778546
    Abstract: Methods and apparatus are described for transmitting and receiving data. A method includes a process of transferring data over a coaxial network at a bandwidth above 1000 MHz, wherein the process of transferring data transfers the data between an optical node and a plurality of cable modems of a hybrid fiber-coaxial cable network. An apparatus includes a data transfer system which sends and receives data over a coaxial network at a bandwidth above 1000 MHz, wherein the data transfer system is located at an optical node of a hybrid fiber-coaxial cable network.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: August 17, 2010
    Assignee: Aurora Networks, Inc.
    Inventors: Guy Sucharczuk, Oleh J Sniezko, Krzysztof Pradzynski, Thomas K Fong
  • Patent number: 7778545
    Abstract: Systems and methods for bandwidth doubling in an Ethernet passive optical network (EPON) enable an optical line terminal (OLT) to transmit downlink to at least one double rate optical network unit (ONU). The double rate transmission is preferably facilitated by use of single rate devices (OLT and ONU) functionally connected to provide the double rate capability. The methods include packet-by-packet multiplexing, bit-by-bit line code interleaving, doubling an inter-packet gap (IPG) length, defining windows of transmission for different transmission rates, using the 8B/10B code, removing the 8B/10B code from just the downlink transmission and symbol-by-symbol multiplexing is downlink transmissions from the double rate OLT.
    Type: Grant
    Filed: October 2, 2005
    Date of Patent: August 17, 2010
    Assignee: PMC-Sierra Israel Ltd
    Inventors: Onn Haran, Ariel Maislos
  • Patent number: 7773880
    Abstract: An optical access system capable of avoiding cutoffs or interruption in the periodically transmitted signals that occur during the ranging time is provided. A first method to avoid signal cutoffs is to stop periodic transmit signals at the transmitter during the ranging period, and transmit all the periodic transmit signals together when the ranging ends, and buffer the signals at the receiver to prepare for ranging. A second method is to fix definite periods ahead of time for performing ranging, then cluster the multiple periodic transmit signals together in sets at the transmitter and send them, and then disassemble those sets back into signals at the receiver. The transmitting and receiving is then controlled so that the transmit periods do not overlap with the ranging periods. In this way an optical access system is provided that can send and receive signals requiring periodic transmissions without interruption even during ranging operation.
    Type: Grant
    Filed: March 25, 2008
    Date of Patent: August 10, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Yoshihiro Ashi, Tohru Kazawa, Ryosuke Nishino, Masayuki Takase, Masahiko Mizutani
  • Publication number: 20100196010
    Abstract: An optical transmission system is provided. The optical transmission system includes a user side optical repeater device, a central office side optical repeater device, and wavelength multiplexing and wavelength de-multiplexing functions. The user side optical repeater device is to be connected with a user side optical network unit, transmits data in two ways, and is used for wavelength division multiplexing. The central office side optical repeater device is to be connected with a central office side optical line terminal, transmits data in two ways, and is used for wavelength division multiplexing. The wavelength multiplexing and wavelength de-multiplexing functions are used for relaying between the user side optical repeater device and the central office side optical repeater device.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Applicant: Furukawa Electric Co., Ltd.
    Inventor: Masayuki Miura
  • Patent number: 7769290
    Abstract: An optical system with a first and second network tiers. The first network tier includes a plurality of major nodes optically interconnected by at least one transmission path. The second network tier includes a plurality of minor nodes disposed along the transmission path and the minor nodes are connected to at least one of the major nodes. The minor node is configured to transmit all traffic to an adjacent major node, and the major nodes are configured to transmit to and receive information from other major nodes and minor nodes on transmission paths connected to the major node.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: August 3, 2010
    Assignee: Broadwing Corporation
    Inventor: David F. Smith
  • Publication number: 20100183306
    Abstract: A communication system for distributing information via a network to one or more subscribers includes a multi-port switch, one or more radio frequency (RF) modems coupled to respective ports of the switch, a combiner and a transmitter. The switch forwards source information to the RF modems based on address information. Each RF modem modulates and up converts information from the switch to an RF signal within a respective subscriber channel of the television broadcast spectrum. Each channel is assigned to one or more subscribers, and each subscriber is allocated unshared bandwidth. Each channel may be further divided into unshared bandwidth increments, so that multiple subscribers may share a single channel. The combiner combines modulated information from each RF modem into a combined signal and the transmitter transmits the combined signal to the subscribers via the network.
