Bidirectional Patents (Class 398/72)
  • Patent number: 9007228
    Abstract: An Ethernet-based transmission system using a dying gasp according to the present invention includes an SMPS for supplying power to an Ethernet-based lower level system, detecting a state of a power fault, and outputting a dying gasp alarm signal. A CPU receives the dying gasp alarm signal, and generates and transmits an alarm packet. A PHY chip receives the alarm packet, and uplinks the alarm packet so that the alarm packet is transferred to a higher level stage. An L3 switch receives the alarm packet and determines whether a power fault has occurred in the lower level system. Accordingly, the present invention applies a dying gasp to an Ethernet-based or EPON-based transmission system and is then capable of generating and transmitting an alarm packet so that when a power fault occurs, a device in a higher level network can rapidly determine the occurrence of the power fault.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: April 14, 2015
    Assignee: UBIQUOSS Inc.
    Inventors: Dong Il Song, Min-kyu Cho
  • Patent number: 9008513
    Abstract: The present invention proposes a wavelength division multiplexing-passive optical network (WDM-PON) system which transmits downstream data to an optical network unit (ONU) as an optical line termination (OLT) receives seed light from a spectrum-sliced external light source module. One characteristic of the proposed WDM-PON system is that optical transmitters of the OLT and ONU are operated regardless of optical wavelength. Another characteristic of the proposed WDM-PON system is that a conventional TDMA-PON (E-PON or G-PON) ONU can be accommodated without a change.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: April 14, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Byoung Whi Kim, Han Hyub Lee, Jie Hyun Lee, Bong Tae Kim
  • Patent number: 8995830
    Abstract: An ONU includes a power-interruption detecting unit configured to detect power interruption of the ONU, a transmitting and receiving unit capable of being set in a power saving state, and a PON-side control unit configured to notify an OLT of, as power saving return information, a power holding time during occurrence of the power interruption of the ONU and a startup time, which is time until the transmitting and receiving unit returns from the power saving state, and, when the power-interruption detecting unit detects the power interruption, transmit a power interruption notification to the OLT. The OLT includes the PON control unit configured to determine, based on the power saving return information, whether the ONU can transmit the power interruption notification when the power interruption occurs in the power saving state.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: March 31, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takashi Kikuzawa, Hiroaki Mukai
  • Patent number: 8989580
    Abstract: The disclosure provides a long-distance box and a method for processing uplink light and downlink light of the long-distance box, uplink light and downlink light from different Passive Optical Network (PON) systems are split, the uplink light from the different PON systems is transmitted through a first optical path, and the downlink light from the different PON systems is transmitted through a second optical path; wherein the uplink light from the different PON systems is amplified by an Optical Amplifier (OA) and then output to Optical Line Terminals (OLT) of respective systems; the downlink light from different PON systems with the different wavelengths is transmitted through different optical sub-paths of the second optical path according to the wavelengths of the downlink light, and the downlink light is amplified by different Optical-Electrical-Optical (OEO) conversion devices on the different optical sub-paths and then output to Optical Network Units (ONUs) of the respective systems.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: March 24, 2015
    Assignee: ZTE Corporation
    Inventors: Jidong Xu, Dezhi Zhang
  • Patent number: 8983295
    Abstract: The inventive concept relates to an optical line terminal registering optical network terminals having overlapping serial numbers. The optical line terminal may include a memory storing serial number information of optical network terminals of which a registration is completed in a storage region; and a control part that if a serial number by a serial number request is received from optical network terminals, the received serial number is compared with the serial number information of the memory and if they overlap each other, a previously set preliminary identifier is allocated to the optical network terminal having an overlapping serial number.
    Type: Grant
    Filed: April 30, 2013
    Date of Patent: March 17, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Hark Yoo, Geun Yong Kim, Youngsuk Lee, Sung Chang Kim, Dongsoo Lee
  • Patent number: 8977132
    Abstract: An RF hardline coaxial cable plant to facilitate voice and/or data services to subscriber premises in one or more neighborhood nodes of a cable communication system by conveying upstream information over an upstream path bandwidth. One or more upstream radio frequency (RF) signals have a carrier frequency of between approximately 5 MHz and 19.6 MHz and are modulated using quadrature amplitude modulation (QAM) with voice and/or data information constituting at least some of the upstream information. An example RF signal defines a channel having an average channel power, and a highest value for an average noise power between 5 MHz and 19.6 MHz in the upstream path bandwidth of a given neighborhood node, as measured over at least a 24 hour period, is at least 25 decibels (dB) below the average channel power and/or less than 20 decibels (dB) above a noise floor associated with the neighborhood node.
