Abstract: An apparatus for measuring performance of a coherent optical receiver includes a beam splitter splitting light into first and second paths, a first optical modulator modulating the first path light, a variable optical attenuator controlling an optical power of the first optical modulator, a first polarization controller transmitting a signal controlling polarization of an output of the variable optical attenuator to the coherent optical receiver, a second optical modulator modulating the second path light, a variable optical delay line delaying time of an output of the second optical modulator, a second polarization controller transmitting a signal controlling polarization of an output of the variable optical delay line to the coherent optical receiver, a network analyzer measuring performance of the coherent optical receiver and controlling the optical modulators, and a controller transmitting a control signal to the optical modulators.
Type:
Grant
Filed:
November 28, 2012
Date of Patent:
January 6, 2015
Assignee:
Electronics and Telecommunications Research Institute
Inventors:
Chun Ju Youn, Joong-Seon Choe, Jong-Hoi Kim, Duk Jun Kim, Yong-Hwan Kwon, Eun Soo Nam
Abstract: A manner of detecting the presence of alien devices, for example ONUs, that are transmitting upstream in an optical access network such as a PON. An alien detection device, for example a properly configured OLT, supports normal network operation and also monitors a selected performance characteristic. When the selected performance characteristic is evaluated to perform within satisfactory parameters, a protocol that includes a command to subscriber devices such as ONUs to go quiet, for example a rogue check, is executed and a signal detector monitored during the quiet period. An alarm may be generated if an alien device appears to be present.
Abstract: An integrated circuit optical die test interface and associated testing method are described for using scribe area optical mirror structures (106) to perform wafer die tests on MEMS optical beam waveguide (112) and optical circuit elements (113) by perpendicularly deflecting optical test signals (122) from the scribe area optical mirror structures (106) into and out of the plane of the integrated circuit die under test (104) and/or production test die (157).
Type:
Application
Filed:
June 10, 2013
Publication date:
December 11, 2014
Inventors:
Michael B. McShane, Perry H. Pelley, Tab A. Stephens
Abstract: An image pickup portion picks up an image of a suspected substance and produces a video signal. Optical fibers transmit the video signal output from the image pickup portion. A video signal processing portion processes the video signals transmitted by the optical fibers and then outputs the processed video signals to a monitor. A trouble detection portion detects trouble in a transmission state of the optical fibers. The video signal processing portion outputs to the monitor only the video signal transmitted by the optical fiber in which the trouble detection portion has not detected trouble.
Abstract: An infrared device configured to remotely control a remote controlled device includes an infrared emitter and a processor. The processor includes a pin connected to the infrared emitter, a generating unit, and a control unit. The generating unit is configured to automatically generate different infrared signals each corresponding to a remote signal generated by a remote control of the remote controlled device. The control unit is configured to alternatively set a voltage at the pin to be logic high and logic level to output the different infrared signals to the infrared emitter.
Type:
Application
Filed:
June 5, 2013
Publication date:
November 27, 2014
Applicants:
HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD., HON HAI PRECISION INDUSTRY CO., LTD.
Abstract: A signal is conducted from a controller module onto a network via a first coupling. The signal is transmitted across the network and received at one or more receiver modules via one or more second couplings. At the one or more receiver modules, the received signal is analyzed and based upon the analysis, a determination is made as to whether a fault has occurred in the network and/or where the occurrence occurred.
Abstract: The invention relates to a method and an arrangement for identifying at least one object, wherein the object has a connection unit that can be connected to a receptacle unit of a receptacle arrangement, wherein contactless information transfer takes place between the connection unit and the receptacle unit if the connection unit is connected to the receptacle unit, wherein the contactless information transfer is realized as optical information transfer, wherein an optical signal having predetermined optical properties is generated and transmitted by at least one transmitting unit, is transferred via at least one optical transfer path and is received by at least one receiving unit, wherein an evaluation and control unit (14) connected to the receiving unit evaluates the optical properties and/or propagation time properties of the received optical signal and carries out an identification of the object by means of a comparison with stored optical properties and/or by means of a comparison with stored propagation
Abstract: An optical switching device includes plural wavelength selective switches that respectively have a first port and a plurality of second ports; and an optical coupler that has a plurality of third ports on an input-side or an output-side, respectively optically coupled to the first ports of the wavelength selective switches.