    Type: Application
    Filed: March 15, 2010
    Publication date: July 22, 2010
    Inventors: David M. Pangrac, Donald T. Gell, Steven W. Rose
  • Patent number: 7761008
    Abstract: In an optical transmission method and device of a point-multipoint type, whether or not identification information of an optical network unit designated is received within a fixed phase tolerance for a transmission enabling phase designated to optical network units on multipoint sides is determined. When it is determined that no identification information of the optical network unit designated is received and identification information of any optical network unit is received up to a transmission enabling phase subsequently designated, a transmission stop command is transmitted to the optical network unit whose identification information is received.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: July 20, 2010
    Assignee: Fujitsu Limited
    Inventors: Toshimi Kida, Kazuhiro Uchida
  • Patent number: 7751711
    Abstract: Optical network terminal (ONT) power failure management. A system for permitting a customer of a telecommunication company, for whom fiber to the premises (FTTP) has been installed, to control operating features associated with operation of a battery backup unit (BBU) which is used, during power failure, for powering the ONT associated with the FTTP installation and the customer's telephone(s). The controlling of these features includes utilization of signal-controlled switches, which are manually over-rideable by the customer, thereby providing the desired operating feature control.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: July 6, 2010
    Assignee: Verizon Patent and Licensing Inc.
    Inventor: Stanley J. Wynman
  • Patent number: 7751712
    Abstract: A Passive Optical Network includes: an Optical Line Terminal, an Optical Distribution Network, and an Optical Network Unit or an Optical Network Terminal, wherein the Optical Line Terminal is adapted to exchange data with the Optical Network Unit or the Optical Network Terminal by using an optical module via the Optical Distribution Network, and the optical module is an optical module sending data in a continuous mode. Further, a method for data communication based on the Passive Optical Network includes: sending data by using an optical module sending data in a continuous mode; receiving the data by an optical module based on a set optical power threshold of data “0” and a set optical power threshold of data “1”.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: July 6, 2010
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Jun Zhao, Jiang Feng, Nanling Li, Peilong Tan, Yu Liu, Chuanhai Huang, Wensheng Wu, Guangxiang Yang, Yong He, Wenwen Dong
  • Publication number: 20100158520
    Abstract: Provided are a local area network (LAN) emulation method and an information storage medium. The LAN emulation method provides a LAN emulation function in an arrayed-waveguide grating (AWG)-based wavelength division multiplexing (WDM)-passive optical network (PON) using a mode bit and a logical link identifier (LLID).
    Type: Application
    Filed: October 22, 2009
    Publication date: June 24, 2010
    Inventors: Kyeong-eun Han, Kwang-joon Kim
  • Patent number: 7738167
    Abstract: A Reflective Semiconductor Optical Amplifier (RSOA) for compensating for light loss in an optical link, an RSOA module for improving polarization dependency using the RSOA, and a Passive Optical Network (PON) for increasing economical efficiency and practical use of a bandwidth using the RSOA are provided. The PON includes a central office comprising a plurality of optic sources transmitting a downstream signal and a plurality of first receivers receiving an upstream signal; at least one optical network terminal (ONT) including a second receiver receiving the downstream signal and an RSOA which receives the downstream signal, remodulates the downstream signal into the upstream signal, and transmits the upstream signal in loopback mode; and a remote node interfacing the central office with the ONT. The upstream signal and the downstream signal are transmitted between the remote node and the ONT via a single optical fiber. The remote node includes an optical power splitter at its port connected to the ONT.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: June 15, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Mahn Yong Park, Woo-Ram Lee, Tae Yeon Kim
  • Patent number: 7738790
    Abstract: In a WDM type PON system, each ONU comprises an optical transmitter capable to transmit optical signals with variable wavelengths, an optical signal receiving filter variable its receiving wavelength, and a control unit. An OLT selects in response to a wavelength allocation request from each ONU, a transmitting wavelength and a receiving wavelength out of currently free wavelengths and allocates these wavelengths to the requester ONT. The control unit of the ONU switches the transmitting wavelength of the optical transmitter and the receiving wavelength of the optical signal receiving filter to the wavelengths specified in a response message from the OLT and starts data communication.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: June 15, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Daiki Nozue, Hiroaki Miyata, Noriyuki Sueyoshi
  • Publication number: 20100142955
    Abstract: An optical line terminal, a passive optical network and a radio frequency signal transmission method in the communication technical field are provided. The passive optical network comprises: an OLT, an ODN and at least one ONU. The OLT comprises: at least one transmitting unit, which provides one dedicated downstream optical carrier and two dedicated upstream optical carriers for ONU; the two dedicated optical carriers for ONU are configured to carry ONU upstream radio frequency signals; a multiplexing/demultiplexing unit; and at least one receiving unit which obtains the upstream signal from the demultiplexed upstream optical signal. The bandwidth of wireless access network is enhanced, and the design of ONU is simple.