    Type: Grant
    Filed: September 23, 2013
    Date of Patent: March 10, 2015
    Assignee: CertusView Technologies, LLC
    Inventors: Steven E. Nielsen, Ronald Totten, Travis Halky
  • Patent number: 8977128
    Abstract: An apparatus comprising a path computation element (PCE) configured to perform a path computation using a wavelength converter (WC) pool information based on a dynamic WC pool model, wherein the dynamic WC pool model comprises information regarding WC pool usage state represented using a WC pool usage state vector, and wherein the information regarding WC pool usage state is communicated to the PCE using a WC usage state Type-Length-Value (TLV) that indicates an available WC in a WC pool, a used WC in the WC pool, or both. Also disclosed is a network component comprising at least one processor configured to implement a method comprising receiving a WC usage state TLV comprising information regarding WC pool usage state, establishing a WC pool usage state vector using the information in the WC usage state TLV, and calculating a WC pool connectivity matrix based on the WC usage state vector.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: March 10, 2015
    Assignee: Futurewei Technologies, Inc.
    Inventors: Young Lee, Greg Bernstein, Jianrui Han
  • Patent number: 8971709
    Abstract: An optical transceiver apparatus includes a gain medium, a photoelectric converter, at least one AWG, and a partial reflection mirror. The at least one AWG includes two common ports and multiple branch ports. One of the two common ports functions as a signal sending port, and the other functions as a signal receiving port, where bandwidth of the signal sending port is less than that of the signal receiving port. The gain medium and the photoelectric converter are connected to one of the branch ports of the AWG. The AWG and the partial reflection mirror are configured to cooperatively perform wavelength self-injection locking on an optical signal provided by the gain medium, and output the optical signal through the signal sending port. The AWG is further configured to demultiplex an optical signal received by the signal receiving port to a branch port. A WDM-PON system is also provided.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: March 3, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Dekun Liu, Yusheng Bai, Huafeng Lin, Zhiguang Xu
  • Patent number: 8965206
    Abstract: An aspect of this invention is a network system including subscriber apparatuses and a station-side apparatus for communicating with the subscriber apparatuses. The station-side apparatus communicates with the subscriber apparatuses using wavelengths. The station-side apparatus determines a wavelength to be used by each of at least one subscriber apparatus of the subscriber apparatuses based on effective transmission rates used by the subscriber apparatuses in communications with the station-side apparatus.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: February 24, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Jun Sugawa, Toshiyuki Odaka, Hidehiro Toyoda
  • Patent number: 8958694
    Abstract: One or more overlay wavelengths are applied to a GPON architecture to provide sufficient, cost-effective forward bandwidth per home for targeted, unique narrowcast services to allow traditional HFC operators to use a PON architecture with their existing HFC equipment. A separate return path capability using a separate coaxial cable with RF signals to the GPON may also be used. This return capability may be provided either by a fiber optic link or coaxial link from the home.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: February 17, 2015
    Assignee: General Instrument Corporation
    Inventors: Philip Miguelez, Shawn M. Esser, Fred Slowik
  • Publication number: 20150043916
    Abstract: An approach for providing dedicated service in a passive optical network (PON) is described. A dedicated service generates a multi-wavelength optical signal comprising a plurality of sub-signals corresponding to carrier wavelengths, modulate the plurality of sub-signals simultaneously with a content signal and transmit the plurality of sub-signals to one or more respective subscribers over an optical distribution network.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: Verizon Patent and Licensing Inc.
    Inventor: David Z. Chen
  • Patent number: 8953940
    Abstract: A method for time synchronization on a passive optical network is disclosed, including: an optical line terminal (OLT) receives clock information sent by a first optical network unit (ONU); the OLT adjusts local time of the OLT according to the clock information, to implement clock synchronization between the OLT and the first ONU; the OLT sends the clock information to a second ONU, to implement clock synchronization between the second ONU and the OLT. The OLT in an embodiment of the present invention does not need to obtain clock signals from an upper network and the clock information does not need to be transmitted in a multi-level mode over a packet network; therefore, the precision of ToD can be greatly increased.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: February 10, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventor: Meng Sui
  • Patent number: 8953941
    Abstract: Typical passive optical networks (PONs) employ several optical network terminals (ONTs) connected to an optical line terminal (OLT) via an optical splitter/combiner (OSC). Due to the passive nature of the OSC, determining a port assignment of an ONT may be difficult or impossible. Methods described herein provide for identifying a port in a passive optical network, optionally as corresponding to an ONT. A first subset of the ONTs is caused to transmit a first signal, such as a status signal, with a respective attribute having a first value, and a second subset of the ONTs is caused to transmit a second signal with the respective attribute having a second value. At the OSC, the signals are detected as a function of the attribute and the first and second values. Results of this detection are reported, from which an identification of a port and associated ONT can be determined.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 10, 2015
    Assignee: Tellabs Bedford, Inc.
