Heat And Pressure Simultaneously To Effect Sintering Patents (Class 419/48)
  • Patent number: 10926334
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: February 23, 2021
    Assignee: Tenneco Inc.
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Patent number: 10569362
    Abstract: A method of making a component includes depositing a metallic powder on a workplane; directing a beam from a directed energy source to fuse the powder in a pattern corresponding to a cross-sectional layer of the component; repeating in a cycle the steps of depositing and fusing to build up the component in a layer-by layer fashion; and during the cycle of depositing and melting, using an external heat control apparatus separate from the directed energy source to maintain a predetermined temperature profile of the component, such that the resulting component has a directionally-solidified or single-crystal microstructure.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: February 25, 2020
    Assignee: General Electric Company
    Inventors: Todd Jay Rockstroh, Michael Francis Xavier Gigliotti, William Thomas Carter, David Henry Abbott, Rajendra Machukar Kelkar
  • Patent number: 10202820
    Abstract: A lightweight, selectively degradable composite material includes a compacted powder mixture of a first powder and a second powder. The first powder comprises first metal particles comprising Mg, Al, Mn, or Zn, having a first particle oxidation potential. The second powder comprises low-density ceramic, glass, cermet, intermetallic, metal, polymer, or inorganic compound second particles. At least one of the first particles and the second particles includes a metal coating layer of a coating material disposed on an outer surface having a coating oxidation potential that is different than the first particle oxidation potential. The compacted powder mixture has a microstructure comprising: a matrix comprising the first metal particles; the second particles dispersed within the matrix; and a network comprising interconnected adjoining metal coating layers that extends throughout the matrix, the lightweight, selectively degradable composite material having a density of about 3.5 g/cm3 or less.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: February 12, 2019
    Assignee: BAKER HUGHES, A GE COMPANY, LLC
    Inventors: Zhiyue Xu, Bobby J. Salinas, Zhihui Zhang
  • Patent number: 10183331
    Abstract: A method manufactures a metal alloy part by spark plasma sintering. The method includes the simultaneous application, inside a die, of a uniaxial pressure and of an electric current to a powder component material that has the following composition: 42 to 49% aluminum, 0.05 to 1.5% boron, at least 0.2% of at least one element selected from tungsten, rhenium and zirconium, optionally 0 to 5% of one or more elements selected from chromium, niobium, molybdenum, silicon and carbon, the balance being titanium and the total of the elements without aluminum and titanium being between 0.25 and 12%.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: January 22, 2019
    Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE—CNRS—, ONERA (OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AÉROSPATIALES)
    Inventors: Alain Couret, Jean-Philippe Monchoux, Marc Thomas, Thomas Voisin
  • Patent number: 10173930
    Abstract: In one aspect, sintered ceramic bodies are described herein which, in some embodiments, demonstrate improved resistance to wear and enhanced cutting lifetimes. For example, a sintered ceramic body comprises tungsten carbide (WC) in an amount of 40-95 weight percent, alumina in an amount of 5-30 weight percent and ditungsten carbide (W2C) in an amount of at least 1 weight percent.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: January 8, 2019
    Assignee: KENNAMETAL INC.
