Time Division Patents (Class 398/98)
  • Publication number: 20100322634
    Abstract: An optical line terminal calculates a requirement threshold for each optical subscriber unit based on a difference between the time average allocated bandwidth of each optical subscriber unit and the target bandwidth, and notifies a corresponding optical subscriber unit of the calculated requirement threshold. The corresponding optical subscriber unit then notifies, based on the data amount accumulated in a buffer, the optical line terminal of a data amount, as a transmission requirement, up to a data separation that is less or equal to the notified requirement threshold and in which a maximum transmission amount can be transmitted. The optical line terminal then notifies the corresponding optical subscriber unit of a transmission permission amount in which the data equal to the transmission requirement of which the optical line terminal is notified can be transmitted. The corresponding optical subscriber unit then transmits the data amount corresponding to the transmission permission amount.
    Type: Application
    Filed: February 17, 2009
    Publication date: December 23, 2010
    Inventors: Daisuke Murayama, Noriyuki Oota, Noriki Miki
  • Publication number: 20100316387
    Abstract: In a passive optical network, power consumption of the ONU can be reduced by communicating a transmission schedule from the OLT to the ONU that indicates time slots in which the ONU is scheduled to receive payload transmissions from the OLT. Components of the ONU that would normally operate continuously, including processing payloads addressed to other ONUs, are placed in a reduced power state outside of the ONU's allocated time slots.
    Type: Application
    Filed: June 10, 2009
    Publication date: December 16, 2010
    Applicant: Alcatel-Lucent USA Inc.
    Inventor: Dusan Suvakovic
  • Publication number: 20100303464
    Abstract: A method, a system, and a device for transmitting data in an OTN are disclosed herein. The method for transmitting data in an OTN includes: mapping the at least one pair of ODU0's to an ODTU to form an ODTUvkt, wherein k is greater than or equal to 1, t is 2 or 3, and an external structure of the ODTUvkt is the same as an external structure of an ODTUkt; and mapping the ODTUvkt to timeslot i and timeslot i+n of a 1.25 G ODUt, indicating the type of at least one pair of ODU0's carried in timeslot i to be ODUk, and transmitting the ODUk to a destination node.
    Type: Application
    Filed: August 10, 2010
    Publication date: December 2, 2010
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Limin DONG, Chiwu Ding, Qiuyou Wu, Xin Xiao
  • Patent number: 7844180
    Abstract: The invention relates to a device and a method for converting WDM signals into an OTDM signal. The device comprises shifting means (102, 103, 104) adapted to introduce a time shift between the pulses of the WDM signals carried by the optical carriers, modulation means (112, 113, 114) adapted to modify the optical power of the WDM signals, an optical temporal multiplexer/demultiplexer (120), a birefringent propagation medium (130) into which the WDM signals are injected in such a manner as to achieve a soliton trapping phenomenon, and absorption means (140) adapted to introduce optical losses into the components of the OTDM signal. This device performs WDM/OTDM conversion at very high bit rates. It also performs OTDM/WDM conversion. It is intended to be installed in long-haul telecommunication networks.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: November 30, 2010
    Inventor: Erwan Pincemin
  • Patent number: 7844181
    Abstract: A method for negotiating speed between a Fiber Channel (FC) local client and a remote FC client across a DWDM network is provided. A transmission speed of the local FC client at a local ingress transport interface is detected. The data from the local FC client is forwarded along with the detected transmission speed to a remote egress transport interface. The remote egress interface forwards the data at the detected transmission speed to the remote FC client. The present invention eliminates complex speed negotiation state machines that would otherwise be required to make the DWDM transport behave like a virtual wire with respect to the FC ports and to allow the FC clients to negotiate the desired speed directly between themselves.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: November 30, 2010
    Assignee: Cisco Technology, Inc.
    Inventors: Sriram Natarajan, Jayakrishna M. Menon, Gary K. Chan
  • Publication number: 20100296813
    Abstract: A method and apparatus are provided for processing a composite optical signal formed of a sequence of time sectors obtained by time-division multiplexing a plurality of optical signals transmitted on a plurality of transmission channels of a shared optical access network. The method includes: taking account of a schedule for transmission of the plurality of optical signals in the access network, the schedule associating with a time sector an optical signal of the sequence and a transmission channel of the plurality of transmission channels used by the optical signal; recovering a set of representative performance parameters of the transmission channel associated with the time sector; and adaptively correcting the time sector using the set of parameters.