    Inventors: Craig L. Lutgen, Mahlon D. Kimbrough
  • Patent number: 8953936
    Abstract: An Optical Line Termination (OLT) system in a multi-wavelength Passive Optical Network (PON) includes a protection port for protecting a set of OLT ports without the use of a physical switch. The protection port has a tunable transceiver. The OLT system detects a failure of one of the OLT ports, which was originally adapted to transmit downstream traffic to a subset of ONUs on a downstream wavelength and to receive upstream traffic from the subset of ONUs on an upstream wavelength. In response to the detection, the OLT system tunes the protection port to the downstream wavelength for transmission and to the upstream wavelength for reception, and resumes communication between the OLT system and the subset of ONUs through the protection port instead of the OLT port.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: February 10, 2015
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: David Hood
  • Patent number: 8948598
    Abstract: A method for communicating in a passive optical network (PON), includes receiving traffic from a plurality of optical network units (ONUs) transmitting in an upstream transmission channel, wherein each of the ONUs may transmit at any wavelength within a wavelength band associated with the upstream transmission channel. The method also includes dividing the upstream transmission channel into a plurality of sub-channels, that each include a subset of the wavelength band associated with the upstream transmission channel. The method further includes determining the identity of each of the plurality of ONUs transmitting in each of the sub-channels, assigning a plurality of ONUs transmitting in the upstream transmission channel to each of at least two of the sub-channels based on the determination of the ONUs transmitting in that sub-channel, and allocating transmission timeslots for time-shared transmission by the ONUs in one or more of the sub-channels.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 3, 2015
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda
  • Patent number: 8948596
    Abstract: A mobile transmitter traverses a drive path in a neighborhood node of a cable communication system and broadcasts a test signal at frequencies falling within an upstream path bandwidth. A navigational device generates a first record of positions of the transmitter along the drive path, and an analyzer monitors the upstream path bandwidth and generates a second record of received signal amplitudes of the transmitted test signal as a function of time. An ingress map is generated showing the drive path and potential points of ingress in the node, and employed to remediate faults particularly in the hardline coaxial cable plant. Iterative generation of maps and corresponding remediation in the node enable improved cable communication systems with reduced noise profiles between 5 MHz and 20 MHz and employing higher modulation order QAM communication channels (e.g., 256-QAM and higher) throughout the upstream path bandwidth to increase upstream capacity.
    Type: Grant
    Filed: June 30, 2012
    Date of Patent: February 3, 2015
    Assignee: CetusView Technologies, LLC
    Inventors: Steven Nielsen, Ronald Totten, Travis Halky
  • Patent number: 8942560
    Abstract: The present disclosure is directed to a method and apparatus for maintaining sub-queues at an ONU and for maintaining a count of an amount of data stored in each sub-queue or a count of an amount of data associated with elements stored in each sub-queue. The sub-queues represent partitions in a first in, first out (FIFO) queue used by the ONU to buffer packets, or elements that are associated with packets, to be sent upstream. The sub-queues are coupled in series such that the output of a first sub-queue feeds the input of a second sub-queue, the output of the second sub-queue feeds the input of a third sub-queue, etc. Each sub-queue has a defined threshold that sets a maximum amount of packet data it can buffer or the elements in which it buffers can be associated with.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: January 27, 2015
    Assignee: Broadcom Corporation
    Inventors: Ryan Edgar Hirth, Glen Kramer, Mitchell Gordon McGee
  • Patent number: 8942561
    Abstract: One embodiment provides an Ethernet Passive Optical Network (EPON) system for clock transport. The system includes a reference clock configured to generate a frequency-reference signal, an optical line terminal (OLT) coupled to the reference clock, and an optical network unit (ONU). The OLT includes a clock generator configured to generate an OLT clock based on at least the frequency-reference signal. The ONU includes an optical transceiver, a clock recovery module, and a clock output mechanism. The optical transceiver is configured to transmit optical signals to and receive optical signals from the OLT. The clock-recovery module is configured to recover the frequency-reference signal from the received optical signals. The clock output mechanism is configured to output the recovered frequency-reference signal, thus facilitating transport of the frequency-reference signal over the EPON.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: January 27, 2015
    Assignee: Broadcom Corporation
    Inventors: Edward W. Boyd, Hidehiko Shibuya
  • Patent number: 8938168
    Abstract: There is provided an office-side line concentration device that accommodates a plurality of passive optical networks, including a plurality of receiving means connected to each of the plurality of passive optical networks, and interface means for controlling a transmission timing of user data from the plurality of passive optical networks so that user data received by the plurality of receiving means can be arranged closely in an uplink, thus enabling effective use of bandwidth in the uplink.