    Type: Application
    Filed: February 17, 2010
    Publication date: June 10, 2010
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Fan Yu, Jun Zhao
  • Publication number: 20100142954
    Abstract: Techniques are disclosed for a broadband service provider to maintain continuity of service in the event that a broadband light source fails in a passive optical network which uses injection-locked transmitters. Generally, a first broadband light source is connected to a passive optical network. Should the first broadband light source fails, it is disconnected from the network, and a second broadband light source is connected to the network.
    Type: Application
    Filed: December 8, 2008
    Publication date: June 10, 2010
    Inventors: Damiano Rossetti, Wolfgang Fischer
  • Publication number: 20100142949
    Abstract: Methods and apparatus are described for “Smart” RF over Glass (RFoG) CPE Unit with Seamless PON Upgrade Capability. A method includes operating a customer premises equipment device including transporting upstream cable return services with a laser; and switching a drive source for the upstream laser from an analog driver to a digital driver by using a managed electrical switch to reuse a wavelength of the laser. An apparatus includes a customer premises equipment device including a laser for transporting upstream cable return services; and a managed electrical switch coupled to the laser that is used to switch a drive source for the upstream laser to reuse a wavelength of the laser.
    Type: Application
    Filed: October 13, 2009
    Publication date: June 10, 2010
    Inventors: Sudhesh Mysore, Charles Barker, Oleh Sniezko, Krzysztof Pradzynski
  • Patent number: 7734178
    Abstract: In a PON system by WDM, IP broadcast can be received without oppressing a band used by a user for Internet communication. An OLT provides a first wavelength received in common by respective ONUs and plural second wavelengths by which the OLT and the respective ONUs perform communication individually. With respect to signals in the downstream direction, each of the OLTs includes a transmitter to transmit the first wavelength and plural transmitters to transmit the second wavelengths used for the individual communication with the respective ONUs. Each of the ONUs includes a receiver to receive the first wavelength and a receiver to receive the second wavelength used in the ONU itself. The OLT transmits data of the IP broadcast by the first wavelength and transmits individual data of each of the ONUs by the second wavelength corresponding to the ONU.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: June 8, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Kenichi Sakamoto, Tohru Kazawa
  • Patent number: 7734179
    Abstract: A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: June 8, 2010
    Assignee: AT&T Corp.
    Inventors: Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Sheryl Leigh Woodward
  • Patent number: 7725031
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 25, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Patent number: 7720381
    Abstract: Provided are an optical transmission apparatus and an optical access network for a wavelength-division multiplexing optical network with sub-carrier multiplex and sub-carrier multiple access schemes. The optical transmission apparatus includes: a multiplexer and/or demultiplexer demultiplexing M forward A band optical signals having wavelengths each comprising a plurality of sub-carriers and multiplexing M backward B band optical signals having wavelengths each comprising a plurality of sub-carriers; a plurality of optical power splitters splitting each of the M forward A band optical signals into N optical signals; a plurality of optical receivers receiving backward optical signals belonging to a C band; and M optical transmitters converting the backward optical signals in the C band into the M backward B band optical signals.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: May 18, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Seung Hyun Jang, Chul Soo Lee, Eul Suk Jung
  • Patent number: 7715719
    Abstract: In accordance with the teachings of the present invention, a system and method for transmitting traffic in a plurality of passive optical networks (PONs) is provided. In a particular embodiment, a method for transmitting traffic in a plurality of passive optical networks (PONs) includes transmitting traffic at a first wavelength and at a second wavelength from an optical line terminal (OLT). The method also includes combining the traffic in the first wavelength and the traffic in the second wavelength and splitting the combined traffic into a plurality of copies. The method further includes forwarding a first copy to a first wavelength router at a first distribution node and forwarding a second copy to a second wavelength router at a second distribution node, wherein the first wavelength router is coupled to a first set of optical network units (ONUs) and the second wavelength router is coupled to a second set of ONUs.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: May 11, 2010
    Assignee: Fujitsu Limited
    Inventors: Martin Bouda, Takao Naito
  • Patent number: 7715718
    Abstract: Optical Time-Domain Reflectometer (OTDR) troubleshooting of a passive optical network (PON) can be enhanced by deploying cascaded splitters, at least some of which have multiple inputs. That is, at least some of the splitters in the PON have not only a first input coupleable to the optical line terminator (OLT) or output of another splitter but also a second input directly coupleable to an Optical Time-Domain Reflectometer (OTDR). Optical time-delay reflectometry can be performed upon a selected portion or segment of the PON by selecting a splitter and transmitting an optical test signal from the OTDR directly to the input of the selected splitter and analyzing the reflected signal.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: May 11, 2010
    Assignee: Alcatel Lucent
    Inventors: Joseph Lee Smith, Alain Granger
  • Publication number: 20100111523
    Abstract: One embodiment provides a system for power saving in an Ethernet Passive Optic Network (EPON). The system includes an optical line terminal (OLT), an optical network unit (ONU), a traffic-detection module configured to detect status of traffic to and from the ONU, and a power-management module configured to place the ONU in sleep mode based on the detected traffic status. The ONU includes an optical transceiver that includes an optical transmitter configured to transmit optical signals to the OLT and an optical receiver configured to receive optical signals from the OLT.