Abstract: A circuit, optical transceiver and/or methods for using the same may be useful for determining average power, extinction ratio, and/or modulation amplitude when monitoring an optical transceiver and/or optical network. The circuit generally comprises a photodiode configured to generate a first current responsive to an optical signal, a current mirror coupled to a first terminal of the photodiode, and a detector coupled to a second terminal of the photodiode. The current mirror is configured to produce a second current equal to or proportional to the first current, and the detector is configured to determine a power or amplitude of the optical signal. Further, the present scheme may communicate information using a low speed signal superimposed on or combined with the relatively high speed optical signal.
Abstract: In accordance with the present disclosure, disadvantages and problems associated with transmitting high capacity (e.g., 400 G) optical signals may be reduced. In accordance with an embodiment of the present disclosure a method for regenerating an optical signal comprises receiving an optical signal at a network element and measuring a performance characteristic of the optical signal. The method further comprises determining that the optical signal needs regeneration based on the performance characteristic of the optical signal. The method additionally comprises performing signal regeneration of the optical signal based on the determination that the optical signal needs regeneration.
Abstract: A system and method is disclosed that allows for the monitoring, analyzing and reporting on performance, availability and quality of optical network paths. The correlation of PM parameter metrics to client connections, coupled with threshold-based alarm generation provides a proactive and predictive management, reporting and analyzing of the health and effectiveness of individual path connections to alert Operational Support (OS) staff and/or customers to signal degradation and impending Network Element (NE) failures. The system and method performs in real-time processing intervals required for alarm surveillance in a telecommunications network.
Abstract: Portable apparatus for measuring parameters of optical signals propagating concurrently in opposite directions in an optical transmission path between two elements, at least one of the elements being operative to transmit a first optical signal (S1) only if it continues to receive a second optical signal (S2) from the other (10) of said elements, comprises first and second connectors for connecting the apparatus into the optical transmission path in series therewith, and a device connected between the first and second connectors for propagating at least the second optical signal (S2) towards the one of the elements, and measuring the parameters of the concurrently propagating optical signals (S1, S2). The measurement results may be displayed by a suitable display unit. Where one element transmits signals at two different wavelengths, the apparatus may separate parts of the corresponding optical signal portion according to wavelength and process them separately.
Abstract: When a circuit that calculates a frequency offset using a shape of a frequency spectrum is implemented by hardware, the circuit size can be reduced.
Type:
Grant
Filed:
April 14, 2011
Date of Patent:
October 7, 2014
Assignee:
Nippon Telegraph and Telephone Corporation
Abstract: A data transmission system and method are provided. The data transmission system includes a first link partner and an optical transceiver unit. The first link partner includes a controller. When the first link partner is in an abnormal operation mode, the controller controls the first link partner to exit from the abnormal operation mode. The optical transceiver unit is coupled between the first link partner and a second link partner and performs data transmission between the first link partner and the second link partner. According to the data transmission system and method, one link partner can accurately detect whether another link partner is coupled to the one link partner through an optical transceiver unit. Accordingly, data transmission between the two link partners can be stably performed through the optical transceiver unit.
Abstract: An optical receiver includes: an optical to electric converter that converts a received optical signal into an analog electric signal; an analog to digital converter that converts the analog electric signal obtained by the optical to electric converter into a digital signal; a digital signal processor that performs wave shaping on the digital signal; an information extract circuit that extracts information related to loss or deterioration of the optical signal from a signal propagating from the analog to digital converter to the digital signal processor or a signal in the digital signal processor; and a judging circuit that judges, based on the information extracted by the information extract circuit, whether the optical signal is lost or deteriorates.