    Type: Grant
    Filed: October 1, 2013
    Date of Patent: January 20, 2015
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Kazuhisa Yamashita
  • Patent number: 8934773
    Abstract: A method for data processing in an optical network includes providing several main wavelengths and processing a subcarrier modulation for the several main wavelengths. An optical network component and a communication system including such an optical network component are also provided.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 13, 2015
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Erich Gottwald, Karl Kloppe, Harald Rohde
  • Patent number: 8929737
    Abstract: An optical line terminal which includes an observing unit that observes information of any one or all of an arrival interval of frames, an instantaneous bandwidth under use of a flow, a queue length of a queue temporarily storing the frames, and a traffic type, and a stop determining unit that dynamically determines a sleep time to be a period in which a sleep state where partial functions of the ONU are stopped is maintained, on the basis of the information obtained by the observing unit. The ONU is entered into a sleep state, immediately after communication ends, after a predetermined waiting time passes from when the communication ends, or after a waiting time determined on the basis of the information passes from when the communication ends.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: January 6, 2015
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Ryogo Kubo, Jun-ichi Kani, Akihiro Otaka
  • Patent number: 8917991
    Abstract: In fiber-to-the-home (FTTH) RF over Glass (RFoG) Architecture a customer-premise-equipment (CPE) includes a wavelength separator. A method includes up-converting a baseband upstream data signal to a frequency band above a frequency band of a baseband downstream data signal; combining the up-converted upstream data signal with an upstream cable return signal; transmitting the up-converted upstream data signal and the upstream cable return signal using a single upstream laser; and separating, with a wavelength separator, A) a downstream data signal and a downstream cable feed signal from B) the combined up-converted upstream data signal and upstream cable return signal.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: December 23, 2014
    Assignee: Aurora Networks, Inc.
    Inventors: Sudhesh Mysore, Charles Barker, Oleh Sniezko, Krzysztof Pradzynski
  • Patent number: 8917990
    Abstract: The present invention relates to a method and devices for fast protection of an optical network system, in particular for a Passive Optical Network (PON), such as a Gigabit-capable Passive Optical Network (GPON). In the method, it is detected that the communication from a first optical network device is lost. Switching of functionality is initiated from a first optical line termination device to a second optical line termination device, and a control message is sent from the second optical line termination device to the first optical network device such that the first optical network device is prevented from moving into initial state. Furthermore, the method comprises determining and setting timing settings for the first optical network device.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: December 23, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventor: Elmar Trojer
  • Patent number: 8917992
    Abstract: An optical network remote node includes first and second node inputs, each receiving a multiplexed optical signal, and node outputs, each outputting a separate demultiplexed optical signal. The node includes first and second optical power splitters, each having a splitter input connected to one of the node inputs and splitter outputs connected to corresponding node outputs. The node includes an arrayed waveguide grating having first and second grating inputs connected to the first and second node inputs, respectively, and grating outputs connected to the corresponding node outputs. If the received signal at one of the node inputs is time division multiplexed, the corresponding connected optical power splitter broadcasts the received optical signal at the node outputs. If the received signal at one of the node inputs is wavelength division multiplexed, the arrayed waveguide grating demultiplexes the received optical signals in wavelength and outputs the demultiplexed signals at the node outputs.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: December 23, 2014
    Assignee: Google Inc.
    Inventors: Cedric Fung Lam, Ben Warren Segura, Ryohei Urata, Pedram Zare Dashti, Hong Liu
  • Publication number: 20140369690
    Abstract: A wavelength-division multiplexing (WDM) optical fiber network system is disclosed, which comprises a signal provider generating at least one set of wavelength signals of a plurality of different wavelengths and coupled to a plurality of modulation modules. The modulation modules respectively coupled to a user receiver. The modulation module comprises a control unit generating a random sequence and a control signal corresponding to the random sequence, and transmitting the control signal to a first modulation unit. The control unit is coupled to the signal provider to receive the wavelength signals and controls the first modulation to retrieve a wavelength signal according to the control signal. The control unit rapidly changes the control signal according to the random sequence whereby the first modulation unit rapidly retrieves the wavelength signals of different wavelengths and transmits them to the user receiver, so as to prevent a specific wavelength from attack.