    Type: Application
    Filed: October 12, 2009
    Publication date: May 6, 2010
    Applicant: TEKNOVUS, INC.
    Inventors: Ryan E. Hirth, Edward W. Boyd, Sanjay Goswami
  • Patent number: 7711268
    Abstract: A station-side communication device connected to subscriber-side communication devices via an optical combining device; sending, to the subscriber-side communication devices, a distance measurement request signal; computing transmission delay times of optical signals from the individual subscriber-side communication devices by receiving distance measurement signals, and including: a threshold control part identifying the level of distance measurement signals; a signal detection part detecting breaks in the distance measurement signals from the threshold control part; a transmission granting part determining the timing at which transmission of optical signals is granted, and a reset timing generation part that, there is notification of detection of a break in the distance measurement signal from the signal detection part while it is being notified that distance measurement is carried out to and from the subscriber-side communication devices from the transmission granting part, sends a reset signal indicating t
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: May 4, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima, Norihiro Sakamoto
  • Patent number: 7706689
    Abstract: Methods and apparatus are described for forward baseband digitalization. A method includes receiving a forward baseband digital optical signal from an optical fiber; transforming the forward baseband digital optical signal to a forward analog electrical signal; transmitting the forward analog electrical signal on an electrical conductor; receiving a reverse analog electrical signal on the electrical conductor; transforming the reverse analog electrical signal to a reverse digital baseband optical signal; and transmitting the reverse digital baseband optical signal.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: April 27, 2010
    Assignee: Aurora Networks, Inc.
    Inventors: Oleh Sniezko, Krzysztof Pradzynski, Guy Sucharczuk, Peter Lau, Charles Barker
  • Patent number: 7706688
    Abstract: The invention provides a unified optical network architecture for metro and access communication networks, wherein a metro ring network interfaces access PONs through one or more reconfigurable Optical Add/Drop Multiplexers to provide wavelength-reconfigurable all-optical transmission of communication signals from the metro ring network to designated optical network units associated with the end-users, and wherein one metro hub located in the metro ring network is utilized to set transmission wavelengths and timing for both downstream and upstream signal transmission for multiple access PONs.
    Type: Grant
    Filed: July 16, 2007
    Date of Patent: April 27, 2010
    Assignee: University of Ottawa
    Inventors: Francois Boudreault, Hanan Anis, S. Richard Pramod
  • Publication number: 20100098413
    Abstract: One embodiment provides a system for performance monitoring in a passive optic network (PON). The system includes an optical line terminal (OLT) and an optical network unit (ONU). The OLT includes an optical transceiver configured to transmit optical signals to and receive optical signals from the ONU, and a performance monitoring mechanism configured to monitor performance of the PON based on received optical signals.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 22, 2010
    Applicant: TEKNOVUS, INC.