    Type: Application
    Filed: December 14, 2007
    Publication date: November 25, 2010
    Applicant: FRANCE TELECOM
    Inventors: Philippe Chanclou, Julien Poirrier, Franck Payoux
  • Patent number: 7831147
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 9, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7831145
    Abstract: The present disclosure provides a passive optical network (PON) system and a method for protecting the service of the system for service recovery and fault locating in case of a failure of the network, wherein the PON system comprises an optical line terminal (OLT), an optical distribution network (ODN) and an optical network terminal (ONT) equipment protection group comprising a plurality of ONT equipment groups, each of which is connected to at least one of other ONT equipment groups within the ONT equipment protection group for the mutual protection relationship. The PON system of the present disclosure does not require equipment and link redundancy for backup, contributes to reduced cost and improved utilization of resources, and provides a means for diagnosing any faults of the links and equipment in the network.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: November 9, 2010
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Hai Gao, Gang Zheng
  • Patent number: 7826745
    Abstract: A method and apparatus for transmitting signals from a plurality of input channels over a TDM optical network, where each of the input channels contains an optical data signal and an electrical control signal containing control information relating to the optical data signal. In accordance with the invention, respective optical receivers convert the optical data signals to respective electrical data signals, which a TDM data multiplexer time-multiplexes to generate a multiplexed data signal. A TDM control signal multiplexer time-multiplexes the electrical control signals to generate a multiplexed control signal that is combined with said multiplexed data signal to generate a composite electrical signal. An optical transmitter generates a composite optical signal from the composite electrical signal that is transmitted over the network, optionally after WDM multiplexing it with other composite optical signals.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: November 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Casimer M. DeCusatis, Thomas A. Gregg
  • Publication number: 20100254709
    Abstract: A system and method are provided for performing Local Centre Authorization Service (LCAS) in a network system, the system having a data aligner configured to align bytes of input data according to groups of members. The system also including an LCAS control manager configured to generate de-sequencing control commands in response to data input from the data aligner. The system further including a de-sequencer configured to de-sequence the input data input from the data aligner according to de-sequencing control commands received from the LCAS control manager.
    Type: Application
    Filed: March 2, 2010
    Publication date: October 7, 2010
    Applicant: NETLOGIC MICROSYSTEMS, INC.
    Inventors: Paolo Narvaez, Murat Bog
  • Publication number: 20100254708
    Abstract: A method includes transmitting a plurality of time-division-multiplexed return channels from a plurality of optical network terminal outputs to a plurality of cable modem termination system inputs. Transmitting the plurality of time-division-multiplexed return channels includes transmitting a plurality of frequency-division-multiplexed return signals from the plurality of optical network terminal outputs to the plurality of cable modem termination system inputs. An apparatus includes a plurality of optical network terminals; an optical receiver coupled to the plurality of optical network terminals; an optical splitter coupled to the optical receiver; a plurality of cable modem termination system inputs. A plurality of time-division-multiplexed return channels are transmitted from the plurality of optical network terminals to the plurality of cable modem termination systems and the plurality of time-division-multiplexed return channels include a plurality of frequency-division-multiplexed return signals.
    Type: Application
    Filed: March 4, 2010
    Publication date: October 7, 2010
    Inventors: Krzysztof Pradzynski, Oleh Sniezko
  • Publication number: 20100247101
    Abstract: This invention concerns a high frequency optical processor suitable for time-division demultiplexing and channel dropping data signals at bit rates of 80-160 Gb/s and beyond, and for carving high frequency pulse streams with low duty cycle from an unmodulated laser source. In further aspects the invention concerns methods for using the high frequency optical processor. In particular the invention comprises a high frequency optical processor, comprising a Mach-Zehnder amplitude modulator (MZM) embedded in a fibre mirror loop in which the loop input and output are joined by a polarization maintaining coupler.