    Type: Application
    Filed: October 7, 2013
    Publication date: December 18, 2014
    Applicant: NATIONAL CHIAO TUNG UNIVERSITY
    Inventors: JIUN-YU SUNG, CHI-WAI CHOW, CHIEN-HUNG YEH
  • Patent number: 8913887
    Abstract: In a first aspect, the method and apparatus of the present disclosure can be used to periodically and/or intermittently place one or more ONUs attached to a PON in a power savings mode so that an OTDR test can be performed. While in the power savings mode, the ONUs temporarily suspend their transmitter function and power down their upstream lasers. In a second aspect, the method and apparatus of the present disclosure can be used to coordinate the performance of OTDR during one or more periodic or intermittent discovery slots used to detect and register ONUs recently connected to the PON. Because new ONUs are infrequently connected to the PON and ONUs already registered are not permitted to transmit during the discovery windows, OTDR can be performed during these windows without impacting, to a great degree, the normal operation of the PON.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: December 16, 2014
    Assignee: Broadcom Corporation
    Inventors: Ryan E. Hirth, Lowell D. Lamb
  • Patent number: 8909044
    Abstract: The present invention discloses a method for transmitting data and a gigabit-capable passive optical network system, which method comprises: a transmitter carrying indication information in an uplink or a downlink frame transmitted to a receiver for enabling the receiver to discard information which does not need to be processed by the receiver in the uplink or downlink frame according to the indication information. The data type transmitted by GPON systems is expanded and the idle bandwidth is effectively handled by the present invention.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: December 9, 2014
    Assignee: ZTE Corporation
    Inventors: Weiliang Zhang, Dan Geng
  • Patent number: 8909050
    Abstract: An optical network unit (10) comprising a reflective semi-conductor optical amplifier (R-SOA) 12 and a driver 14. The R-SOA has a large optical confinement factor and is arranged to receive a portion of a downstream optical signal having a signal wavelength and a signal power. The driver is arranged to generate a drive signal 16 to drive the R-SOA. The drive signal is arranged to cause the R-SOA to operate in saturation at the signal power. The drive signal is further arranged to cause the R-SOA to apply a return-to-zero line code to said portion of the downstream optical signal to form an upstream optical signal at the signal wavelength. The drive signal is further arranged to cause the R-SOA to apply a phase modulation to the upstream optical signal.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: December 9, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Marco Presi, Ernesto Ciaramella, Fabio Cavaliere, Luca Banchi
  • Publication number: 20140355989
    Abstract: Systems and methods for providing broadband communication are provided. An optical fiber node may be coupled to a source component. The optical fiber node may receive, from the source component, a downstream light signal via at least one input optical fiber, and transmit the downstream light signal to a plurality of output optical fibers. A tap device may be coupled to the optical fiber node via at least on optical fiber. The tap device may receive the downstream light signal via the at least one output optical fiber, convert the downstream light signal into a radio frequency downstream signal, and transmit the radio frequency downstream signal to a plurality of cable lines. The plurality of cable lines may be coupled to one or more customer premises.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventor: Jeffrey L. Finkelstein
  • Patent number: 8897644
    Abstract: Technology to provide linked control of bandwidth allocation to a plurality of optical network units among the plural wavelengths by a bandwidth allocation section coupled to the plural optical network units.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: November 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Jun Sugawa, Daisuke Mashimo, Hiroki Ikeda
  • Patent number: 8897642
    Abstract: The invention relates to a remote node architecture for a fiber-optic network, especially for low bit-rate data transmission, the fiber-optic network comprising a central node and a plurality of remote nodes serially connected to each other or to the central node, respectively, the central node and the remote node being capable of communicating by means of digital optical signals created by the central node or a respective remote node, each digital optical signal comprising a data frame.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: November 25, 2014
    Assignee: ADVA AG Optical Networking
    Inventors: Klaus Grobe, Henning Hinderthur
  • Publication number: 20140334823
    Abstract: A wavelength and bandwidth allocation method which includes in order a wavelength determination step S4 of determining a plurality of wavelengths of an uplink signal from each ONU to OLT to guarantee a guaranteed bandwidth corresponding to a subscription service class of each ONU and a reference bandwidth distribution step S5 of distributing, as reference bandwidths, all bandwidths of the plurality of wavelengths determined in the wavelength determination step S4 to each ONU according to the subscription service class of each ONU and making the reference bandwidths of ONUs whose subscription service classes are the same be the same.
    Type: Application
    Filed: December 28, 2012
    Publication date: November 13, 2014
    Inventors: Shinya Tamaki, Hirotaka Nakamura, Shunji Kimura
  • Patent number: 8886035
    Abstract: Proposed is an efficient method of configuration of a transmitter and a receiver for realizing an optical transmission/reception module apparatus including at least one transmission wavelength and two or more reception wavelengths over a time division multiple access passive optical network or an optical network using multiple transmission/reception wavelengths. Further, proposed is a method of configuration of an apparatus which enables optical alignment and assembly in a single package by using a single lens and three different WDM optical filters for a reception module capable of receiving four wavelengths.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: November 11, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jong Deog Kim, Jong Jin Lee
  • Patent number: 8886043
    Abstract: The disclosure provides an optical network system, an Optical Line Terminal (OLT), an Optical Network Unit (ONU) and an Optical Distribution Network (ODN) apparatus. The system includes: an OLT configured to modulate and encode at least one line of time-division-multiplexed downlink signals, synthesize the downlink signals encoded into one line and then output it, receive uplink signals, and decode the uplink signals received and then output them; an ODN configured to separate the downlink signals received into multiple lines and then output them, synthesize the uplink signals received into one line, and then output it to the OLT; and ONUs configured to receive the downlink signals output from the ODN, decode the downlink signals received and output them, encode one line of time-division-multiplexed uplink signals, and output the uplink signals encoded to the ODN. Decoding of the downlink signals and encoding of the uplink signals can further be implemented by the ODN.