    Inventors: Jason Goldsmith, Sheng Chao
  • Patent number: 10138913
    Abstract: A cartridge assembly having a chamber for containing hydraulic fluid, an intensifier element capable of reciprocating in the chamber and displacing the hydraulic fluid responsive to a drive system acting on the intensifier element, and a piston capable of reciprocating in the chamber and being displaceable responsive to a change in the pressure of the hydraulic fluid. The cartridge assembly is configured so that when the pressure in the fluid increases responsive to a first force being applied by the drive system on the intensifier, the hydraulic fluid will exert a second force on the piston, the second force being greater than the first force; the mass of the hydraulic fluid being substantially conserved within the cartridge assembly.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: November 27, 2018
    Assignee: Element Six Limited
    Inventors: Maximilian Voggenreiter, Thomas Heinrich Voggenreiter, Michael Martin Petri
  • Patent number: 9903212
    Abstract: A method of manufacturing an assembly (10), including: positioning a first component (12) and a second component (14) in a desired positional relationship with each other; and building-up a locking component (16) by depositing layer after layer of material onto a surface (24, 26) of the assembly until a completed locking component is formed in-situ that holds the first component and the second component in the desired positional relationship.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: February 27, 2018
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Allister William James
  • Patent number: 9709058
    Abstract: A compressor includes a closed container, a compression element disposed in the closed container, and a motor disposed in the closed container to drive the compression element via a shaft. The compression element includes a first and second bearings supporting the shaft. At least one cylinder having at least one cylinder chamber is disposed between the first and second bearings, with at least one roller fitted to the shaft disposed in the at least one cylinder chamber. The first bearing is disposed closer to the motor than the second bearing. The first and second bearings have first and second annular grooves formed in first and second opposing surfaces opposed to end faces of the at least one roller. The first and second annular grooves are opened to the at least one cylinder chamber. A width of the second annular groove is larger than a width of the first annular groove.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: July 18, 2017
    Assignee: Daikin Industries, Ltd.
    Inventors: Takehiro Kanayama, Naoto Tomioka, Yuuichirou Watanabe
  • Patent number: 9707607
    Abstract: Disclosed is an impact extrusion can making system that uses induction heating to preheat an extruder punch and an extruder forming die, to increase yield during a cold start. In addition, a highly precise laser measuring device is used to measure dome thickness, so that stroke length and/or position of an extruder and/or extrusion die can be automatically adjusted in a predictive control system. High quality products with high yield are produced using these techniques.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: July 18, 2017
    Assignee: Integrated Packaging Solutions, LLC
    Inventors: Michael W. Calahan, Kevin M. Gillest
  • Patent number: 9701587
    Abstract: Provided is a method for producing an inorganic fiber-bonded ceramic material, which can produce, at a high yield, an inorganic fiber-bonded ceramic material with fewer defects, and with an end part and a central part equivalent to each other in microstructure and mechanical properties, and also makes it possible to increase the ceramic material in size. The method for producing an inorganic fiber-bonded ceramic material is characterized in that it includes: a first pressing step of setting, in a carbon die, a laminate to be surrounded by a ceramic powder, the laminate obtained by stacking a coated inorganic fiber shaped product including an inorganic fiber part of inorganic fibers that have a pyrolysis initiation temperature of 1900° C. or lower, and a surface layer of an inorganic substance for bonding the inorganic fibers to each other, and pressing the laminate at a temperature of 1000 to 1800° C.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: July 11, 2017
    Assignee: Ube Industries, Ltd.
    Inventors: Kenji Matsunaga, Shinji Kajii, Shohei Suizu, Tsutomu Kodama
  • Patent number: 9199308
    Abstract: One embodiment of the invention may include a method of producing a composite article comprising a container, filling the container with a powdered metal, and compacting the powdered metal in the container such that an interfacial bond is created between the compacted powdered metal and the container.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: December 1, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Chongmin Kim, Anil K. Sachdev
  • Patent number: 9079246
    Abstract: A method of making a powder metal compact is disclosed. The method includes forming a coated metallic powder comprising a plurality of coated metallic powder particles having particle cores with nanoscale metallic coating layers disposed thereon, wherein the metallic coating layers have a chemical composition and the particle cores have a chemical composition that is different than the chemical composition of the metallic coating layers. The method also includes applying a predetermined temperature and a predetermined pressure to the coated powder particles sufficient to form a powder metal compact by solid-phase sintering of the nanoscale metallic coating layers of the plurality of coated powder particles to form a substantially-continuous, cellular nanomatrix of a nanomatrix material, a plurality of dispersed particles dispersed within the cellular nanomatrix and a solid-state bond layer extending throughout the cellular nanomatrix.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: July 14, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Zhiyue Xu, Gaurav Agrawal, Bobby Salinas