    Type: Application
    Filed: June 12, 2008
    Publication date: September 30, 2010
    Applicant: The UNIVERSITY OF SYDNEY
    Inventor: Mark Pelusi
  • Publication number: 20100239264
    Abstract: An optical transmission system, an optical transmitting apparatus, an optical transmitting method, an optical receiving apparatus, and an optical receiving method are provided. The optical transmitting apparatus includes a pre-coding module, a multiplexing module, and a modulating module. The optical receiving apparatus includes a demodulating module and a converting module. The optical transmitting method includes: performing pre-coding, multiplexing, and modulation for a signal to be transmitted, and then outputting the signal.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 23, 2010
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yanfu YANG, Xiaogeng XU
  • Publication number: 20100232798
    Abstract: A bit identification circuit includes a multiphase clock generating unit that outputs multiphase clocks, a phase selecting unit that samples the input data signals using the multiphase clocks and selects a sampled result out of a plurality of sampled results, a correcting unit that thins a part of bits of the sampled result selected by the phase selecting unit based on the difference in bit rates, and a rate selecting unit that selects based on a selection signal for identifying the data signals and outputs one of an output of the correcting unit and an output of the phase selecting unit.
    Type: Application
    Filed: November 28, 2007
    Publication date: September 16, 2010
    Inventors: Seiji Kozaki, Yoshifumi Hotta, Akira Takahashi
  • Publication number: 20100226652
    Abstract: The embodiments of the present invention disclose method and apparatus for mapping and de-mapping in an optical transport network, where the mapping method includes: constructing an Optical Channel Data Tributary Unit (ODTU) according to an amount M of time slots of a High Order Optical Channel Payload Unit (HO OPU) to be occupied by a Low Order Optical Channel Data Unit (LO ODU); mapping the LO ODU to a payload area of the ODTU in a M-byte granularity; encapsulating overhead information to the payload area of the ODTU; and multiplexing the ODTU, which has been mapped the LO ODU and encapsulated with the overhead information, to the HO OPU, so as to provide a high-efficient and universal mode for mapping the LO ODU to the HO OPU.
    Type: Application
    Filed: February 25, 2010
    Publication date: September 9, 2010
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Maarten Vissers, Qiuyou Wu, Xin Xiao, Wei Su
  • Patent number: 7787765
    Abstract: A method and apparatus for initializing an end-to-end link in a fiber optic communications system in which a pair of nodes interconnect a pair of end devices. A first node, upon initializing a device link segment with an end device to which the node is coupled, sends a signal to the other node over a network link segment indicating that the sending node has initialized its device link segment. The first node completes initialization of the end-to-end link upon receiving a signal from the other node over the network link segment indicating that the other node has initialized its device link segment. In an alternative initialization scheme, a node momentarily operates its data channel in a loopback mode to allow its end device to initialize the device link segment in accordance with a predetermined protocol before returning to a transparent mode.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Casimer M. DeCusatis, Thomas A. Gregg
  • Publication number: 20100215372
    Abstract: This invention provides a surface plasmon polariton direction change device (1) for changing a propagation direction of a surface plasmon polariton (5). The surface plasmon polariton direction change device (1) includes a metal film support member (2), and a first metal film (3) and a second metal film (4) which are provided on a predetermined surface of the metal film support member (2), are provided adjacently to each other, and are different from each other in effective refractive index.
    Type: Application
    Filed: October 3, 2007
    Publication date: August 26, 2010
    Inventors: Tazuko Kitazawa, Tomoki Ono
  • Publication number: 20100215373
    Abstract: The present invention provides a method of generating time-division multiplexed encoded transmission signals, including encoding optical pulse signals for each of a plural multiplexed channels and generating a transmission signal for each channel, performing time division multiplexing on first and second transmission signals and generating a 2-channel multiplexed signal modulating the multiplexed signal with a modulation signal having a frequency of (F??f) Hz, detecting a strength of a ?f Hz frequency component of the multiplexed signal changing a time delay amount of the second transmission signal with respect to the first transmission signal, and determining a time delay amount at which a strength of the ?f Hz frequency component is minimized and adjusting the transmission signals of the individual channels such that they are arranged at equidistant intervals on a time axis.
    Type: Application
    Filed: January 25, 2010
    Publication date: August 26, 2010
    Applicant: OKI ELECTRIC INDUSTRY CO., LTD.
    Inventors: Hideyuki Iwamura, Hiromi Tsuji
  • Publication number: 20100215374
    Abstract: Systems, apparatus and method for modulating digital data onto an optical carrier to produce a modulated optical carrier in which symbol-modulated optical signals of orthogonal polarizations are temporally interleaved and adapted to be processed by electronic time-division demultiplexing to recover the digital data modulated onto the orthogonal polarizations of the optical signals.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 26, 2010
    Inventors: Xiang Liu, Chandrasekhar Sethumadhavan
  • Patent number: 7783196
    Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: August 24, 2010
    Assignee: AT&T Intellectual Property II, L.P.
    Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
  • Patent number: 7783201
    Abstract: An optical repeater device of the present invention comprises: a preamble compensating circuit 53, for taking out a normal data signal from burst signals propagating through a communication transmission path, and for adding a preamble signal before and/or after the data signal. Furthermore, the preamble compensating circuit 53 comprises: a detector circuit 53a, for inputting the burst signal, and for outputting only the normal data signal; a buffer circuit 53b, for storing the data signal output from the detector circuit 53a, and for outputting thereof; a preamble signal generation circuit 53d, for outputting at least one type of the preamble signal; and an data output select circuit 53e, for outputting the data signal at the time of the data signal input from the buffer circuit 53b, and for outputting the preamble signal from the preamble signal generation circuit 53d at any other time thereof.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: August 24, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Masayuki Miura, Kunio Odaka, Fuyuki Takeuchi
  • Publication number: 20100209111
    Abstract: In one embodiment, a SONET/SDH over Ethernet demapping point utilizes a pointer offset mechanism for clock recovery and timing. The pointer offset is determined by the difference between a client clock and a reference clock.
    Type: Application
    Filed: February 13, 2009
    Publication date: August 19, 2010
    Inventors: Gilberto Loprieno, David Bianchi, Giacomo Losio
  • Publication number: 20100209105
    Abstract: A Visible Light Communication (VLC) method in a VLC terminal, in which the VLC terminal requests initial access to an Access Point (AP) on a selected mini-slot among a plurality of mini-slots constituting a control slot, based on control information in a frame, sends an association request to the AP on an allocated uplink time slot, if the uplink time slot allocated to correspond to the selected mini-slot exists in control information in a next frame, and transmits data at a data rate appointed to the VLC terminal included in control information in the current frame using an association Identifier (ID) included in a response received in reply to the association request and the allocated uplink time slot.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 19, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Hong-Seok Shin, Dae-Kwang Jung, Jeong-Seok Choi, Kyung-Woo Lee, Sung-Bum Park, Jae-Hun Cho
  • Publication number: 20100209107
    Abstract: A method for multiplexing and mapping services to an Optical channel Transport Unit (OTU) includes: filling the service data into a container block covering an Optical channel Payload Unit (OPU) area container having at least one frame. The container block includes at least one OPU area container having a frame. The OPU area container is composed of at least one OPU area sub-timeslot, and is configured to fill the service clock information into the Optical Channel Payload Unit Overload (OPU OH) area. A device for multiplexing and mapping services to an OTU is provided in an embodiment of the present invention.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 19, 2010
    Inventor: Hui YIN
  • Patent number: 7769292
    Abstract: The introduction of automation of testing configuration and the extensive use of protocol adaptation to provide a consistent user interface for a test apparatus across multiple vendor implementations through the use of programmable adapter modules facilitates systematic and efficient testing. Proper functionality of a given optical switch implementation, quantification of a system's parameters, and determination of switching performance measures can be obtained.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: August 3, 2010
    Assignee: Verizon Services Corp.
    Inventors: James E. Sylvester, Gaston S. Ormazabal, Lily F. Chen, Dimitrios Kokkinos
  • Patent number: 7734179
    Abstract: A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: June 8, 2010
    Assignee: AT&T Corp.
    Inventors: Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Sheryl Leigh Woodward
  • Patent number: 7729615
    Abstract: A method for transmitting signaling and control information for wavelength-division multiplex networks for optical, fiber-bound information transfer in digitized form, the signaling and control information being transmitted via the same optical channel, particularly with the same wavelength, as the useful information, but being encoded and decoded independently thereof, with the result that the control and signaling information can also be accessed independently of the useful information. The use of a time-division multiplex method allowing the different encoding of useful information and control information makes it possible considerably to reduce the technical complexity of passive optical network elements with regard to the routing of the signaling and control information. This method permits the simple, low-cost and transparent transmission of signaling and control information in the optical WDM network.
