Grating Patents (Class 398/84)
  • Patent number: 7835646
    Abstract: The present invention generally concerns the use of Bragg optical fibers in chirped pulse amplification systems for the production of high-pulse-energy ultrashort optical pulses. A gas-core Bragg optical fiber waveguide can be advantageously used in such systems to stretch the duration of pulses so that they can be amplified, and/or Bragg fibers can be used to compress optical signals into much shorter duration pulses after they have been amplified. Bragg fibers can also function as near-zero-dispersion delay lines in amplifier sections.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: November 16, 2010
    Assignee: Raydiance, Inc.
    Inventors: Laurent Vaissié, James Francis Brennan, III
  • Patent number: 7831148
    Abstract: An optical network comprises a transmitter node (1), a receiver node (4) and an optical fiber (3) for transmitting an optical wavelength-division multiplex signal having payload channels and a supervisory channel between the nodes (1, 4). At least one of the nodes has an amplifier (8, 13) which is passed by the multiplex signal. The transmitter node (1) has a source (11) for the supervisory channel and a multiplexer (12) for combining the payload channels and the supervisory channel in order to form the optical wavelength-division multiplex signal, and the receiver node (4) has a sink (16) for the supervisory channel and a demultiplexer (14) for separating the wavelength division multiplex signal into supervisory and the payload channels.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: November 9, 2010
    Assignee: Ericsson AB
    Inventor: Steven Ian Pegg
  • Patent number: 7831114
    Abstract: In a method and system for providing dispersion compensation in an optical system, there is coupled into the optical system at least one pathway into which there is connected a tunable chirped fiber Bragg grating, each such grating providing a respective tunable amount of dispersion. At least one respective DGD element is connected into the respective pathway for each such grating. The set of all such respective DGD elements in a given pathway introduces a bias differential group delay DGD(bias) having an absolute value that, for at least one tuning value of the grating, is substantially equal to differential group delay introduced by the grating.
    Type: Grant
    Filed: January 11, 2009
    Date of Patent: November 9, 2010
    Assignee: OFS Fitel LLC
    Inventors: Gregory M. Bubel, William R. Holland, David J. Kudelko, Yaowen Li, Paul S. Westbrook
  • Patent number: 7809272
    Abstract: The technology described herein provides a low-cost three-port reconfigurable optical add-drop multiplexer (ROADM) with an improved edge profile and add/drop flexibility. The technology described herein further provides a tunable spectral filter utilizing two sets of gratings and lenses and a two-axis micro-electro-mechanical system (MEMS) mirror with a selectively shaped cut-out disposed within the middle of the collimated optical path.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: October 5, 2010
    Assignee: Ciena Corporation
    Inventors: Shan Zhong, Jean-Luc Archambault
  • Patent number: 7805076
    Abstract: A packet-switched WDMA ring network has an architecture utilizing packet stacking and unstacking for enabling nodes to access the entire link capacity by transmitting and receiving packets on available wavelengths. Packets are added and dropped from the ring by optical switches. A flexible credit-based MAC protocol along with an admission algorithm enhance the network throughput capacity.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 28, 2010
    Assignee: AT&T Intellectual Property II, LP
    Inventors: Mikhail Boroditsky, Nicholas J. Frigo, Aleksandra Smiljanic
  • Patent number: 7801402
    Abstract: A monolithic receiver photonic integrated circuit (RxPIC) chip includes a plurality of optical signal channels together with other active elements integrated on a semiconductor chip, which chips further include a wavelength selective decombiner comprising a supergrating or an Echelle grating which provides for a more compact chip compared to an integrated on-chip arrayed waveguide grating (AWG) functioning as a wavelength selective decombiner.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: September 21, 2010
    Assignee: Infinera Corporation
    Inventor: Charles H. Joyner
  • Patent number: 7801446
    Abstract: The present invention provides a WDM optical system that includes a tunable filter for selecting one or more optical channels from a WDM optical signal. A portion of a WDM signal enters a first optical filter stage that exhibits a periodic transmission spectrum and possesses individually tunable filter elements. A second optical filter stage receives throughput from the first filter stage and has a periodic transmission spectrum and individually tunable filter elements. A controller electrically communicates with the optical filter to select individual optical channels from the portion of the wavelength division multiplexed optical signal received through the filter input port; each selected optical channel is output via a filter throughput port. In an exemplary embodiment, each tunable filter element is a micro-ring resonator and the micro-ring resonators in the first filter stage have a different free spectral range (FSR) than the micro-ring resonators of the second filter stage.