  • Patent number: 9011763
    Abstract: The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5kBT, wherein kB is the Boltzman constant and T is an average temperature of said nanocomposite composition.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: April 21, 2015
    Assignees: Massachusetts Institute of Technology, Trustees of Boston College
    Inventors: Gang Chen, Mildred Dresselhaus, Zhifeng Ren
  • Patent number: 8961647
    Abstract: The invention is a process for manufacturing a nano aluminum/alumina metal matrix composite and composition produced therefrom. The process is characterized by providing an aluminum powder having a natural oxide formation layer and an aluminum oxide content between about 0.1 and about 4.5 wt. % and a specific surface area of from about 0.3 and about 5 m2/g, hot working the aluminum powder, and forming a superfine grained matrix aluminum alloy. Simultaneously there is formed in situ a substantially uniform distribution of nano particles of alumina. The alloy has a substantially linear property/temperature profile, such that physical properties such as strength are substantially maintained even at temperatures of 250° C. and above.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: February 24, 2015
    Inventors: Thomas G. Haynes, III, Martin Walcher, Martin Balog
  • Patent number: 8961719
    Abstract: A method for making a treated super-hard structure, the method including providing a super-hard structure comprising super-hard material selected from polycrystalline cubic boron nitride (PCBN) material or thermally stable polycrystalline diamond (PCD) material; subjecting the super-hard structure to heat treatment at a treatment temperature of greater than 700 degrees centigrade at a treatment pressure at which the super-hard material is not thermodynamically stable, for a treatment period of at least about 5 minutes to produce the treated super-hard structure.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: February 24, 2015
    Assignee: Element Six Limited
    Inventors: Stig Åke Andersin, Bernd Heinrich Ries, Frank Friedrich Lachmann, Lars-Ivar Nilsson
  • Patent number: 8951465
    Abstract: A method for preparing an implant having a porous metal component. A loose powder mixture including a biocompatible metal powder and a spacing agent is prepared and compressed onto a metal base. After being compressed, the spacing agent is removed, thereby forming a compact including a porous metal structure pressed on the metal base. The compact is sintered, forming a subassembly, which is aligned with a metal substrate portion of an implant. A metallurgical bonding process, such as diffusion bonding, is performed at the interface of the subassembly and the metal substrate to form an implant having a porous metal component.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 10, 2015
    Assignee: Biomet Manufacturing, LLC
    Inventor: Gautam Gupta
  • Publication number: 20150034483
    Abstract: Provided is a Fe—Co-based alloy sputtering target material having a composition represented as an atomic ratio by the compositional formula: (Fea—Co100-a)100-b-c-d—Tab—Nbc-Md, wherein 0<a?80, 0?b?10, 0?c?15, 5?b+c?15, 2?d?20, 15?b+c+d?25, and M represents one or more elements selected from the group consisting of Mo, Cr and W, with the balance consisting of unavoidable impurities, wherein the sputtering target material has a bending fracture strain ?fB at 300° C. of 0.4% or more.
    Type: Application
    Filed: May 30, 2013
    Publication date: February 5, 2015
    Inventors: Jun Fukuoka, Kazuya Saito, Kouichi Sakamaki, Tomoyuki Hata
  • Publication number: 20140377120
    Abstract: A method of manufacturing a thermoelectric material comprising: ball-milling a compound comprising a plurality of components, the first component M comprising at least one of a rare earth metal, an actinide, an alkaline-earth metal, and an alkali metal, the second component T comprising a metal of subgroup VIII, and the third component X comprises a pnictogen atom. The compound may be ball-milled for up to 5 hours, and then thermo-mechanically processed by, for example, hot pressing the compound for less than two hours. Subsequent to the thermo-mechanical processing, the compound comprises a single filled skutterudite phase with a dimensionless figure of merit (ZT) above 1.0 and the compound has a composition following a formula of MT4X12.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventors: Qing Jie, Zhifeng Ren
  • Publication number: 20140356218
    Abstract: A method for producing a high speed steel that with reference to its chemical composition consists of the following elements: 1-3 wt-% carbon (C), 3-6 wt-% chromium (Cr), 0-7 wt-% molybdenum (Mo), 0-15 wt-% tungsten (W), 3-14 wt-% vanadium (V), 0-10 wt-% cobalt (Co), 0-3 wt-% niobium (Nb), 0-0.5 wt-% nitrogen (N), 0.2-1 wt-% yttrium (Y), and remainder iron (Fe) and unavoidable impurities, and wherein Mo+0.5W=2-10 weight %, characterized in that the method comprises the steps of: providing a powder comprising the elements of the high speed steel, forming a body of the powder, and subjecting the body to elevated heat and pressure such that a consolidation of the powder thereof is achieved.