    Type: Grant
    Filed: May 11, 1998
    Date of Patent: June 1, 2010
    Assignee: Deutsche Telekom AG
    Inventors: Klaus-Peter Zeffler, Heiko Dassow
  • Patent number: 7720385
    Abstract: Device and method for fiberoptic transmission for a plurality of different communication protocols. A single electronic card is adaptable to any of a plurality of communication protocol configurations designed by the user.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: May 18, 2010
    Assignee: Emcore Corporation
    Inventors: Alon Dagan, Fred Sather, Allon Caidar
  • Publication number: 20100111529
    Abstract: A multicast control method in an Ethernet passive optical network, the method includes steps: (A) configuring different id for user-end devices and their user ports; labeling users on office-end devices by using id for user-end devices and their user ports; setting up user's multicast authorization table; (B) based on the multicast authorization table, office-end devices control user's multicast authority; based on the controlled result, setting up multicast filtration tables and user filtration tables for user-end devices; based on the multicast filtration tables and user filtration tables, user-end devices filter multicast data, and forward them to users having multicast authority. The method controls multicast for different user ports on the same user-end device so as to raise security of multicast.
    Type: Application
    Filed: December 24, 2007
    Publication date: May 6, 2010
    Applicant: ZTE CORPORATION
    Inventors: Tao Zeng, Yunpeng Xie, Deqiang Wang
  • Publication number: 20100092176
    Abstract: To provide a polarization-diverse, heterodyne optical receiving system, a light signal is transmitted into an optical fiber having a plurality of optical sensors that are distinguishable using a multiplexing arrangement. A return light signal from the optical fiber is mixed with an optical local oscillator light signal, where the mixing outputs plural output signal portions having different polarizations. A birefringence of a particular optical sensor is determined based on the plural signal portions.
    Type: Application
    Filed: October 14, 2009
    Publication date: April 15, 2010
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Arthur H. Hartog, Dominic Brady, Maxwell R. Hadley
  • Publication number: 20100092177
    Abstract: A timing interface module with daughter timing reference modules. The timing modules are provided in a rack platform to eliminate routing problems and which is compliant with all relevant industry standards. The timing reference module includes a face plate having first and second substantially rectangular openings, the face plate further comprising mounting slots for receiving mounting hardware therein and first and second timing modules, the first and second timing modules disposed within the first and second substantially rectangular openings. The first and second timing modules provide timing terminations for timing reference signals for network elements of a synchronized optical network.
    Type: Application
    Filed: October 14, 2008
    Publication date: April 15, 2010
    Inventors: Stephen H. Culpepper, Jack C. Martin, JR.
  • Publication number: 20100080562
    Abstract: Consistent with the present disclosure, based on system requirements or in response to an increase in optical signal-to-noise level of an optical channel, such as a WDM channel, additional FEC bits are inserted into and replace selected data payload bits in each frame carried by the channel. The replaced data payload bits may then be transmitted in subsequent frames on the same channel. As a result, the transmitted frames have a reduced data payload rate, but a higher coding gain. Alternatively, the replaced data payload bits may be included in frames transmitted on another optical channel. In that case, the frames carried by the two channels typically have the same bit length or number of bits and may thus be compliant with the frame length requirements of G.709, for example. Preferably, the number of coding bits may be changed dynamically to obtain different coding gains.
    Type: Application
    Filed: September 29, 2008
    Publication date: April 1, 2010
    Inventors: DREW D. PERKINS, David F. Welch
  • Publication number: 20100074624
    Abstract: System and methods are provided, in an Optical Transport Network (OTN), for communicating asynchronous Tributary Slots (TSs) via a synchronous Optical Payload Transport Unit of level k (OTUk) interface. The transmission method accepts a plurality of TSs at a corresponding plurality of asynchronous data rates. The TSs are mapped, using a tangible memory medium, into pseudo-Optical channel Data Tributary Unit (ODTU) frames synchronized to a common clock. Then, the synchronized pseudo-ODTU frames can be interleaved into an OTUk frame, without the need of a phase-locked loop (PLL) or buffering.
    Type: Application
    Filed: September 12, 2008
    Publication date: March 25, 2010
    Inventors: Glen Miller, Tracy Xiaoming Ma
  • Publication number: 20100067913
    Abstract: In a passive optical network system in which signals from a master station to plural slave stations are time-division multiplexed and transmitted, the slave stations different in transmission speed are mixedly contained. The master station (OLU) performs ranging for each transmission speed, and grasps all the slave stations different in transmission speed for each transmission speed, and generates a frame including signals of a suitable transmission speed corresponding to each slave station. When the frame is generated, in a downstream signal in which signals of plural transmission speeds are mixed, a dummy signal is set at a place where the transmission speed is changed, and a time necessary to follow a change in level of a received signal due to a change in optical level caused when the transmission speed is changed is secured. Thereby, each ONU avoids a reception error occurring in the time necessary to follow.