    Inventors: Weidong Rick Li, Jaroslaw Wojtowicz
  • Patent number: 7684702
    Abstract: The present invention provides an optical link monitoring system for the passive optical network. The system includes a master monitoring device connected to an optical line terminal and a plurality of response devices respectively connected to a plurality of optical network units. Through time division multiplexing technology, the master monitoring device broadcasts a predetermined instruction to the response devices to answer back predetermined optical signals in turn. The master monitoring device also measures the optical power of the returned predetermined optical signals and diagnoses the status of the optical links. The present invention also provides an optical link monitoring method.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: March 23, 2010
    Assignee: Inventec Multimedia & Telecom Corporation
    Inventor: Tien-Hsiang Lu
  • Patent number: 7684705
    Abstract: In accordance with the teachings of the present invention, a distribution node for a wavelength-sharing network is provided. In a particular embodiment, a distribution node for an optical network includes a wavelength router and a power splitter. The wavelength router is operable to receive a downstream signal comprising at least traffic in a first wavelength and traffic in a second wavelength from an upstream terminal, route the traffic in the first wavelength to a first plurality of downstream terminals, and route the traffic in the second wavelength to a second plurality of downstream terminals. The power splitter is operable to receive an upstream signal comprising at least traffic in a third wavelength from the downstream terminals, wherein the downstream terminals share the third wavelength for transmission of upstream traffic.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: March 23, 2010
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda
  • Patent number: 7684706
    Abstract: In accordance with the teachings of the present invention, a system and method for traffic distribution in an optical network is provided. In a particular embodiment, a traffic distribution module in a passive optical network (PON), includes a filter configured to receive downstream traffic in a first set of one or more wavelengths and a second set of one or more wavelengths from an optical line terminal (OLT), direct the traffic in the first set of wavelengths to a primary power splitter, and direct the traffic in the second set of wavelengths to a first connector. The traffic distribution module also includes a primary power splitter and a plurality of secondary power splitters. The primary power splitter is configured to receive the traffic in the first set of wavelengths and distribute the traffic in the first set to the plurality of secondary power splitters coupled to the primary power splitter such that optical network units (ONUs) in the PON receive the traffic in the first set of wavelengths.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: March 23, 2010
    Assignee: Fujitsu Limited
    Inventors: Yoichi Akasaka, Martin Bouda, Takao Naito
  • Patent number: 7684709
    Abstract: A FAWNA that allows high-speed mobile connectivity by leveraging the speed of optical networks. Specifically, SIMO FAWNA, which comprises a SIMO wireless channel interfaced with a fiber channel through wireless-to-optical interfaces. Received wireless signal at each interface are sampled and quantized prior to transmission. The capacity of the FAWNA approaches the capacity of the architecture exponentially with fiber capacity. It is also shown that for a given fiber capacity, there is an optimal method of operating wireless bandwidth and number of interfaces. An optimal method to divide the fiber capacity among the interfaces is shown, which ensures that each interface is allocated a rate so that noise is dominated by front end noise rather than by quantization distortion. A method is also presented in which, rather than dynamically changing rate allocation based on channel state, a less complex, fixed rate allocation may be adopted with very small loss in performance.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: March 23, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Siddharth Ray, Muriel Medard, Lizhong Zheng
  • Patent number: 7684707
    Abstract: Generating oscillator signals with which selected signals may be mixed. Such oscillator signals may be generated by dividing a pilot tone, such as a 120 MHz pilot tone found on many cable TV systems. Oscillator signals for demodulating received selected signals may be similarly generated.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: March 23, 2010
    Assignee: Verizon Services Corp. & Verizon Communications Inc.
    Inventors: Jack Needle, Dimitrios Kokkinos
  • Patent number: 7684703
    Abstract: There is provided a wavelength division multiplexing transmission system and apparatuses used therein, in which a remote apparatus to be newly added to a station apparatus autonomously sets a wavelength to be used in the remote apparatus, thereby avoiding the need for presetting a wavelength to be used in the remote apparatus. The remote apparatus includes wavelength determining means that determines an available wavelength on the basis of an optical signal received from the station apparatus. The wavelength determining means may determine the wavelength of an unreceived optical signal as the available wavelength or may determine the wavelength of a received optical signal as the available wavelength, and may set that wavelength as a transmission and reception wavelength to be used in the remote apparatus.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: March 23, 2010
    Assignee: NEC Corporation
    Inventor: Shigekazu Harada
  • Patent number: 7684704
    Abstract: A method, apparatus and system for the communication of services in an optical access network includes transmitting services to customer premises using a passive optical downstream link and receiving services from said customer premises using an active optical upstream link. In an embodiment of the present invention, services from a central office are communicated to customer premises using a passive means for splitting an optical signal, and services from customer premises intended for the central office are communicated to the central office using active components including at least one receiver, a switch and a transmitter.