    Type: Application
    Filed: September 19, 2012
    Publication date: December 4, 2014
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventor: Tomas Berglund
  • Publication number: 20140346038
    Abstract: Provided are a crystalline alloy having significantly better thermal stability than an amorphous alloy as well as glass-forming ability, and a method of manufacturing the crystalline alloy. The present invention also provides an alloy sputtering target that is manufactured by using the crystalline alloy, and a method of manufacturing the alloy target. According to an aspect of the present invention, provided is a crystalline alloy having glass-forming ability which is formed of three or more elements having glass-forming ability, wherein the average grain size of the alloy is in a range of 0.1 ?m to 5 ?m and the alloy includes 5 at % to 20 at % of aluminum (Al), 15 at % to 40 at % of any one or more selected from copper (Cu) and nickel (Ni), and the remainder being zirconium (Zr).
    Type: Application
    Filed: December 4, 2012
    Publication date: November 27, 2014
    Inventors: Seung-Yong Shin, Kyoung-Il Moon, Ju-Hyun Sun, Chang-Hun Lee
  • Publication number: 20140334964
    Abstract: Titanium alloy containing iron, that is, iron-containing titanium alloy having high strength and hardness in which iron in a composition which cannot be realized in a conventional method, is contained with no segregation, and is provided in lower cost. The ?+? titanium alloy or ? titanium alloy is produced by a forming process such as hot extrusion of titanium alloy powder containing 3 to 15 mass % of iron powder. The method for production of the ?+? titanium alloy or ? titanium alloy includes a step of mixing 3 to 15 mass % of iron powder and titanium alloy powder as the remainder, and a step of performing a forming process of hot extrusion on this powder mixture.
    Type: Application
    Filed: December 16, 2011
    Publication date: November 13, 2014
    Inventors: Osamu Kanou, Satoshi Sugawara, Hideo Takatori
  • Patent number: 8883047
    Abstract: Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: November 11, 2014
    Assignees: Massachusetts Institute of Technology, Trustees of Boston College
    Inventors: Zhifeng Ren, Jian Yang, Xiao Yan, Qinyu He, Gang Chen, Qing Hao
  • Patent number: 8845956
    Abstract: The disclosure relates to a method for production of a component, such as a contact piece, for a switchgear assembly. To introduce a slot and apply a contact outer contour directly during the powder-metallurgical production process of the contact material, contouring in the form of a slot or slots is introduced into the powder-metal material, which is located in a mold, essentially in a direction parallel to a normal to a surface of the component, to form the component with a slot.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: September 30, 2014
    Assignee: ABB Technology AG
    Inventors: Dietmar Gentsch, Guenter Pilsinger
  • Patent number: 8834785
    Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: September 16, 2014
    Assignee: Climax Engineered Materials, LLC
    Inventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
  • Patent number: 8795585
    Abstract: There is provided cryogenic milled nanophase copper alloys and methods of making the alloys. The alloys are fine grained having grains in the size range from about 2 to about 100 nanometers, and greater. The nanophase alloys possess desirable physical properties stemming from the fine grain size, such as potentially high strength. Some embodiments of the cryogenic milled copper alloys may also be tailored for ductility, toughness, fracture resistance, corrosion resistance, fatigue resistance and other physical properties by balancing the alloy composition. In addition, embodiments of the alloys generally do not require extensive or expensive post-cryogenic milling processing.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 5, 2014
    Assignee: The Boeing Company
    Inventors: Barun Majumdar, James D. Cotton, Clifford C. Bampton
  • Patent number: 8795489
    Abstract: [Problems] To provide a sputtering target that is capable of forming a Cu—Ga film to which Na is favorably added by a sputtering method, and a method for producing the same. [Means for Solving the Problems] The sputtering target is provided wherein 20 to 40 at % of Ga and 0.05 to 1 at % of Na are contained as metal components except fluorine (F) of the sputtering target, a remaining portion has a component composition consisting of Cu and unavoidable impurities, and Na is contained in the state of a NaF compound. Also, a method for producing the sputtering target includes the steps of forming a molded article consisting of a mixed powder of NaF powder and Cu—Ga powder or a mixed powder of NaF powder, Cu—Ga powder, and Cu powder; and sintering the molded article in a vacuum atmosphere, an inert gas atmosphere, or a reducing atmosphere.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: August 5, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Shoubin Zhang, Yoshinori Shirai