    Type: Application
    Filed: February 18, 2009
    Publication date: March 18, 2010
    Inventors: Masao Niibe, Tohru Kazawa, Takeshi Kiyose, Ryosuke Nishino
  • Publication number: 20100054740
    Abstract: The present invention discloses a network architecture for upgrading a legacy time division multiplexing-passive optical network (TDM-PON) to a wavelength division multiplexing-passive optical network (WDM-PON) based next-generation passive optical network (next-generation PON), wherein the legacy TDM-PON comprises: a central office (CO) having a first optical line termination (OLT); a remote node (RN) having a splitter; a single mode fiber (SMF) connecting the first OLT and the splitter; and a first group of one or more optical network terminations (ONTs) being connected to the splitter by a first group of one or more distribution fibers, and wherein the network architecture further comprises: in case that the next-generation PON is a WDM-PON, a first apparatus for combining and splitting wavelength bands being positioned between the SMF and the first OLT, in order to add a second OLT to be used for the WDM-PON within the CO or within another CO which is located in a position different from the CO, while sha
    Type: Application
    Filed: November 14, 2006
    Publication date: March 4, 2010
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chang-Hee Lee, Ki-Man Choi, Sil-Gu Mun, Jung-Hyung Moon, Hoon-Keun Lee
  • Patent number: 7672593
    Abstract: An OTDM transmitting method and transmitter realizing an OTDM distortion-free transmission substantially not relying upon dispersion. A time division multiplexed OTDM signal from an OTDM signal transmitter (1) enters an optical Fourier transform unit (2). Optical Fourier transform can be carried out most accurately so long as the optical pulse is a chirp-free Fourier transform limit pulse. The optical Fourier transform unit (2) converts the time waveform of the pulse into a signal on the frequency axis, and an optical inverse Fourier transform unit (2?) converts a spectral shape on the frequency axis into a time waveform (pulse). An optical fiber transmission line (3) is a transmission line having an arbitrary dispersion and a polarization mode dispersion. These dispersions may involve a time variation. An OTDM signal receiver (4) demultiplexes a transmission signal into low-speed optical signals, in a light region, receives optical pulses for respective channels and converts them into electric signals.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: March 2, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Toshihiko Hirooka, Masataka Nakazawa
  • Patent number: 7672585
    Abstract: Each of a plurality of semiconductor optical amplifiers operates as an optical gate switch and selects an optical signal indicated by a gate control signal from an optical gate switch control unit. A plurality of photodetectors monitor the power of an optical signal input through a corresponding input port. A VOA control unit calculates an amount of attenuation corresponding to each input port based on the power of each optical signal. A variable optical attenuator attenuates the selected optical signal according to the calculated amount of attenuation in synchronization with the gate control signal.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: March 2, 2010
    Assignee: Fujitsu Limited
    Inventors: Kyosuke Sone, Yasuhiko Aoki
  • Publication number: 20100046951
    Abstract: Methods, apparatuses and systems for transporting multi-lane Ethernet signal are disclosed. The method primarily includes utilizing a plurality of timeslot channels and justification bytes configured in the OPUk-Xv to build up multiple virtually concatenated transport lanes; and transporting a lane of independent Ethernet data via each lane in the multiple transport lanes. Such schema allows to transparently transport multi-lane Ethernet signal over OTN and addresses the uncontrollability of the time delay occurred when multi-lane Ethernet signal traverse over OTN. In addition, the problem that the frequency offset does not fit the IEEE definition of the Ethernet interface is solved.
    Type: Application
    Filed: September 15, 2009
    Publication date: February 25, 2010
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Limin Dong, Qiuyou Wu
  • Patent number: 7668461
    Abstract: The invention relates to a method for optimizing the optical power in an optical network that has a plurality of network nodes each having a transmitter and a receiver. The method comprising generating an optical signal at a first network node, receiving the optical signal at a second network node, detecting the optical power of the optical signal at the second network node, determining whether the optical power detected is outside a defined range, and in this case, generating, for the first network node, a control signal for increasing or decreasing the optical power, sending the control signal to the first network node, and increasing or decreasing the optical power of the optical signal emitted at the first network node. The invention further relates to an optical network having network nodes which are operable to implement this method.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: February 23, 2010
    Assignee: Avago Technologies Fiber IP (Singapore) Pte. Ltd.