Abstract: A method of monitoring a differential group delay (DGD) of an optical communications signal having a polarisation multiplexed modulation format is described. The method includes the operations of receiving a signal and performing analogue to digital conversion of the signal to generate a digitised signal corresponding to one polarisation of the signal and to generate another digitised signal corresponding to another polarisation of the signal, and applying a polarisation mode dispersion(PMD) compensation to each of the digitised signals. The method further includes the operations of obtaining an indication of the channel transfer function of the optical communications signal, determining a DGD in dependence on the indication of the channel transfer function, determining a delay between the PMD compensated digitised signals, subtracting the delay from the DGD to obtain a corrected DGD, and generating and transmitting a monitoring signal with an indication of the corrected DGD.
Type:
Grant
Filed:
October 4, 2011
Date of Patent:
September 2, 2014
Assignee:
Telefonaktiebolaget L M Ericsson (publ)
Inventors:
Roberto Magri, Raffaele Corsini, Ernesto Ciaramella, Emma Matarazzo, Andrea Peracchi
Abstract: A correlation system, such as a correlation optical time domain reflectometer (OTDR) system, transmits a correlation sequence, such as an M-sequence, and measures the returns of the correlation sequence over time. The system correlates the transmitted sequence with the returns to provide correlation measurement values that respectively correspond to different distances from the point of transmission. A correlation error compensation element estimates a correlation error floor based on at least one correlation measurement value corresponding to a point along the fiber beyond a finite impulse response (FIR) length from the transmitter. The correlation error compensation element adjusts each correlation measurement value estimate in order to cancel the contribution of the correlation error floor from the measurements to provide compensated measurement values that are substantially free of the effects of the correlation error floor.
Abstract: A method includes generating a test signal and modulating the test signal. The method may also include transmitting the test signal on an optical path, where the optical path may include a number of add-drop multiplexer devices and amplifiers. The method may also include receiving the test signal at a destination device and converting the received test signal into an electrical signal. The method may further include identifying a portion of the electrical signal that is associated with the modulated test signal.
Abstract: A laser communications terminal configured for simultaneous two-way stabilized communications links to multiple ground sites. One example of such a laser communications terminal includes a plurality of laser channels, each including a channel transceiver configured to transmit and receive an optical signal, an afocal telescope optically coupled to each of the channel transceivers, a celostat minor pair optically coupled to the afocal telescope, and a plurality of beam steering mirrors, at least one beam steering mirror associated with each channel of the plurality of laser channels and configured to independently steer the corresponding optical signal within a field of view of the afocal telescope.
Abstract: The present disclosure relates to fiber optic networks carrying sensitive information such as classified government communications, sensitive financial information, proprietary corporate information, and associated systems and methods for secure transmission where fiber tampering is easily detected. The present invention provides improved security systems and methods for fiber optic communication links. Specifically, a hollow-core photonic bandgap fiber is deployed as a transmission medium. A secure fiber optic communication link is established over the hollow-core photonic bandgap fiber with a monitoring mechanism. The monitoring mechanism is configured to detect large losses and large spectral variability each indicative of loss introduced by malicious intrusion attempts. Further, the monitoring mechanism allows easy differentiation of intrusion relative to normal system variations thereby reducing false positives and missed intrusions.
Abstract: A diagnostic testing utility is used to perform single link diagnostics tests including an electrical loopback test, an optical loopback test, a link traffic test, and a link distance measurement test. To perform the diagnostic tests, two ports at each end of a link are identified and then statically configured by a user. The ports will be configured as D_Ports and as such will be isolated from the fabric with no data traffic flowing through them. The ports will then be used to send test frames to perform the diagnostic tests.
Type:
Grant
Filed:
March 14, 2011
Date of Patent:
August 5, 2014
Assignee:
Brocade Communications Systems, Inc.
Inventors:
David Aaron Skirmont, Saumitra Buragohain, Balakrishna Wusirika, Badrinath Kollu, Kyuh Kim
Abstract: Exemplary systems, devices, and methods for evaluating a link status of a fiber-optic communication system are disclosed. An exemplary transceiver device includes a transmitter configured to transmit an optical signal having a first wavelength to an additional transceiver device by way of a single optical fiber, a receiver configured to receive an optical signal having a second wavelength from the additional transceiver device by way of the single optical fiber, and a link status facility communicatively coupled to the transmitter and the receiver and configured to provide one or more visual indications of a link status between the transceiver device and the additional transceiver device. Corresponding systems, devices, and methods are also disclosed.
Type:
Grant
Filed:
June 29, 2010
Date of Patent:
August 5, 2014
Assignee:
Verizon Patent and Licensing Inc.
Inventors:
Nee Ben Gee, Glenn A. Wellbrock, Tiejun J. Xia
Abstract: An optical communication system comprising an optical fiber connected to a first signal regeneration node located at a first end of the optical fiber and a second signal regeneration node located at a second end of the optical fiber; intermediary nodes located between the first and second signal regeneration nodes, wherein one or more pairs of adjacent intermediary nodes each define a span distance along the optical fiber; and one or more Raman amplifiers located within each span distance along the optical fiber, wherein at least one of the one or more Raman amplifiers comprises a case that encases one or more lasers and a temperature controller comprising a temperature sensor to monitor a temperature of the one or more lasers; and a temperature regulator to control a temperature of the one or more lasers.
Abstract: The present disclosure describes an optically powered transducer with a photovoltaic collector. An optical fiber power delivery method and system and a free space power delivery method are also provided. A fabrication process for making an optically powered transducer is further described, together with an implantable transducer system based on optical power delivery.
Type:
Grant
Filed:
August 20, 2010
Date of Patent:
July 22, 2014
Assignee:
California Institute of Technology
Inventors:
Axel Scherer, Aditya Rajagopal, Seheon Kim, Andrew P. Homyk
Abstract: There is provided a method for determining the in-band noise in agile multichannel Dense Wavelength Division Multiplexing (DWDM) optical systems, where the interchannel noise is not representative of the in-band noise in the optical channel. The method relies on the analysis of two observations of the same input optical signal. In the two observations, the linear relationship between the optical signal contribution and the optical noise contribution (e.g. the observed OSNR) is different, which allows the discrimination of the signal and noise contributions in the input optical signal. In a first approach, the two observations are provided by polarization analysis of the input optical signal. In a second, the input optical signal is obtained using two different integration widths.
Abstract: Control and monitoring of airfield lighting from a control tower and other maintenance/supervisory locations uses double loop self healing fiber optic communications circuits to enhances speed of operation even with large and complex airfield lighting system requirements, and significantly increased reliability and operating lifetime thereof. A plurality of local light control and monitoring groups are used, wherein each group has at least one fiber optic communications concentrator that independently communicates with light controllers within the group and the remote supervisory control and monitoring systems in the control tower and other locations. This allows faster control response of the lamps in each of the airfield light fixtures, and monitoring concentration of operational data within each group.
Abstract: A method and apparatus of detecting a rogue optical network unit (ONU) is provided. An optical line terminal (OLT) detects an abnormal upstream transmission to determine a plurality of rogue ONU candidates, and transmits a sleep allow message instructing a transition to a sleep mode to each of the plurality of rogue ONU candidates. The OLT detects the rogue ONU among the plurality of rogue ONU candidates based on upstream transmissions from the plurality of rogue ONU candidates in the sleep mode. Since the detection of the rogue ONU is performed in the sleep mode, the remaining ONUs can transition from the sleep mode to the normal mode after the detection of the rogue ONU is completed, thereby making it possible to rapidly resume upstream communication.
Type:
Grant
Filed:
August 26, 2011
Date of Patent:
July 1, 2014
Assignee:
Electronics and Telecommunications Research Institute
Inventors:
Geun Yong Kim, Sung Chang Kim, Dongsoo Lee, Mun Seob Lee, Hark Yoo, Youngsuk Lee, Sim Kwon Yoon, Jong Deog Kim
Abstract: The invention refers to a optical communication network comprising a monitoring node having a port for outputting at least one optical signal that has a first wavelength range over an optical link of the network to a reflector node of the network. In order to allow for efficient monitoring the optical link it is suggested that the reflector node comprises a wavelength selective optical reflector connected to the link, the reflector being configured for generating a monitoring signal by reflecting a part of the optical signal back into the link, the monitoring signal having a second wavelength range that is a proper sub-range of the first wavelength range and the monitoring node comprises a detector coupled with the port for determining whether the link is defective arranged for detecting the monitoring signal generated by the reflector node.
Abstract: In general, the present invention provides novel approaches to signal propagation modeling that utilize the following: 1) geographic segmentation is applied by separating a large fiber optic network into individual non-overlapping segments, defined by optical add/drop placements; 2) impairment segmentation is applied, such that optical noise, self-phase, cross-phase, four-wave mixing, and other impairments are all treated separately; 3) each impairment is calculated by the most efficient approach to achieve the minimum required accuracy, the approaches being fully numeric, semi-analytic, or empirical; 4) impairment concatenation rules are applied to compute an overall impairment experienced by a signal that traverses more than one segment; and 5) impairment scaling rules are applied to rapidly estimate changes in configuration that can lead to improved performance (i.e. higher capacity, longer distance, or lower cost).
Abstract: In one embodiment, a smart small form-factor pluggable (SSFP) transceiver—compatible with SFP size, power, and interconnection standards—includes an optical transceiver, an electrical connector, a protocol processing engine, and a CPU. The SSFP transceiver is configured for use at a client site having no network interface device (NID). The SSFP transceiver (1) mates to a client's network device at an electrical interface within the network device and (2) connects to a network provider's central office (CO) node via an optical cable at an optical interface. The SSFP transceiver is configured to (1) be powered by the network device, (2) power-up upon mating with the network device, (3) be configured by a remote management agent (RMA) of the network provider for communication with the provider network, (4) respond to/generate Operation, Administration, and Management (OAM) messages from/for the CO node, and (5) provide OAM demarcation functions of a conventional NID.
Abstract: A method includes applying pulsed light to a first end of an optical fiber from an optical fault locator during a first distance test. The method includes determining an estimated distance to a fault based on the pulsed light. The method includes sending information indicative of the estimated distance to a remote device. The method also includes applying first visible light from the optical fault locator to the first end of the optical fiber to facilitate identification of the fault at a first site that is remote from the first end of the optical fiber.
Abstract: An example method includes receiving radio frequency (RF) signals from a cable modem termination system (CMTS) in a small form factor pluggable optical transmitter; converting the RF signals to optical signals in the small form factor pluggable optical transmitter; and transmitting, by the small form factor pluggable optical transmitter, the optical signals on a network. More specific embodiments can include RF signals that are modulated, where a modulation error ratio (MER) of the RF signal varies substantially linearly with Carrier to Composite Noise (CCN), and the converting is implemented by a laser transmitter. Other, more specific, embodiments include routing the RF signals through a pre-distortion RF amplifier RF variable attenuator, and coupling the optical transmitter to a chassis of the CMTS.
Type:
Grant
Filed:
July 15, 2011
Date of Patent:
June 10, 2014
Assignee:
Cisco Technology, Inc.
Inventors:
Fred S. Hirt, Fernando X. Villarruel, Kuang-Yi Wu
Abstract: A method and circuit are provided for implementing reduced signal degradation for fiber optic modules, and a design structure on which the subject circuit resides. Responsive to a detected signal input, an optical misalignment calculation is performed. A voltage potential for a lens shape control is selected responsive to the optical misalignment calculation. An optical signal loss calculation and threshold compare are performed. Responsive to the optical signal loss calculation less than the threshold, the lens shape and voltage potential are fixed. A fluidic lens provides variable lens shape responsive to the selected voltage potential being applied to the fluidic lens.
Type:
Grant
Filed:
January 22, 2010
Date of Patent:
June 10, 2014
Assignee:
International Business Machines Corporation
Abstract: Connectivity between components in a system is monitored by applying a low voltage at one end of an RF cable, interpreted as a “0” logical state, and determining whether a similar voltage appears at the other end of the cable. If the cable is connected properly, the DC voltage applied at one end will appear at the other end and a proper indication is generated. If the expected voltage level does not appear at the other side, it means that RF connection was not correctly established and an alert is generated. Test systems for testing connectivity may include a first component comprising at least one port, at least one capacitor, and at least one resistor for providing high impedance. A controller provides a first logic state to the at least one port, scans multiple input ports of the system, and records a link corresponding to the applied first logic state.
Abstract: Drop port based shared risk link group (SRLG) systems and methods assign SRLG information to drop ports in another level or layer of a network. Thus, drop side SRLG information can be shared between different networks or layers enabling a combination with line side SRLG information within a network to identify and prevent single points of failure across the networks. Typically, SRLG details are assigned to line ports (NNI ports) within a network and this information is not shared with external networks or network layers for routing a connection through the network and the external networks. By assigning SRLG details to a drop port, this information can be relayed between the network and the external networks and considered when planning a route through all of the networks.
Type:
Application
Filed:
November 27, 2012
Publication date:
May 29, 2014
Inventors:
Gerard Leo SWINKELS, David Man-Wah YEUNG
Abstract: One embodiment provides a system that tests optical performance in an Ethernet passive optical network (EPON), which includes an optical line terminal (OLT) and at least one optical network unit (ONU). The system configures an ONU with a circular queue that contains test frames for testing optical performance. The OLT then notifies the ONU to transmit test frames at a specified data rate for a specified duration. After receiving test frames at the OLT, the system measures frame loss and/or bit error rate based on the received test frames.
Abstract: The present invention discloses a method and system for tracking signaling in an automatically switched optical network (ASON), wherein the method comprises a step of setting a signaling tracking filtering condition for a corresponding signaling tracking task, and the following steps that: an ASON node collects and reports a received or sent signaling message when there exists a task tracking request; and when the reported signaling message is determined meeting the signaling tracking filtering condition of the current signaling tracking task, the reported signaling message is resolved to obtain the signaling message of the signaling tracking task. The invention realizes a signaling tracking scheme in an ASON and can establish multiple signaling tracking tasks at the same time, as each signaling tracking task can set its own signaling tracking filtering condition; a flexible signaling tracking is achieved.
Abstract: An optical line terminal is provided which includes an upward band allocating unit configured to send an upward bandwidth allocation map to an optical network unit and to determine a sleep mode of the optical network unit according to whether a response message corresponding to the upward bandwidth allocation map is received; and an alarm unit configured to determine an upward bandwidth allocation map transfer operation as a normal operation according to an operation of the sleep mode.
Type:
Application
Filed:
March 13, 2013
Publication date:
May 15, 2014
Applicant:
Electronics and Telecommunications Research Institute
Inventor:
Electronics and Telecommunications Research Institute
Abstract: The present invention discloses a Wavelength Division Multiplexing Filter which can satisfy coexistence requirements of different PON systems and an optical line detecting system.
Abstract: Terminals of upstream and downstream sides of an in-service line and a detour line are connected by optical couplers. An optical oscilloscope is connected to one optical coupler, and a chirped pulse light source is connected to the other optical coupler to thereby form dualized lines. The detour line includes an optical line length adjuster for compensating for the phase difference of optical transmission signals that occurs because of the optical line length difference with the in-service line. Pulse light in which an optical frequency is chirped is transmitted from the chirped pulse light source. The pulse light is branched by the second optical coupler, passes through the in-service line and the detour line, is multiplexed again by the first optical coupler, and is measured by the optical oscilloscope.
Type:
Grant
Filed:
November 24, 2009
Date of Patent:
May 6, 2014
Assignee:
Nippon Telegraph and Telephone Corporation
Abstract: An optical access network has a first and a second network-side termination node, the first including a first transceiver arrangement connected to a first optical link, configured to send a first signal to a customer side termination node including a transceiver for receiving the first signal, and the second including a second transceiver arrangement connected to a second optical link and configured for sending a second signal to a transceiver of a customer-side termination node via the second link. The transceiver of the customer side termination node has a loopback element emitting a monitoring signal back to the network side termination nodes. Both network-side termination nodes have a link failure detector receiving the monitoring signal.
Abstract: A system and method are provided for carrier frequency offset (CFO) estimation for coherent optical orthogonal-frequency-division-multiplexing (CO-OFDM) broadband systems. The method includes obtaining an initial estimate of a normalized CFO with an estimation range equal to ±L/2 subcarrier subspacing using a single training symbol with L identical portions. The method further includes obtaining a maximum likelihood (ML) estimate of the CFO by performing a local grid search based on the initial estimate.
Abstract: Provided in accordance with the invention is a method for measuring the distance of an object in which a transmitted signal (S) with a pulse train having a prescribed pulse repetition frequency (fw) is generated such that the transmitted signal has a frequency comb in the frequency domain, the transmitted signal is directed onto the object, and a reflected signal (R) reflected from the object is received, the phase difference (?MESS,1) between the transmitted signal and the reflected signal is determined for a prescribed spectral line of the frequency comb, and the distance is determined with the aid of the phase difference.
Abstract: The invention relates to a system and method of dispersion measurement in an optical fiber network. The invention provides means for transmitting from a transmitting node, using a single tunable laser transmitter, two consecutive bursts of data at different wavelengths ?1 and ?2 to a receiver node, wherein each burst of data comprises a unique sequence of amplitude modulated data, and wherein the two sequences are injected with a fixed known delay. The delay between the two consecutive bursts of data is maintained by selective switching of the tunable laser, such that clock recovery circuitry at the receiver node remains locked during the delay between the two bursts. The dispersion measurements method of the present invention is based on walk off and bit position detection between two wavelengths suitable for fast optical burst switching network is described. This method does not require an operator, extra equipment, or traffic interruption on the network.
Type:
Grant
Filed:
July 19, 2011
Date of Patent:
April 15, 2014
Assignee:
Intune Networks Limited
Inventors:
Emilio Bravi, Giuseppe Tali, David McDonald, Michael Todd, David Bernard
Abstract: A wavelength division multiplexer terminal with a multiplexer arrangement with a first switching matrix, and a demultiplexer arrangement with a second switching matrix allows flexibility for connection transceivers to ports of the wavelength division multiplexer and wavelength division demultiplexer respectively. Optical monitoring receivers are connected upstream the wavelength division multiplexer and downstream the wavelength division demultiplexer for managing and supervising connections.
Abstract: Exemplary embodiments of the invention relates to an optical transceiver module having a diagnostic assembly, wherein the diagnostic assembly is configured to visually display the operational status of the transceiver transmitter and receiver components while optically transmitting diagnostic information. The transceiver operational status is accessible while the transceiver operates in conjunction with an external host and may be ascertained in real time without interrupting normal transceiver operation or suspending the transmission of data over optical fibers.
Abstract: An optical communication system includes an optical transmission terminal including a first transmitter for transmitting an optical signal, and a second transmitter for transmitting information that indicates the first transmitter transmitting the optical signal; and an optical receiving terminal including an optical receiver for receiving the optical signal and the information transmitted from the first and second transmitter, respectively, a storage device for storing a power value of the optical signal monitored in response to receipt of the information transmitted from the second transmitter, and a fault detector for detecting fault of the optical signal by continuously monitoring a power value of the optical signal received by the optical receiver in comparison with the power value stored in the storage device.
Abstract: The present disclosure provides line flapping detection systems and methods for optical networks using, for example, Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), Optical Transport Network (OTN), and the like. Line flapping includes conditions, failures, etc. on a particular line going in and out of failure without raising an alarm or the like. The line flapping detection systems and methods provide configurable settings to set an alarm when it has been determined that a line is indeed flapping. First, there is a two level hierarchical control mechanism used to determine whether to report the alarm. Additionally, the line flapping detection systems and methods are configured to correlate events to count as single line failures instead of a plurality of distinct events.
Type:
Grant
Filed:
August 24, 2011
Date of Patent:
March 25, 2014
Assignee:
Ciena Corporation
Inventors:
Alexander A. Smith, Xiaoning Zhu, Iwan Kartawira, Hongxing Meng
Abstract: In one example embodiment, an optoelectronic communications assembly having an optical receiver or an optical transmitter includes an optical interface disposed at an end thereof and through which optical signals are communicated by the optical receiver or optical transmitter. The optoelectronic communications assembly also includes an electronic component and a first electrical interface disposed at the optical interface end of the optical communications assembly and communicatively coupled to the electronic component.