    Type: Grant
    Filed: January 8, 2003
    Date of Patent: September 21, 2010
    Assignee: Infinera Corporation
    Inventors: Brent Everett Little, Lance G. Joneckis
  • Patent number: 7796849
    Abstract: Disclosed are various devices and methods employing photonic crystals to facilitate spatial separation of frequency components of a beam. In one embodiment, an apparatus is provided that includes a preconditioning waveguide facilitating a predefined amount of diffraction of a beam comprising a plurality of wavelengths. A photonic crystal is optically coupled to an output of the preconditioning waveguide. The photonic crystal is configured to spatially separate a plurality of frequency components of the beam.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: September 14, 2010
    Assignee: Georgia Tech Research Corporation
    Inventors: Ali Adibi, Babak Momeni
  • Patent number: 7706643
    Abstract: Agile OADM structures having a range of tradeoffs between costs and flexibility are disclosed. In certain implementations, cyclic AWGs (arrayed waveguide gratings) are employed. Excellent optical performance is achieved along with relatively low initial and upgrade costs. An economically optimal level of network flexibility may thus be achieved.
    Type: Grant
    Filed: February 5, 2007
    Date of Patent: April 27, 2010
    Assignee: Cisco Technology, Inc.
    Inventors: Fausto Meli, Valerio Viscardi
  • Patent number: 7660536
    Abstract: An optical modulating circuit realizing a PPM is constituted by circuit parts having a frequency band equal to a data rate to provide a technique which increase the data rate. A first light source generates a first single wavelength signal serving as a continuous light having a first wavelength ?1 as a wavelength of a carrier wave. A second light source generates a second single wavelength signal serving as a continuous light having a second wavelength ?2 different from ?1 as a wavelength of a carrier wave. For the first single wavelength signal and the second single wavelength signal, according to a transmission electric signal having information 0 or 1, an optical switch outputs a first single wavelength signal as an input optical signal when the information is 0. On the other hand, when the information is 1, the optical switch outputs the second single wavelength signal as an input optical signal.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: February 9, 2010
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Naoki Minato
  • Patent number: 7657181
    Abstract: In an optical add/drop multiplexer dropping and inserting a light of a specific wavelength for a WDM signal light and an optical network system utilizing the same, a wavelength selective switch selects a part of WDM signal lights inputted as lights of drop wavelengths and outputting other lights, and a reject/add filter terminates lights of same wavelengths as add wavelengths among output lights from the wavelength selective switch and multiplexes other lights than the terminated lights and lights of the add wavelengths to be outputted. At this time, the drop wavelengths are made to include all of the add wavelengths.
    Type: Grant
    Filed: March 28, 2007
    Date of Patent: February 2, 2010
    Assignee: Fujitsu Limited
    Inventors: Noboru Terai, Goji Nakagawa
  • Patent number: 7650078
    Abstract: Provided are a frequency extracting apparatus and a signal extracting system employing the same. The signal extracting system can reduce the effect of an input signal pattern by extracting two frequency components and beating them to extract a desired clock signal, and improve a signal-to-noise ratio of an extracted clock signal. The frequency extracting apparatus includes: a circulator for changing an output direction of an input signal; a reflective filter for extracting a desired frequency component among frequency components of the input signal; a wavelength and amplitude controlling unit; and the frequency amplitude controller.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: January 19, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jaemyoung Lee, Je-Soo Ko
  • Patent number: 7633680
    Abstract: A diffraction grating device for splitting or coupling light beams permits the divergence of the light beams to be minimized easily. A first light beam is incident on a diffraction grating from the side thereof facing the inside of the device, and a second light beam is incident on the diffraction grating from the side thereof facing air. The diffraction grating transmits the first light beam by diffraction of the minus first order so that it travels in the reverse direction along the optical path of the second light beam before incidence, and transmits the second light beam by diffraction of the zero order. The second light beam, transmitted by diffraction of the zero order, spreads over a certain width of wavelengths, but does not diverge even after diffraction.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: December 15, 2009
    Assignee: Konica Minolta Holdings, Inc.
    Inventor: Shigeto Ohmori
  • Patent number: 7630643
    Abstract: Provided is a multimode optical transmission system capable of reducing an influence of multimode dispersion occurring when an optical signal is transmitted in multimode. Light sources (101 to 10m) respectively convert inputted electrical signals into a plurality of optical signals respectively having different wavelengths, and respectively output the plurality of optical signals. A wavelength multiplexing section (200) performs wavelength multiplexing of the plurality of optical signals outputted from the light sources (101 to 10m), and outputs a resultant signal as a wavelength multiplexed signal. A multimode optical transmission path (300) optically transmits the wavelength multiplexed signal in multimode. A mode processing section (400) extracts, from the wavelength multiplexed signal transmitted through the multimode optical transmission path (300), a plurality of optical signals each being in a mode having a particular wavelength and a particular propagation constant.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: December 8, 2009
    Assignee: Panasonic Corporation
    Inventors: Tsutomu Niiho, Kouichi Masuda
  • Patent number: 7630135
    Abstract: A method for assuring a blazed condition in a DMD device used in telecommunications applications. By meeting certain conditions in the fabrication and operation of the DMD, the device can achieve a blazed condition and be very effective in switching near monochromatic spatially coherent light, thereby opening up a whole new application field for such devices. This method determines the optimal pixel pitch and mirror tilt angle for a given incident angle and wavelength of near monochromatic spatially coherent light to assure blazed operating conditions. The Fraunhofer envelope is determined by convolving the Fourier transforms of the mirror aperture and the delta function at the center of each mirror and then aligning the center of this envelope with a diffraction order to provide a blazed condition.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: December 8, 2009
    Assignee: Texas Instrument Incorporated
    Inventors: Benjamin L. Lee, Claude E. Tew, Walter M. Duncan
  • Publication number: 20090252495
    Abstract: Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
    Type: Application
    Filed: March 13, 2009
    Publication date: October 8, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Andreas Goebel, Lawrence C. West, Gregory L. Wojcik
  • Patent number: 7593638
    Abstract: A method and system for ensuring confidentiality of signal transmission in a point-to-multi point data transmission network like Ether net passive optical network, including at least one hub, at least one transmission medium and at least one station connected to the hub via the transmission medium. When an upstream signal is transmitted from a first station, the upstream signal is reflected by at least one disturbing reflector for producing a disturbing reflection. The disturbing reflection combines with a second reflection of the upstream signal and renders the second reflection undependable by a second station.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: September 22, 2009
    Inventors: Olli-Pekka Pohjola, Ari Tervonen
  • Patent number: 7587112
    Abstract: In order to prevent a spectrum of a wavelength channel from becoming narrower, a device according to the present invention includes a light dividing section capable of dividing a wavelength spectrum in an input light beam and outputting a plurality of divided light beams, which are spatially separated and have wavelength spectrum portions different from each other, and a wavelength-to-special-position-converter capable of spatially multiplexing the wavelength spectrum portions of the plurality of divided light beams from the light dividing section.
    Type: Grant
    Filed: March 10, 2005
    Date of Patent: September 8, 2009
    Assignee: Fujitsu Limited
    Inventor: Haruhiko Tabuchi
  • Patent number: 7583423
    Abstract: Transmission and reflection type holograms may be formed utilizing a novel polymer-dispersed liquid crystal (PDLC) material and its unique switching characteristics to form optical elements. Applications for these switchable holograms include communications switches and switchable transmission, and reflection red, green, and blue lenses. The PDLC material offers all of the features of holographic photopolymers with the added advantage that the hologram can be switched on and off with the application of an electric field. The material is a mixture of a polymerizable monomer and liquid crystal, along with other ingredients, including a photoinitiator dye. Upon irradiation, the liquid crystal separates as a distinct phase of nanometer-size droplets aligned in periodic channels forming the hologram. The material is called a holographic polymer-dispersed liquid crystal (H-PDLC).
    Type: Grant
    Filed: November 8, 2005
    Date of Patent: September 1, 2009
    Assignee: Science Applications International Corporation
    Inventors: Richard L. Sutherland, Bill Hagan, William J. Kelly, Bob Epling
  • Publication number: 20090092390
    Abstract: The present invention relates to a wavelength-division multiplexed passive optical network (WDM-PON) which embodies wavelength-independence of wavelength-locked Fabry Perot-Laser Diode (F-P LD).
    Type: Application
    Filed: July 11, 2006
    Publication date: April 9, 2009
    Inventors: Chang-Hee Lee, Ki-Man Choi
  • Patent number: 7515833
    Abstract: An all optical network for optical signal traffic has at least a first ring with at least one transmitter and one receiver. The first ring includes a plurality of network nodes. At least a first add/drop broadband coupler is coupled to the first ring. The broadband coupler includes an add port and a drop port to add and drop wavelengths to and or from the first ring, a pass-through direction and an add/drop direction. The first add/drop broadband coupler is configured to minimize a pass-through loss in the first ring and is positioned on the first ring.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: April 7, 2009
    Assignee: OpVista Incorporated
    Inventor: Winston I. Way
  • Patent number: 7505647
    Abstract: Methods and structures are disclosed demultiplexing optical signals transmitted over an optical fiber into a silicon substrate and to multiple detectors. The silicon substrate has two spaced-apart surfaces and a diffractive element disposed adjacent to one of the surfaces. Each of the optical signals corresponds to one of multiple wavelengths. The optical signals are directed into the silicon substrate along a path through the first surface to be incident on the diffractive element. The path is oriented generally normal with the first surface and/or with the diffractive element, which angularly separates the optical signals such that each of the wavelengths traverses through the substrate in a wavelength dependent direction to the first surface. Each optical signal is steered from the first surface towards the second surface to be incident on different optical elements that direct them generally normal to the first surface to be incident on one of the detectors.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 17, 2009
    Assignee: Applied Amterials, Inc.
    Inventors: Andreas Goebel, Lawrence C. West, Gregory L. Wojcik
  • Patent number: 7492999
    Abstract: An optical fiber transmits at least a signal light having a wavelength of 1550 nanometers in a fundamental propagation mode. The optical fiber has, a cutoff wavelength equal to or longer than 1550 nanometers, a wavelength dispersion of 4 ps/nm/km to 7 ps/nm/km in the fundamental propagation mode at the wavelength of 1550 nanometers, a dispersion slope of a positive value equal to or smaller than 0.03 ps/nm2/km in the fundamental propagation mode at the wavelength of 1550 nanometers, an effective core area equal to or larger then 60 ?m2 in the fundamental propagation mode at the wavelength of 1550 nanometers, and a bending loss equal to or smaller than 20 dB/m with a winding of 16 turns at a diameter of 20 millimeters in the fundamental propagation mode at the wavelength of 1550 nanometers.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: February 17, 2009
    Assignee: The Furukawa Electric Co., Ltd.
    Inventor: Katsunori Imamura
  • Patent number: 7480429
    Abstract: An apparatus for optical communication is provided. The apparatus includes a first waveguide formed on a first surface and a second waveguide formed on a second surface. The first and second surfaces are bonded together to form an air gap between the first and second surfaces and diffraction gratings of the first and second waveguides are facing each other. A third waveguide is formed on a third surface, and the third surface is bonded to the second surface so an air gap exists between the third and second surface and diffraction gratings of the third and second wave guides face each other. The light beam passes from the second wave guide across the air gap and into the third waveguide.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: January 20, 2009
    Assignee: International Business Machines Corporation
    Inventors: Punit P. Chiniwalla, Philip Hobbs, Theodore G. van Kessel
  • Patent number: 7463828
    Abstract: An optical channel monitor is provided that sequentially or selectively filters an optical channel(s) 11 of light from a (WDM) optical input signal 12 and senses predetermined parameters of the each filtered optical signal (e.g., channel power, channel presence, signal-noise-ratio). The OCM 10 is a free-space optical device that includes a collimator assembly 15, a diffraction grating 20 and a mirror 22. A launch pigtail emits into free space the input signal through the collimator assembly 15 and onto the diffraction grating 20, which separates spatially each of the optical channels 11 of the collimated light, and reflects the separated channels of light onto the mirror 22. A ?/4 plate 26 is disposed between the mirror 22 and the diffraction grating 20. The mirror reflects the separated light back through the ?/4 plate 26 to the diffraction grating 20, which reflects the channels of light back through the collimating lens 18.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: December 9, 2008
    Inventors: John Moon, Ralph Jones, Charles Winston, James Sirkis, David Fournier, Joseph Pinto, Robert Brucato, James Dunphy, Christopher Chestnut
  • Patent number: 7457544
    Abstract: A group delay compensation equalizer is disclosed that employs a single channel four-port WDM device for compensating the group delay experienced by a plurality of wavelengths transmitted over different paths. The transmission differential between two wavelengths is compensated by transmitting the two wavelengths through two different paths where the fiber length in reflecting the second wavelength is equal to the transmission time difference between the two wavelengths. The single channel four-port group delay equalizer effectively provides a unidirectional signal flow, as compared to the conventional equalizer that transmits optical signals bi-directionally. The present invention reduces the cost of a group delay equalizer by simplifying the use of multiple three-port WDM devices into a single channel four-port WDM device.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: November 25, 2008
    Assignee: Avanex Corporation
    Inventors: John Feng, Xuehua Wu, Sanjai Parthasarathi, Giovanni Bararossa
  • Patent number: 7457495
    Abstract: A method of filtering optical signals (300) utilizing an optical fiber (100A-100D). The method of filtering optical signals (300) includes the steps (304) selecting an optical fiber (100A-100D) coupled to a source of optical signals, (306) disposing a core (102) in the bore (103) of the optical fiber (100A-100D) formed of a core material (105), (308) selecting a core material (105) to provide a waveguide within the optical fiber (100A-100D), (310) disposing an optical grating (114-1) in a first optical cladding layer (104) disposed about the core (102), (312) propagating an optical signal within the optical fiber (100A-100D) guided substantially within the core (102), (314) modifying a propagation path of selected wavelengths comprising said optical signal with the optical grating (114-1), and (316) determining selected wavelengths for which the propagation path is modified by selectively varying an energetic stimulus to the core (102) thereby tuning the waveguide.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: November 25, 2008
    Assignee: Harris Corporation
    Inventors: Timothy E. Dimmick, Kevin H. Smith, Douglas J. Markos
  • Patent number: 7454139
    Abstract: A packet-switched WDMA ring network has an architecture utilizing packet stacking and unstacking for enabling nodes to access the entire link capacity by transmitting and receiving packets on available wavelengths. Packets are added and dropped from the ring by optical switches. A flexible credit-based MAC protocol along with an admission algorithm enhance the network throughput capacity.
    Type: Grant
    Filed: July 3, 2006
    Date of Patent: November 18, 2008
    Assignee: AT&T Corp.
    Inventors: Mikhail Boroditsky, Nicholas J. Frigo, Aleksandra Smiljanic
  • Patent number: 7424226
    Abstract: An optical code division multiplexing communication method includes the steps of: producing a multi-wavelength optical pulse train from wavelength multiplexing pulse; transmitting the multi-wavelength optical pulse train through a transmission line using a time-spreading/wavelength-hopping method; decoding wavelength multiplexing pulse from the multi-wavelength optical pulse train transmitted through the transmission line; compensating delay time differences between individual optical pulses of the multi-wavelength optical pulse train, the delay time differences occurring in the step of transmitting the multi-wavelength optical pulse train through the transmission line; and compensating optical pulse spread in a time direction, which occurs in each of the optical pulses of the multi-wavelength optical pulse train in the step of transmitting the multi-wavelength optical pulse train through the transmission line.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: September 9, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Akihiko Nishiki, Kensuke Sasaki, Shuko Kobayashi, Satoko Kutsuzawa
  • Patent number: 7398021
    Abstract: An optical transmitter including a multi-lambda source to output injection light consisting of a plurality of injection wavelengths in channels, a circulator having a first port, a second port, and a third port, the circulator receiving the injection light at the first port, and outputting the received injection light to the second port, and further receiving signal light at the second port, and outputting the received signal light to the third port, an arrayed waveguide grating having a multiplexing port connected to the second port of the circulator, and a plurality of demultiplexing ports, spectrum-slicing injection light received from the circulator at the multiplexing port into a plurality of injection channels, and outputting the injection channels to the demultiplexing ports and further receiving and multiplexing a plurality of signal channels at the demultiplexing ports, into a signal light, and outputting the signal light to the multiplexing port, and a plurality of reflective semiconductor optical a
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: July 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hong-Seok Shin, Hyun-Cheol Shin, Seong-Taek Hwang, Dae-Kwang Jung
  • Patent number: 7394986
    Abstract: The invention relates to wavelength-selective optical filters for allowing light of a narrow optical spectral band, centered around a wavelength (?c) to pass through them, while reflecting the wavelengths lying outside this band. According to the invention, the transfer function (T1,2(?)) of the component is defined by multiplying two transfer functions of spectrally offset Fabry-Perot filters.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: July 1, 2008
    Assignee: Atmel Grenoble S. A.
    Inventors: Romain Ramel, Sylvie Jarjayes, Stéphane Gluck
  • Patent number: 7389047
    Abstract: The network comprises an optical ring link (F) and a concentrator (HUB) that sends via one end of the link “downlink” optical signals carried by respective wavelengths and receives “uplink” optical signals via the other end of the link. The link is divided into a plurality of segments (FS1-FS4) separated by access nodes (AN1-AN3) for receivers (RX) of downlink optical signals and for senders (TX) of uplink optical signals. Each access node comprises coupling means that are not wavelength-selective for coupling the segment on the upstream side of the node to the segment on the downstream side and to the receivers and to couple the senders (TX) to the segment on the downstream side. The downlink optical signals are carried by wavelengths belonging to a set of predefined wavelengths. To optimize the use of spectral resources, a rejection filter (NF) is inserted into a segment to reject a portion of the wavelengths of said set of wavelengths.
    Type: Grant
    Filed: February 22, 2005
    Date of Patent: June 17, 2008
    Assignee: Alcatel
    Inventors: Thierry Zami, Arnaud Dupas
  • Patent number: 7389048
    Abstract: The present invention provides an optical wavelength-division multiple access system and a corresponding optical network unit. A wavelength band Da (wavelengths ?d1 to ?dn) for downlink optical signals corresponding to the n ONUs, a wavelength band Ua (wavelengths ?u1 to ?un) for uplink optical signals corresponding to the n ONUs, a wavelength band Db (wavelengths ?dn+1 to ?dn+m) for downlink optical signals corresponding to the m ONUs, and a wavelength band Ub (wavelengths ?un+1 to ?un+m) for uplink optical signals corresponding to the m ONUs are set different from one another, the wavelength bands Ua and Ub are set adjacent to each other, and the wavelength bands Ua and Da or the wavelength bands Ub and Db are set adjacent to each other.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: June 17, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Jun-ichi Kani, Katsumi Iwatsuki
  • Patent number: 7385761
    Abstract: A diffraction grating device for splitting or coupling light beams permits the divergence of the light beams to be minimized easily. A first light beam is incident on a diffraction grating from the side thereof facing the inside of the device, and a second light beam is incident on the diffraction grating from the side thereof facing air. The diffraction grating transmits the first light beam by diffraction of the minus first order so that it travels in the reverse direction along the optical path of the second light beam before incidence, and transmits the second light beam by diffraction of the zero order. The second light beam, transmitted by diffraction of the zero order, spreads over a certain width of wavelengths, but does not diverge even after diffraction.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: June 10, 2008
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Shigeto Ohmori, Koujirou Sekine
  • Patent number: 7373039
    Abstract: A low-ripple optical device comprising an optical demultiplexer structure and an optical multiplexer structure cascaded together wherein one of the structures exhibits n passband maxima and the other device exhibits n+1 passband maxima.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: May 13, 2008
    Assignee: Lucent Technologies Inc.
    Inventor: Christopher Doerr
  • Patent number: 7356259
    Abstract: Optical bypass node upgrade configurations are disclosed: (1) a configuration where optical taps are pre-positioned in wavelength division multiplex (WDM) line systems terminating at optical-electrical-optical (OEO) core switching nodes to allow for future upgrade of the nodes to degree-two or higher optical bypass; (2) a configuration where the taps are pre-positioned in a degree-two optical bypass node to allow for future upgrade to a degree-N optical bypass node; and (3) a configuration and procedure for upgrading OEO core switching nodes to optical bypass when the taps have not been pre-positioned in the WDM line systems. These configurations do not introduce bit errors for non-upgraded optical paths.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: April 8, 2008
    Assignee: Ciena Corporation
    Inventor: Charles Haggans
  • Patent number: 7352928
    Abstract: The tunable add/drop multiplexer including a tiltable mirror, a fixed thin film filter, and first and second retro-reflector elements for redirecting express channels back out an input/output port and for redirecting drop channels back out an add/drop port, respectively.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 1, 2008
    Assignee: JDS Uniphase Corporation
    Inventors: Bo Chen, Bo Cai, Yatao Yang, Ming Liang, Xiaobiao Wang
  • Patent number: 7340175
    Abstract: Hierarchical hybrid optical networking is based on balancing cost and performance of optical networks by providing transparent (optical) switching of subsets of wavelengths in addition to opaque (electrical) switching of individual light paths. Effective use of wavelength-subset switching requires aggregating and deaggregating wavelength subsets in a simple, cost-effective manner. Non-uniform wavebands are introduced and analyzed their performance advantage as compared with uniform wavebands. Also proposed are several architectural options for a hierarchical hybrid optical cross-connect system that combines non-uniform wavebands and improved utilization of OEO ports.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: March 4, 2008
    Assignee: NEC Corporation
    Inventors: Ting Wang, Rauf Izmailov, Ruixue Fan, Stephen Weinstein
  • Patent number: 7333729
    Abstract: To resolve problems, with the invention, an optical transmitter comprises an encoder for generating an optical signal obtained by encoding multi-wavelength pulses corresponding to sending data by use of a method of time spread/wavelength hopping in accordance with an encoding pattern of the encoder itself. The encoder concurrently executes time delay for every wavelength component at encoding, and time delay due to pre-compensation processing to pre-compensate for difference in propagation time for every wavelength component, occurring due to chromatic dispersion characteristics of a transmission line by ?%. An optical receiver comprises a decoder for decoding the optical signal transmitted by the optical transmitter in accordance with a decoding pattern of the decoder itself.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: February 19, 2008
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Naoki Minato, Satoko Kutsuzawa, Saeko Oshiba
  • Patent number: 7330658
    Abstract: An optical add/drop multiplexing (OADM) device includes two MMI structures connected by a MI/MZI waveguide structure comprising a wavelength selector that includes phase shifted Bragg gratings. The OADM multiplexer transmits a wavelength channel selected in advance and reflects all other channels to achieve a drop functionality. Simultaneously, a further channel may be added to the multiplexer at the same side as the channel selected in advance is output. The further channel preferably is centered around the same wavelength as the channel selected in advance. The further channel is transmitted through the Bragg gratings and is superimposed with the other channels to achieve an add functionality.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: February 12, 2008
    Assignee: Telefonaktiebolaget LM Ericssom (publ)
    Inventor: Torsten Augustsson
  • Patent number: 7321466
    Abstract: A diffraction grating having multiple holographic optical elements (HOEs), including a Dickson grating and at least one other volume phase grating (VPG). In typical embodiments, the multi-HOE grating is implemented to provide high dispersion, at least substantially uniform diffraction efficiency and at least substantially equal diffraction efficiencies for all polarizations across a wide range of wavelengths. The refractive index modulations of the Dickson grating's volume phase medium preferably have significantly greater spatial frequency than those of each other VPG of the multi-HOE grating. Typical embodiments of the multi-HOE grating can be manufactured at low cost with sufficiently small size and high dispersion (for both S-polarized and P-polarized radiation) to be useful in Dense Wavelength Division Multiplexing (DWDM) applications and other applications requiring high dispersion. The multi-HOE grating can be implemented as a transmissive or reflective grating.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: January 22, 2008
    Assignee: Wasatch Photonics, Inc.
    Inventors: Dan Cifelli, Leroy David Dickson, Richard Rallison, Elroy Pearson
  • Patent number: 7321704
    Abstract: A wavelength cross connect is provided in which there is a dispersive arrangement per port for each input port and each output port. Some of the dispersive arrangements have differing characteristics so as to result in different performances at the ports. The dispersive arrangements can differ in the selection of different dispersive elements or differing coupling optics. A particular implementation features a first set of waveguide dispersive elements having first performance characteristics, and a second set of waveguide dispersive elements having second performance characteristics.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: January 22, 2008
    Assignee: JDS Uniphase Corporation
    Inventors: Thomas Ducellier, Alan Hnatiw, Puja Sehgal, Eliseo Ranalli
  • Patent number: 7317875
    Abstract: An optical communication network system and a wavelength-routing device and a communication node therefor are provided which can easily increase the optical paths between communication nodes, which are capable of expanding transmission capacity, and which excel in flexibility and expandability. An optical signal within a wavelength band (?Bm±??m) which has been transmitted from a predetermined communication node (200-1 through 200-4) is subjected to wavelength-band demultiplexing of the wavelength bands by wavelength-band demultiplexers (220-1 through 220-4) of a wavelength-routing device (210), and is then subjected to wavelength-routing by arrayed-waveguide gratings (241 through 244) according to the wavelength bands, and furthermore is multiplexed with optical signals of other wavelength bands by wavelength-band multiplexers (230-1 through 230-4), and after having been outputted, is transmitted to a communication node.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: January 8, 2008
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Osamu Moriwaki, Akira Okada, Kazuto Noguchi, Hiromasa Tanobe, Morito Matsuoka, Takashi Sakamoto
  • Patent number: 7310463
    Abstract: A single pulse laser beam of linear polarization is irradiated to a glass region such that the condensing point is located inside of the glass region, thereby to form, at the condensing point, a periodic structure region in which high refractive-index zones and low refractive-index zones are repeatedly being generated at pitches of 1 ?m or less. Planes in which the high refractive-index zones or the low refractive-index zones are being joined to one another, are formed in parallel to the polarized magnetic field direction of the pulse laser. It is therefore possible to prepare an optical structural body having a submicron-order fine periodic structure which can readily be produced.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: December 18, 2007
    Assignees: Kyocera Corporation
    Inventors: Yasuhiko Shimotsuma, Kazuyuki Hirao, Jianrong Qiu
  • Patent number: 7302179
    Abstract: The present invention provides methods and devices for optical performance monitoring using co-located switchable fiber Bragg gratings (FBGs) in conjunction with a few detectors. This arrangement combines the merit of both tunable FBG filters and discrete detectors to achieve high spectral resolution, fast detection process and great dynamic range. By using parallel co-located FBGs in conjunction with a banded architecture, the tuning range of each FBG becomes much smaller (equivalent of ˜0.08% strain). As a result, not only does the update speed of the spectral characteristics for each channel become much faster, but it effectively eliminates the concern of FBG long-term reliability as well.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: November 27, 2007
    Assignee: Novx Systems, Inc.
    Inventors: Tino Alavie, Keith Beckley, Stephen Leonard, Ming Gang Xu
  • Patent number: 7298976
    Abstract: Disclosed is an optical cross-connect device for communication between first and second optical networks communicating with each other using forward and backward optical signals each including of a plurality of channels. The device includes a first circulating part having first through fourth ports configured to output an optical signal, which is input to a higher-order port thereof, from a lower-order port thereof arranged adjacent to the higher-order port. The first circulating part is connected at the first and third ports thereof to a first optical network. A second circulating part has first through fourth ports configured to output an optical signal, which is input to a higher-order port thereof, from a lower-order port thereof arranged adjacent to the higher-order port.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: November 20, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Kwon Kim, Ki-Cheol Lee, Jun-Ho Koh
  • Patent number: 7295738
    Abstract: An exemplary embodiment of the present invention includes an optical circulator. The circulator may have, for example, a first port, a second port, and a third port. The first port may be configured to introduce light into the optical circulator. The system may also include a tunable fiber filter Bragg grating connected to the second port of the circulator and a tunable dispersion-compensating fiber Bragg grating connected to the third port of the optical circulator. The tunable dispersion compensating fiber Bragg grating and the tunable fiber filter Bragg grating may be configured to be tuned by a single actuator. This tuning may be either compression or strain tuning.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: November 13, 2007
    Inventor: James P. Waters
  • Patent number: 7292786
    Abstract: A system for a re-configurable optical de-multiplexer, multiplexer or add/drop multiplexer is provided. A re-configurable de-multiplexer system comprises a wavelength selective switch having an input port, an output port and an internal port; a wavelength division de-multiplexer (WDM) optically coupled to the internal port and a plurality of dropped-channel ports optically coupled to the WDM. The wavelength selective switch receives a plurality of input wavelength-division multiplexed channels from the input port and routes a first subset of the channels to the output port and a second subset of channels to the internal port and then to the WDM. The WDM separates each of the dropped channels to a different respective one of the channel ports.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: November 6, 2007
    Assignee: Avanex Corporation
    Inventors: Giovanni Barbarossa, Song Peng, Ming Li
  • Patent number: 7292755
    Abstract: An optical apparatus comprises a planar optical waveguide having at least two reflectors. The planar optical waveguide substantially confines in at least one transverse spatial dimension optical signals propagating therein, and the reflectors define an optical resonator that supports at least one resonant optical cavity mode. At least one of the reflectors comprises a set of diffractive elements arranged: so that an optical signal in one of the resonant optical cavity modes is successively incident on the diffractive elements; so as to exhibit a positional variation in amplitude, optical separation, or spatial phase; and so as to apply a transfer function to the optical signal successively incident on the diffractive elements. The transfer function is determined at least in part by said positional variation in amplitude, optical separation, or spatial phase exhibited by the diffractive elements.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: November 6, 2007
    Assignee: LightSmyth Technologies Inc.
    Inventors: Christoph M. Greiner, Dmitri Iazikov, Thomas W. Mossberg
  • Patent number: RE41570
    Abstract: A slab optical waveguide confines in one transverse dimension optical signals propagating in two dimensions therein, and has a set of diffractive elements collectively arranged so as to exhibit positional variation in amplitude, optical separation, or spatial phase. The diffractive elements are collectively arranged so as to apply a transfer function to an input optical signal to produce an output optical signal. The transfer function is determined at least in part by said positional variation in amplitude, optical separation, or spatial phase. The waveguide and diffractive elements are arranged so as to confine only one of the input and output optical signals to propagate in the waveguide so that the optical signal thus confined is successively incident on the diffractive elements, while the other optical signal propagates unconfined by the waveguide in a direction having a substantial component along the confined dimension of the waveguide.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: August 24, 2010
    Inventors: Christoph M. Greiner, Dmitri Iazikov, Thomas W. Mossberg