    Inventors: Hans Hurt, Thomas Lichtenegger, Jörg Meier, Markus Wirsing
  • Publication number: 20100040369
    Abstract: A time synchronization method and a time synchronization device in a passive optical network (PON), and a PON are provided. The method includes receiving a synchronization packet sent after time synchronization of an optical line terminal (OLT) with a master clock (MC) is achieved, wherein the synchronization packet carries a timestamp TMt1i determined after the time synchronization of the OLT is achieved, adjusting a local clock according to the timestamp to achieve time synchronization of an optical network unit/optical network terminal (ONU/ONT) with the OLT, and after the time synchronization of the OLT is achieved, instructing an slave clock (SC) to perform time synchronization. A time synchronization device and a time synchronization system for implementing the method in a PON are further provided.
    Type: Application
    Filed: September 30, 2009
    Publication date: February 18, 2010
    Inventors: Jun ZHAO, Sanzhong Li
  • Publication number: 20100040368
    Abstract: An approach is provided for managing off-network virtual connections. A first management channel is mapped to a second management channel for transport of management information over an optical time-division-multiplexing (TDM) network that includes an off-network portion. The off-network portion corresponds to a third party provider. The first management channel corresponds to an electrical connection and the second management channel corresponds to an optical connection.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Applicants: Verizon Corporate Services Group Inc., Verizon Business Network Services Inc.
    Inventors: Scott R. Kotrla, Christopher N. DelRegno, Matthew W. Turlington, Michael U. Bencheck, Richard C. Schell
  • Publication number: 20100034539
    Abstract: A highly precise clock synchronization apparatus in a real-time locating system (RTLS), includes an optical transmitting/receiving unit for receiving a clock information frame from a clock synchronization server, converting the received clock information frame in series-parallel, and transmitting/receiving the clock information data and the clock information; an offset estimation unit for detecting a preamble signal and a clock information signal from the series-parallel converted clock information frame, calculating a phase difference value by comparing the detected preamble signal with the detected clock information signal, and outputting an offset value based on the calculated phase difference value; and a clock synchronization unit for updating a local clock value to a time of the clock synchronization server based on the offset value and the clock information frame.
    Type: Application
    Filed: December 27, 2005
    Publication date: February 11, 2010
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTIT
    Inventors: Kwang-Ho Ko, Chang-Sub Shin, Hyun Lee, Won-Chul Choi, Woo-Yong Lee, Choon-Sik Yim, Cheol-Sig Pyo, Jong-Suk Chae
  • Publication number: 20100028009
    Abstract: A system and method for data synchronization in Passive Optical Networks are disclosed. According to an embodiment, the present invention provides a method for providing upstream data synchronization in an optical communication network. The method includes sending data from an Optical Network Unit. The data includes a first data frame, which includes a header sequence, a synchronization segment, and a data segment. The synchronization segment includes 66 bits, which includes a first number of bits having nonzero values and a second number of bits having a value of zero. The first number is different from the second number. The method further includes receiving at least the first data frame by an Optical Line Terminal. The method also includes processing the first data frame. The method additionally includes selecting a first segment of the first data frame, the first segment including 66 bits.
    Type: Application
    Filed: October 12, 2009
    Publication date: February 4, 2010
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Raymond W. K. LEUNG, Dongyu GENG, Dongning FENG, Frank EFFENBERGER, Sergio BENEDERTO, Guido MONTORSI, Jing LI
  • Publication number: 20100021172
    Abstract: Upstream data handling in a digital Data Over Cable Service Interface Specification (DOCSIS) passive optical network (DPON). Embodiments include receiving at a headend, in an upstream path over an optical network, a plurality of digitized and serialized DPON upstream packets respectively distributed in a time division multiplexed fashion, wherein each DPON upstream packet includes a header, a trailer and a payload, monitoring the optical network for energy in the upstream path, including energy associated with a header and a trailer of respective DPON upstream packets, controlling a bit stuffer that adds bits to the upstream path to (1) stop adding bits to the upstream path when energy is detected in the upstream path and (2) resume adding bits to the upstream path after an end of a trailer of a given DPON upstream packet has been detected, and removing the header and the trailer of the respective DPON upstream packets.