    Type: Grant
    Filed: March 25, 2004
    Date of Patent: March 23, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Jeroen Siebrand Wellen
  • Publication number: 20100067901
    Abstract: In a passive optical network system, a parent station includes a reception circuit that receives an optical signal from each of child stations using a threshold used to identify if the optical signal is 0 or 1; a bandwidth setting unit that determines a time at which each child station sends an optical signal; a storage unit that stores thresholds and intensities of optical signals received from the child stations; and a control unit that sets a threshold, stored corresponding to a sending time, in,the reception circuit to control a reception of an optical signal. The control unit has a function that compares an intensity of a signal received from each child station at an optical signal reception time with information stored in the storage unit to detect and determine a fault in the child station or in the optical fiber connected to the child station.
    Type: Application
    Filed: February 26, 2009
    Publication date: March 18, 2010
    Inventors: Masahiko Mizutani, Yusuke Yajima, Yoshihiro Ashi
  • Patent number: 7680416
    Abstract: A wavelength division multiplexed-passive optical network includes an optical line terminal for generating downstream optical signals of discrete wavelengths and for receiving upstream optical signals of discrete wavelengths, a remote node, coupled to the optical line terminal, a wavelength division unit settled to reflect a predetermined wavelength, and a plurality of optical network units. Each optical network unit has an optical source which is oscillated in a multi-mode and is self-injection locked by the predetermined wavelength provided thereto, thereby to generate the upstream optical signal in a single mode to be provided to the remote node.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: March 16, 2010
    Assignee: Kwangju Institute of Science and Technology
    Inventors: Swook Hann, Chang Soo Park
  • Patent number: 7680414
    Abstract: A Passive Optical Network system implementing a parent station capable of receiving high-speed burst signals transmitted from a plurality of subsidiary stations to a parent station, with excellent bandwidth utilization efficiency in the link from the stations to the parent. The system is provided with a configuration in which, when launched or an addition of a new subsidiary station, the parent stores threshold values appropriate for the received signals on the basis of the strength of the received signal for each subsidiary station, from among a plurality of preset threshold value candidates, and in response to the parent station's sending of a transmission grant with respect to each subsidiary station each time the subsidiary station transmitting optical signals changes, the stored threshold value corresponding to the subsidiary station is set in the receiver circuit.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: March 16, 2010
    Assignee: Hitachi Communication Technologies, Ltd.
    Inventors: Tohru Kazawa, Masaki Ohira, Yusuke Yajima
  • Patent number: 7676156
    Abstract: Light carrying information for access terminals is carried via optical fibers. Information for terminals from groups is multiplexed over different time-slots and different communication wavelengths of the light in the fiber for a group. The information is passed between the fibers and the transport network via transceivers. The use of the transceivers is multiplexed between the optical fibers. Each transceiver passes information for selectable light guides at selectable communication wavelengths in different timeslots.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: March 9, 2010
    Assignee: Alcatel-Lucent USA Inc.
    Inventor: Jeroen Wellen
  • Patent number: 7672591
    Abstract: A system for powering a network element of a fiber optic communication network. When communication data is transferred between a central office (CO) and a subscriber gateway using a network element to convert optical to electrical (O-E) and electrical to optical (E-O) signals between a fiber from the central office and copper wires or coax cable from the subscriber gateway, techniques related to local powering of a network element or drop site by a subscriber or customer remote device or gateway are provided. Certain advantages and/or benefits are achieved using the present invention, such as freedom from any requirement for additional meter installations or meter connection charges. Additionally the system is free of monthly meter charges and does not require a separate power network.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: March 2, 2010
    Inventors: Alexander I. Soto, Walter G. Soto
  • Publication number: 20100046946
    Abstract: In a Wavelength Division Multiplexed Passive Optical Network (WDM-PON) including, a system for overlaying an analog broadcast signal. An Optical Line Terminal of the WDM-PON includes a broadband light source for generating uplink seed light for each uplink channel of the WDM-PON, and a modulator for modulating the analog broadcast signal onto the uplink seed light. An Optical Network Terminal of the WDM-PON receives the uplink seed light from the Optical Line Terminal, and includes an optical divider for dividing the received seed light into a first signal and a second signal; a light source for generating an uplink data signals using the first signal as seed light; and an RF receiver for detecting the analog broadcast signal modulated on the second signal.
    Type: Application
    Filed: December 22, 2008
    Publication date: February 25, 2010
    Applicant: NORTEL NETWORKS LIMITED
    Inventors: Bin CAO, Rong CHEN
  • Publication number: 20100046947
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: August 26, 2009
    Publication date: February 25, 2010
    Applicant: ENABLENCE USA FTTX NETWORKS INC.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella