Abstract: A cluster mill blank includes a framework constructed to cooperate with a blank holder of an existing CAD/CAM system, and a plurality of sub-blanks attached to the framework forming an addressable matrix or cluster blank. CAD/CAM systems including such a framework, as well as associated methods are described.
Abstract: The present invention discloses a machining control apparatus capable of decreasing a machining error, comprising: a rotation velocity decision process part for deciding a rotation velocity of the rotation tool in such a way that an amplitude of vibration of the rotation tool is decreased, based on a vibration state of the rotation tool and a vibration phase of the rotation tool when the rotation tool receives the cutting resistance force, in the case that the rotation tool vibrates due to the interrupted cutting resistance force generated in the rotation tool during the interrupted cutting; and a rotation velocity control part for controlling the rotation velocity(S) of the rotation tool based on the rotation velocity decided.
Abstract: A cluster mill blank includes a framework constructed to cooperate with a blank holder of an existing CAD/CAM system, and a plurality of sub-blanks attached to the framework forming an addressable matrix or cluster blank. CAD/CAM systems including such a framework, as well as associated methods are described.
Abstract: A machine for producing a three dimensional joint replacement article and which exhibits a three dimensional shaped body incorporating a scanner component for at least receiving a digitized input corresponding to a set of dimensions associated with a replacement article to be produced. Incorporated in die machine is a numerical control guided machining subassembly in communication with at least one material blank corresponding to an article to be produced. Material shavings are vacuum removed and collected for disposal and, following CNC machining, the finished part is deposited into a cavity accessed by a retrieval door for removal.
Abstract: Multiple fluid nozzles are mounted in a machine tool such that the cutting tool in the spindle is targeted with liquid or gas cutting fluid from multiple directions, providing better coverage and thereby more effectiveness. This provides more efficient and safer use of a machine tool by automating the aiming of fluids at a desired location. Multiple nozzles at respective multiple physical locations are preferably controlled by a single control unit, so they can be synchronized to maintain a common target point on a cutting tool, even if the nozzles are located asymmetrically or non-uniformly with respect to the spindle axis or target point. Preferably, modular nozzle assemblies can be configured for flexibility in mounting on the machine tool.
Type:
Application
Filed:
May 23, 2012
Publication date:
December 6, 2012
Inventors:
Stephen R. Gardner, Gary L. Gardner, Marc R. Warren
Abstract: This invention concerns an apparatus and method for perforating a beam. The apparatus comprises a main longitudinal support structure to support the beam. A cutting zone is located along the main longitudinal support structure. Controllable translating means translate the beam longitudinally in the cutting zone. A detector detects a presence of the beam in the cutting zone and in response, a router is controllably moved substantially orthogonally and transversally with respect to the beam, while the beam is translated. The combined controlled movement of the router and the beam results in a perforation of the beam following a predetermined perforation pattern.
Type:
Application
Filed:
October 5, 2011
Publication date:
May 3, 2012
Inventors:
Jean-François LACHANCE, Benoit Maille, Pierre Martel, Steeve Lepine
Abstract: Machine tool systems and methods include methods of synchronizing cutting tools with a workpiece retainer. In some embodiments, the methods and systems provide at least two cutting tools that are synchronized to machine a common surface of a workpiece in a quick and efficient manner. A controller having a single line of code for controlling both cutting tools and the workpiece retainer may be used. The cutting tools may be synchronized such that they engage substantially opposite portions of the workpiece, thereby to reduce resulting forces in the workpiece that may tend to induce workpiece deflection and/or chatter. In other embodiments, a cutting tool is synchronized with a split workpiece holder that may be controlled to induce a compression, tension, or torsion pre-load in the workpiece.
Type:
Application
Filed:
April 29, 2010
Publication date:
November 4, 2010
Applicant:
MORI SEIKI CO., LTD.
Inventors:
Gregory A. Hyatt, James Lankford, Jeffrey D. Wallace
Abstract: A cluster mill blank includes a framework constructed to cooperate with a blank holder of an existing CAD/CAM system, and a plurality of sub-blanks attached to the framework forming an addressable matrix or cluster blank. CAD/CAM systems including such a framework, as well as associated methods are described.
Abstract: A numerically controlled milling machine is used to mill the surface of a coined spinnerette after punching and before broaching the holes in the spinnerette. A probe is mounted on the milling machine to obtain data points on the bumpy surface of the coined spinnerette. The low points in predetermined areas off of the protuberances on the bumpy surface of the coined spinnerette are detected. Splines connecting the low points in, e.g., concentric rings if the holes in the finished spinnerette will be in rings, are used to generate a representation of the finished surface. A spiral tool path is obtained using the representation of the finished surface and G-codes are generated to control the milling machine to move a tool along the tool path. After the coined spinnerette has been milled, conventional finishing, including broaching is performed.
Type:
Grant
Filed:
December 15, 1995
Date of Patent:
March 31, 1998
Assignee:
Eastman Chemical Company
Inventors:
Ernest Edward Jessee, Michael Ray McLaughlin, Timothy Martin Pinto, James Emmett Grant, Jr.
Abstract: A method and apparatus for manufacturing jewelry, and an article of jewelry made thereby. According to the method, a pattern is provided for the article in a form suitable for controlling a mechanical table, the workpiece is mounted on the mechanical table through the intermediary of a backing, the pattern is transferred to the workpiece, and the workpiece is removed from both the mechanical table and the backing.The apparatus includes a machine table having a work surface and a machine head actable on the work surface, the machine head being movable in accordance with an input signal, a mount for accepting the workpiece, the mount being mountable on the work surface, and a processor for producing the input signals in accordance with a desired sequence of movements.