    Type: Application
    Filed: July 25, 2008
    Publication date: January 28, 2010
    Applicant: CISCO TECHNOLOGY, INC.
    Inventors: Thai-Bao H. Kien, Amin Farvez, Richard J. Futch, Richard T. Causey, Michael Jones
  • Publication number: 20100021173
    Abstract: A method for multiplexing and demultiplexing low bit rate services includes dividing an OTN frame into a plurality of time slots and allocating the plurality of time slots to the low rate services according to the bit rate of the low rate services; asynchronously mapping a synchronous service to the time slots allocated to the synchronous service if it is determined that the low bit rate service is a synchronous service; encapsulating the low bit rate service and mapping the low bit rate service to the time slots allocated to the low bit rate service if it is determined that the low bit rate service is not a synchronous service. The present invention allows the OTN to realize the bearer of the low bit rate data service and achieves the multiplexing and demultiplexing of hybrid services.
    Type: Application
    Filed: October 1, 2009
    Publication date: January 28, 2010
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jianmei Zhang, Yue Liu
  • Patent number: 7653058
    Abstract: A wireless transceiving system capable of processing multi-channel broadcast signals and Ethernet signals from an Ethernet PON (Passive Optical Network), the wireless transceiving system includes a wireless STB (Set-top Box) transmitter for wirelessly transmitting broadcast signals which are multi-channel image signals and Ethernet signals; and at least one wireless STB receiver for receiving the broadcast signals and the Ethernet signals transmitted from the wireless STB transmitter to output image signals and audio signals corresponding to the received broadcast signals, and to support an Ethernet port based on the received Ethernet signals.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Hun Lee, Young-Seop Han, Yun-Je Oh, Jong-Hoon Lim, Kyung-Tack Kwon, Jeong-Sik Cho
  • Publication number: 20090323715
    Abstract: A method for information transfer allowing for native transfer of voice, data, and any other digital service information over a passive optical network, comprising; the LT transmitting downstream in serially ordered frames broadcast to all of the NT's at a fixed interval; the NT's transmitting upstream in serially ordered frames, said frames being divided into serially ordered time slots, at most one NT transmitting information for at most one service type in each slot; the LT and the NT's exchanging management information, and the LT and the NT's natively transporting service information to each other in both the upstream and downstream directions, according to said management information exchanged between the LT and the NT's.
    Type: Application
    Filed: April 23, 2008
    Publication date: December 31, 2009
    Applicant: BROADLIGHT LTD.
    Inventors: David Levi, David Ivancovsky
  • Patent number: 7639949
    Abstract: A TDM PON including: an optical line terminal; a remote node including multiple secondary optical distributors connected to multiple optical network units; and the multiple optical network units generating and outputting a corresponding upstream optical signal. Each of the secondary optical distributors splits an upstream optical signal input from one of the optical network units connected thereto so as to generate split upstream optical signals and transmits one of the upstream optical signals to the optical line terminal, and transmits another upstream optical signal to a different optical network unit.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: December 29, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Kwang Jung, Seong-Taek Hwang, Jin-Woo Park, Sang-Rok Lee, Seong-Geun Lee
  • Publication number: 20090317080
    Abstract: The invention relates to a bandpass filter (OFI) which is mounted downstream of an optical amplifier (OV) and allows noise to be largely reduced. In order for said bandpass filter to be able to optimally receive burst signals (BS1, BS2, . . . , BSN) transmitted by several user devices (ONT1, ONT2, . . . , ONTN) also in a central node (OLT), the bandpass filter is set to the respective received carrier frequencies (TF1to TFN). Because of time constraints, this is possible only if the carrier frequencies (TF1, . . . ) or associated filter setting values (FE1, . . . ) have already been stored and the bandpass filter is preset.
    Type: Application
    Filed: July 11, 2007
    Publication date: December 24, 2009
    Applicant: NOKIA SIEMENS NETWORKS GMBH & CO. KG
    Inventor: Michael Rasztovits-Wiech
  • Publication number: 20090310970
    Abstract: The subject matter disclosed herein relates to synchronizing network timing. In one particular example, network timing may be synchronized using reflected signals.
    Type: Application
    Filed: June 16, 2008
    Publication date: December 17, 2009
    Applicant: Applied Optoelectronics, Inc.
    Inventor: Stefan J. Murry