    Type: Grant
    Filed: August 24, 2010
    Date of Patent: November 11, 2014
    Assignee: ZTE Corporation
    Inventors: Biao Chen, Liang Cheng, Dawei Wang, Songlin Zhu, Dan Geng
  • Patent number: 8886042
    Abstract: The present invention discloses a method and a system for scheduling an uplink message based on a Gigabit-capable Passive Optical Network (GPON). The method includes the following steps of: configuring a private managed entity for an 802.1p entity, and defining a mapping relationship between a priority queue and a priority of an uplink message in the private managed entity (S100); the 802.1p entity scheduling an uplink message from an optical network unit, mapping the uplink message to a corresponding GEM PORT, and creating a corresponding priority queue according to the mapping relationship between the priority queue and the priority of the uplink message defined in the private managed entity (S101). In the present invention, the uplink messages mapped to the GEM PORTs in the GPON system can be flexibly scheduled under the N:M bridge-mapping service model of the GPON system, and it is a beneficial extension to the existing mode for scheduling an uplink message based on the GPON system.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: November 11, 2014
    Assignee: ZTE Corporation
    Inventor: Donghu Yang
  • Patent number: 8879914
    Abstract: A method and apparatus for controlling traffic in an optical network having a plurality of OLTs for communicating with a plurality of PONs. A traffic controller receives traffic information concerning current traffic volume and, preferably with reference to a rules database, calculates the number of OLTs required to support the current traffic volume. A separate determination may be made whether a network reconfiguration is permitted at this time. If a reconfiguration is permitted, the traffic controller configures a traffic control switch to route the PON traffic to an from only the calculated number of OLTs. The traffic control switch may be implemented using a voltage-controlled optical fiber coupling or electronically, routing the traffic as electrical signals to and from electro-optical converters associated with each PON. The OLTs to be used may be selected by the traffic controller.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 4, 2014
    Assignee: Alcatel Lucent
    Inventors: Dusan Suvakovic, Doutje Van Veen
  • Patent number: 8873957
    Abstract: A logical-link management method to be executed in an optical communication system including a station side device (OLT) and a subscriber side device (ONU) that is capable of setting a plurality of logical links together with the OLT, in which the OLT transmits a signal for managing the ONU via a single logical link. The logical-link management method includes a status monitoring of the OLT monitoring whether there is a change in a connection status of the logical link between the OLT and the ONU and a link resetting of the OLT resetting, when a change of the connection status of the logical link is detected at the status monitoring, a device management logical link used for transmitting the signal for managing the ONU according to a predetermined procedure.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: October 28, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masaki Tanaka, Yukio Hirano, Koshi Sugimura
  • Patent number: 8873960
    Abstract: A method for detecting faults and their locations in an optical path between an optical line terminal (OLT) of and optical network units (ONUs) of a passive optical network (PON). The method comprises forming a maintenance optical link through the PON between the OLT and a collocated ONU, the OLT and its collocated ONU are each connected to an optical splitter; sending a ranging request from the OLT to the collocated ONU; in response to the ranging request, receiving, over the maintenance optical line, a ranging burst signal including at least a fault analysis detection pattern (FADP); and analyzing the FADP in the received signal by auto-correlating the FADP signal with an expected FADP signal, an uncorrelated event measured through the auto-correlation is indicative of a fault in the optical path of the PON and occurrence times of such events are indicative of the fault's location in the optical path.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Broadcom Corporation
    Inventors: Amiad Dvir, Eli Elmoalem
  • Patent number: 8861954
    Abstract: To, even when a transmission wavelength varies in each ONU and an optical amplifier gain depends on the wavelength in an OLT equipped with an optical amplifier, prevent the optical amplifier gain from varying in every ONU and thus prevent deterioration of a dynamic range. The OLT estimates a transmission wavelength of each ONU at the time of ONU registration, and retains a correspondence between an ONU identifier and the transmission wavelength. Moreover, for every burst, an injection current to the optical amplifier is adjusted based on a wavelength and optical amplifier characteristic database.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: October 14, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Jun Sugawa, Hiroki Ikeda, Tohru Kazawa
  • Patent number: 8861964
    Abstract: Methods and arrangements for time distribution in an optical network system in the upstream direction. The information of a selected time reference frame and a calculated time stamp value of the frame based on a real-time clock of the optical line terminal (OLT) is sent from the OLT to the optical network unit (ONU) via the optical distribution network (ODN). When the time reference frame is sent to the ONU from the OLT via the ODN, the ONU records the arrival time of the frame based on a time reference made by the real-time clock of the ONU. The time difference between the arrival time and the time stamp value is calculated whereupon the OLT is informed of the calculated time difference. The OLT adjusts the real-time clock of the OLT in accordance with the time difference.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: October 14, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Ling Chen, Shuyou Dong
  • Patent number: 8855493
    Abstract: An Optical Network Unit (ONU) emulator enables traffic emulation in a Gigabit-capable Passive Optical Network (GPON) that couples an Optical Line Termination (OLT) system to the ONU emulator and carries mixed types of emulated ONU traffic and real ONU traffic. The ONU emulator includes one or more emulated ONU platforms; each emulated ONU platform includes multiple ONU emulator blocks, and each ONU emulator block includes circuitry to emulate multiple emulated ONUs simultaneously. An emulated ONU platform generates upstream GPON frames according to respective profiles of the emulated ONUs, and sends the upstream GPON frames to the OLT system. At least a subset of the upstream GPON frames reach the OLT system via one or more passive optical splitters that couple the emulated ONU platform and a set of real ONUs to the OLT system. The emulated ONU platform also receives downstream GPON frames from the OLT system.
    Type: Grant
    Filed: October 5, 2012
    Date of Patent: October 7, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventor: Hassan Elhage
  • Patent number: 8855492
    Abstract: An optical network unit (ONU) accesses services provided by multiple optical line terminals (OLTs) in a wavelength division multiplexing (WDM) passive optical network (PON). The ONU receives downstream signals from a first plurality of OLTs through a designated port of an arrayed waveguide (AWG). At any given time, the bandpass filter module can select any one of a first plurality of AWG cycles allocated to the first plurality of OLTs. Based on received downstream signals, the ONU transmits upstream signals to a second plurality of OLTs through the designated port of the AWG. At any given time, the bandpass filter module and a transmitter of the ONU can select any one of a second plurality of AWG cycles allocated to the second plurality of OLTs. The ONU may be configured with a plurality of receivers and transmitters, whereby it is enabled to simultaneously subscribe to a plurality of AWG cycles.
    Type: Grant
    Filed: January 18, 2012
    Date of Patent: October 7, 2014
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: David Hood, Stefan Dahlfort
  • Patent number: 8855491
    Abstract: A method for performing a protection in passive optical networks. The method comprises forming a protection maintenance link between an active optical line terminal (OLT) and a standby OLT; forming a synchronization link between the active OLT and the standby OLT; computing a base differential distance value; continuously measuring round trip time (RTT) values by the active OLT using the protection maintenance link; periodically sending at least RTT values calculated by the active OLT to the standby OLT over the synchronization link; and computing, by the standby OLT, a new RTT value based on at least a RTT value measured by the active OLT and a standby differential distance value, when a switch-over action is triggered, thereby allowing the standby OLT to serve optical network units (ONUs) in the PON without performing a ranging process.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: October 7, 2014
    Assignee: Broadcom Corporation
    Inventors: Eli Elmoalem, Amiad Dvir
  • Patent number: 8849117
    Abstract: A session-based dynamic bandwidth allocation applied to PON includes the steps of A) duplicating, under PON system, packets transmitted to a splitter from every ONU and filtering the packets as per session classification via a snooping agent of the ONU to get specific packets; B) making every ONU transmit the specific packets to a bandwidth analyzer via a tunneling; C) analyzing information of the specific packets or the relativities between every specific packet and the previous and next packets via the bandwidth analyzer to further generate a session state information and save it into a database; and D) making an OLT access the session state information in the database and applying an SDBA to the dynamic bandwidth allocation.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: September 30, 2014
    Assignee: National Chung Cheng University
    Inventors: Cheng-Shong Wu, Hui-Kai Su, Steven Lee, Ting-Chao Hou
  • Patent number: 8849122
    Abstract: Apparatus and methods for providing content to devices in a content distribution network. In one embodiment, a hybrid fiber/coax network provides optical signals to an amplification and combination node, the signals which are converted to radio frequency (RF) signals and transmitted to a series of cascading amplification and combination apparatus. The converted signals are combined with legacy RF signals at the combination apparatus, and distributed further downstream to serviced premises as well as other portions of the network cascade. Time division techniques are used to mitigate interference between the various amplification and combination nodes within the cascade. The programmable time division devices allow for rapid spectrum reallocation, and for insertion of different content at each different node of the network.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: September 30, 2014
    Assignee: Time Warner Cable Enterprises, LLC
    Inventor: Paul D. Brooks
  • Patent number: 8849119
    Abstract: Disclosed is a wavelength-shifted bidirectional WDM optical network including: an optical line terminal including an optical line terminal (OLT) including a first optical transmitter transmitting a downstream WDM optical signal, a first high-density wavelength multiplexer/demultiplexer wavelength-multiplexing the downstream WDM optical signal or wavelength-demultiplexing a wavelength-multiplexed upstream WDM optical signal, and a first optical receiver receiving the wavelength-demultiplexed upstream WDM optical signal; a remote node (RN) including a second high-density wavelength multiplexer/demultiplexer shifting a center wavelength of the upstream WDM optical signal and wavelength-multiplexing the upstream WDM optical signal with the shifted center wavelength or wavelength-demultiplexing the wavelength-multiplexed downstream WDM optical signal; and multiple optical network units (ONUs) each including a second optical transmitter transmitting the upstream WDM optical signal and second optical receiver receiv
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: September 30, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jong Sool Jeong, Hyun Soo Kim, Mi-Ran Park, Byunseok Choi, O-Kyun Kwon
  • Patent number: 8842991
    Abstract: A method in a network device for providing end-to-end connection in a unified optical and coax network, comprising receiving at an integrated node device (IND) a frame from an optical line terminal (OLT), wherein the frame comprises a data frame and a logical link identifier (LLID), and placing the data in a one of a plurality of buffers based on the LLID, wherein the one of the plurality of buffers corresponds to a customer premises equipment (CPE) associated with the LLID, wherein the data frame stays intact in a media access control (MAC) layer.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: September 23, 2014
    Assignee: Futurewei Technologies, Inc.
    Inventors: Haixiang Liang, Liming Fang, Jim Chen, Hesham El Bakoury
  • Patent number: 8842990
    Abstract: A method performed in an optical line terminal (OLT) in a passive optical network (PON) for detecting a rogue optical network unit (ONU) operating among a plurality of ONUs in the PON. The OLT receives a plurality of bursts of light from a plurality of ONUs, each burst being separated from other bursts by an inter-burst gap containing a minimum dark interval during which the OLT expects to receive no optical power. The OLT measures the received optical power during one or more of the minimum dark intervals of the inter-burst gaps and determines whether the inter-burst gaps were anomalous. In response to determining that an inter-burst gap was anomalous, the OLT increments an anomaly count that indicates a rogue ONU has been detected when the anomaly count exceeds an anomaly count threshold. When the anomaly count is exceeded, the OLT declares an alarm associated with the presence of a rogue ONU, and may also initiate rogue isolation diagnostics.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: September 23, 2014
    Assignee: Telefonaktiebolaget L M Ericsson (Publ)
    Inventor: David Hood
  • Patent number: 8837945
    Abstract: Provided is a passive optical network (PON) providing system of an Ethernet-based packet transport layer (PTL) scheme, including: a connection management server to manage a unified PTL connection overall over the network by establishing a PTL connection between an optical network unit (ONU)/optical network terminal (ONT) of a customer termination of one party and an ONU/ONT of a customer termination of another party, and by applying a PTL-PON scheme to a PON section between the ONU/ONT and an optical line termination (OLT); an OLT to manage a connection of a received packet, and to convert a format of the packet according to a transmission direction of the packet and thereby transmit the packet; and an ONU/ONT becoming an end point of the PTL connection to convert the format of the packet according to the transmission direction of the received packet and to thereby transmit the packet to a customer terminal or the OLT.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 16, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yool Kwon, Hong Ju Kim, Byung Ho Yae, Kyung Gyu Chun, Young Boo Kim
  • Patent number: 8837940
    Abstract: A fiber optic network includes a fiber distribution hub including at least one splitter and a termination field; a plurality of drop terminals optically connected to the fiber distribution hub by a plurality of distribution cables; and a distributed antenna system (DAS). The DAS includes a base station and a plurality of antenna nodes. The base station is optically connected to the fiber distribution hub and the antenna nodes are optically connected to the drop terminals. Example splitters include a passive optical power splitter and a passive optical wavelength splitter. Signals from a central office can be routed through the passive optical power splitter before being routed to subscriber locations optically connected to the drop terminals. Signals from the base station can be routed through the wavelength splitter before being routed to the antenna nodes.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: September 16, 2014
    Assignee: ADC Telecommunications, Inc.
    Inventors: Trevor D. Smith, M'hamed Anis Khemakhem