  • Patent number: 8790438
    Abstract: A colored metal composite including a metal matrix; and colored particles distributed throughout the metal matrix AND/OR a method including providing metal powder as a first phase of a composite; providing colored particles to form a second phase of the composite; mixing the metal powder and colored particles; and sintering the metal powder around the colored particles to form a metal matrix that has colored particles distributed throughout.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: July 29, 2014
    Assignee: Nokia Corporation
    Inventors: Caroline Elizabeth Millar, Stuart Paul Godfrey
  • Patent number: 8784728
    Abstract: There is provided cryogenic milled copper alloys and methods of making the alloys. The alloys are fine grained and possess desirable physical properties stemming from the fine grain size. Embodiments include desirable physical properties, such as potentially high strength. Some embodiments of the cryogenic milled copper alloys may also be tailored for ductility, toughness, fracture resistance, corrosion resistance, fatigue resistance and other physical properties by balancing the alloy composition. In addition, embodiments of the alloys generally do not require extensive or expensive post-cryogenic milling processing.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: July 22, 2014
    Assignee: The Boeing Company
    Inventors: Clifford C. Bampton, James D. Cotton, Barun Majumdar
  • Patent number: 8753755
    Abstract: A body, such as a pick tool for cutting coal, includes a steel substrate and a hard face structure fused to the steel substrate. The hard face structure includes at least 1 weight percent Si, at least 5 weight percent Cr and at least 40 weight percent W. Substantially the balance of the hard face structure includes carbon and an iron group metal M selected from Fe, Co, Ni and alloy combinations of these elements. The hard face structure includes a plurality of elongate or platelike micro-structures having a mean length of at least 1 micron, a plurality of nano-particles having a mean size of less than 200 nanometers, and a binder material.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: June 17, 2014
    Assignee: Element Six GmbH
    Inventors: Igor Yuri Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann, Kersten Heinrich Schafer
  • Patent number: 8728389
    Abstract: A method for producing high strength aluminum alloy tanks and other vessels containing L12 dispersoids from an aluminum alloy powder containing the L12 dispersoids. The powder is consolidated into a billet having a density of about 100 percent. Tanks are formed by rolling consolidated billets into sheets, cutting preforms from said sheets, roll forming the performs into cylindrical shapes and friction stir welding the seams to form cylinders. L12 alloy domes are spin formed from the rolled sheet and friction stir welded to the cylinder. Circular bases are cut from the rolled sheet and friction stir welded to the domed cylinder to form bottoms of the tank.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: May 20, 2014
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 8708682
    Abstract: A method for repairing gas turbine components, in particular gas turbine blades, including at least the following steps: a) preparing a gas turbine component to be repaired; b) removing a damaged portion from the gas turbine component to be repaired, thereby forming a plane separation surface; c) placing the gas turbine component at least partly in a process chamber in such a way that the plane separation surface extends approximately horizontally within the process chamber; d) filling the process chamber with a metal powder that is bonding-compatible with the material of the gas turbine component to be repaired, namely up to the level of the separation surface; e) building up the removed portion on the separation surface by depositing metal powder in layers onto the separation surface and by fusing the metal powder, which has been deposited in layers onto the separation surface, to the separation surface.
    Type: Grant
    Filed: November 5, 2009
    Date of Patent: April 29, 2014
    Assignee: MTU Aero Engines GmbH
    Inventors: Roland Huttner, Karl-Heinz Dusel, Erwin Bayer, Albin Platz
  • Publication number: 20140072470
    Abstract: The present invention employs Equal Channel Angular Extrusion (ECAE) to consolidate Fe16N2, Fe4N, Sm2Fe17Nx, either alone or in combination with other magnetic powders made from Nd2Fe14B, SmCo5, Sm2Co17, Sm2Fe17Nx and MnBi to prepare dense bodies at temperatures as low as room temperature or as high as 800° C., depending on the composition. When a soft magnetic material such as ?-Fe powder or Fe4N powder is mixed with a hard magnetic material such as Nd2Fe14B, SmCo5, Sm2Co17 or Sm2Fe17Nx or MnBi or FeCr alloys or a semi-hard material such as Fe16N2, exchange-coupled magnets are obtained. This is due to the fact that the current theory on exchange-coupling phenomena indicates that a nanocrystalline size of the soft magnetic material is a necessary condition for the promotion of exchange-coupling.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 13, 2014
    Inventors: Suryanarayan G. Sankar, Laszlo John Kecskes
  • Patent number: 8663359
    Abstract: Methods of forming larger sintered compacts of PCD and other sintered ultrahard materials are disclosed. Improved solvent metal compositions and layering of the un-sintered construct allow for sintering of thicker and larger high quality sintered compacts. Jewelry may also be made from sintered ultrahard materials including diamond, carbides, and boron nitrides. Increased biocompatibility is achieved through use of a sintering metal containing tin. Methods of sintering perform shapes are provided.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: March 4, 2014
    Assignee: Dimicron, Inc.
    Inventors: David P. Harding, Mark E. Richards, Richard H. Dixon, Victoriano Carvajal, Bao-Khang Ngoc Nguyen, German A. Loesener, A. Ben Curnow, Troy J. Medford, Trenton T. Walker, Jeffery K. Taylor, Bill J. Pope
  • Publication number: 20140044584
    Abstract: A titanium alloy containing copper, which cannot be realized by a conventional method, is provided, having a composition in which copper is contained in titanium with no segregation, and having improved strength and hardness. In addition a method is also provided, in which the titanium alloy is produced at lower cost than in a conventional method. The ?+? or ? titanium alloy contains copper at 1 to 10 mass %, has a crystal phase of ? and ? phase or of ? phase, is formed of crystal particles not more than 100 ?m, and has a copper concentration per an arbitrary specified 1 mm3 portion of the crystal phase at within ±40% compared to another arbitrary specified portion. The ?+? or ? titanium alloy is produced by mixing 1 to 10 mass % of copper powder and the remainder of titanium alloy powder and then pressing and forming while being heated.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 13, 2014
    Applicants: TOHO TITANIUM CO., LTD., SANYO SPECIAL STEEL CO., LTD.
    Inventors: Osamu Kanou, Satoshi Sugawara, Hideo Takatori
  • Patent number: 8535604
    Abstract: A method of producing composites of micro-engineered, coated particulates embedded in a matrix of metal, ceramic powders, or combinations thereof, capable of being tailored to exhibit application-specific desired thermal, physical and mechanical properties to form substitute materials for nickel, titanium, rhenium, magnesium, aluminum, graphite epoxy, and beryllium. The particulates are solid and/or hollow and may be coated with one or more layers of deposited materials before being combined within a substrate of powder metal, ceramic or some combination thereof which also may be coated. The combined micro-engineered nano design powder is consolidated using novel solid-state processes that prevent melting of the matrix and which involve the application of varying pressures to control the formation of the microstructure and resultant mechanical properties.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: September 17, 2013
    Inventors: Dean M. Baker, Henry S. Meeks
  • Patent number: 8510942
    Abstract: An automotive engine component and method of producing the same. The method uses dynamic magnetic compaction to form components, such as camshaft lobes, with non-axisymmetric and related irregular shapes. A die is used that has an interior profile that is substantially similar to the non-axisymmetric exterior of the component to be formed such that first and second materials can be placed into the die prior to compaction. The first material is in powder form and can be placed in the die to make up a first portion of the component being formed, while a second material can be placed in the die to make up a second portion of the component. The second material, which may possess different tribological properties from those of the first material, can be arranged in the die so that upon formation, at least a portion of the component's non-axisymmetric exterior profile is shaped by or includes the second material.
    Type: Grant
    Filed: October 8, 2008
    Date of Patent: August 20, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Shekhar G. Wakade, Frederick J. Rozario, Glenn E. Clever, Joseph E. Robbins, Stephen R. Kornblum
  • Patent number: 8501048
    Abstract: The present invention provides a metal-graphite composite material favorable to two-dimensional diffusion of heat and having a high thermal conductivity in two axial directions, and a production method therefor. The metal-graphite composite material of the present invention includes: 20 to 80% by volume of a scaly graphite powder; and a matrix selected from the group consisting of copper, aluminum and alloys thereof, wherein the scaly graphite powder in which a normal vector to a scaly surface thereof is tilted at 20° or higher with respect to a normal vector to a readily heat-conducting surface of the metal-graphite composite material is 15% or less relative to a whole amount of the scaly graphite powder, and the metal-graphite composite material has a relative density of 95% or higher.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: August 6, 2013
    Assignee: Shimane Prefectural Government
    Inventors: Toshiyuki Ueno, Takashi Yoshioka
  • Patent number: 8460602
    Abstract: A sintering method with uniaxial pressing includes: a powder filling step of disposing a spent target in an inner space of a frame jig having the inner space piercing in a uniaxial direction, and filling the inner space with a raw material powder for a target to cover an erosion part side of the spent target with the raw material powder for a target, a cushioning-material disposition step of disposing a deformable cushioning material so that the raw material powder for a target with which the inner space has been filled in the powder filling step is sandwiched between the spent target and the deformable cushioning material; and a sintering step of pressing the raw material powder for a target with which the inner space has been filled and the spent target in the uniaxial direction through the cushioning material and sintering them.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 11, 2013
    Assignee: Tanaka Holdings Co., Ltd
    Inventors: Toshiya Yamamoto, Takanobu Miyashita, Osamu Itoh
  • Publication number: 20130140174
    Abstract: A preparing method of a glass substrate film sputtering target is disclosed, which comprises the following steps of: weighing an alloy material for forming the glass substrate film sputtering target; adding the alloy material weighed into a plasma pressure compaction sintering cavity and sintering the alloy material to obtain a sintered target, wherein the sintering temperature is 500° C.˜1600° C. and the sintering time is 5˜20 minutes; and post-processing the sintered target. A glass substrate film sputtering target prepared by the preparing method is further disclosed. Because the plasma pressure compaction for quick sintering is adopted for the glass substrate film sputtering target and the preparing method thereof of the present disclosure, quality of the target can be improved and the time necessary for preparing the target can be shortened.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 6, 2013
    Applicant: Shenzhen China Star Optoelectronics Technology Co., LTD.
    Inventor: Hao Kou
  • Patent number: 8454933
    Abstract: The invention provides a polycrystal magnesium oxide (MgO) sintered body which is capable of having a sintered density close to a theoretical density thereof. The MgO sintered body exhibits excellent mechanical properties and heat conductivity, while reducing contamination of an atmosphere due to gas generation. The invention also provides a production method for the sintered body. The polycrystal MgO sintered body has a unique crystalline anisotropy in which (111) faces are oriented along a surface applied with a uniaxial pressure at a high rate. The polycrystalline MgO sintered body is obtained by a method which includes the steps of: sintering an MgO raw material powder, having a particle size of 1 ?m or less, under a uniaxial pressure and then subjecting the sintered powder to a heat treatment under an atmosphere containing 0.05 volume % or more of oxygen, at a temperature of 1273 K or more for 1 minute or more.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: June 4, 2013
    Assignees: Nippon Tungsten Co., Ltd., Ube Material Industries, Ltd.
    Inventors: Mitsuyoshi Nagano, Masanobu Takasu, Yo Arita, Satoru Sano
  • Patent number: 8435429
    Abstract: A process for forming a thermoelectric component having optimum properties is provided. The process includes providing a plurality of core-shell nanoparticles, the nanoparticles having a core made from silica, metals, semiconductors, insulators, ceramics, carbon, polymers, combinations thereof, and the like, and a shell containing bismuth telluride. After the core-shell nanoparticles have been provided, the nanoparticles are subjected to a sintering process. The result of the sintering provides a bismuth telluride thermoelectric component having a combined electrical conductivity and Seebeck coefficient squared of greater than 30,000 ?V2S/mK2 at 150° C.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: May 7, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Michael Paul Rowe
  • Publication number: 20130101455
    Abstract: A method of forming a sintered nickel-titanium-rare earth (Ni—Ti-RE) alloy includes adding one or more powders comprising Ni, Ti, and a rare earth constituent to a powder consolidation unit comprising an electrically conductive die and punch connectable to a power supply. The one or more powders are heated at a ramp rate of about 35° C./min or less to a sintering temperature, and pressure is applied to the powders at the sintering temperature, thereby forming a sintered Ni—Ti-RE alloy.
    Type: Application
    Filed: October 19, 2012
    Publication date: April 25, 2013
    Applicant: University of Limerick
    Inventor: University of Limerick
  • Patent number: 8409497
    Abstract: A method and apparatus for producing high strength aluminum alloys from a powder containing Ll2 intermetallic dispersoids. The powder is degassed, sealed under vacuum in a container, consolidated by vacuum hot pressing, extruded into a rolling preform and rolled into a usable part.
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: April 2, 2013
    Assignee: United Technologies Corporation
    Inventor: Awadh B. Pandey
  • Patent number: 8409498
    Abstract: A sputter target material which is of a sintered material, wherein the sputter target material consists of 0.5 to 50 atomic % in total of at least one metal element (M) selected from the group of Ti, Zr, V, Nb and Cr, and the balance of Mo and unavoidable impurities, and has a microstructure seen at a perpendicular cross section to a sputtering surface, in which microstructure oxide particles exist near a boundary of each island of the metal element (M), and wherein the maximum area of the island, which is defined by connecting the oxide particles with linear lines so as to form a closed zone, is not more than 1.0 mm2.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: April 2, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Keisuke Inoue, Tsuyoshi Fukui, Shigeru Taniguchi, Norio Uemura, Katsunori Iwasaki, Kazuya Saitoh
  • Patent number: 8390122
    Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate. In one particular embodiment, the method can include sputtering a transparent conductive oxide layer (e.g., including cadmium stannate) on a substrate from a target in a sputtering atmosphere comprising cadmium. The transparent conductive oxide layer can be sputtered at a sputtering temperature greater of about 100° C. to about 600° C. Methods are also generally provided for manufacturing a cadmium telluride based thin film photovoltaic device.
    Type: Grant
    Filed: September 19, 2011
    Date of Patent: March 5, 2013
    Assignee: Primestar Solar, Inc.
    Inventor: Scott Daniel Feldman-Peabody
  • Patent number: 8372334
    Abstract: Diamond-bonded constructions include a diamond-bonded body having a thermally stable region extending a distance below a diamond-bonded body surface. The thermally stable region comprises a matrix phase of bonded-together diamond crystals, and interstitial regions comprising a reaction product. The reaction product is formed by reaction between the diamond crystals and a reactive material. The reactant is a carbide former and the reaction product is a carbide. The diamond-bonded body includes a further diamond region extending from the thermally stable region that comprises the matrix phase and a Group VIII metal disposed within interstitial regions of the matrix phase. The thermally stable region is substantially free of a catalyst material used to initially form the diamond-bonded body. The diamond-bonded body may include a material layer formed from the reaction product that is disposed on a surface of the diamond-bonded body thermally stable region.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: February 12, 2013
    Assignee: Smith International, Inc.
    Inventors: Georgiy Voronin, J. Daniel Belnap
  • Patent number: 8366994
    Abstract: A method for manufacturing a cobalt (Co) alloy-based ceramic composite sputtering target is provided. A cobalt ingot and a chromium (Cr) ingot are melted in vacuum and then nebulized to form a cobalt-chromium (CoCr) alloy powder. Additionally, a ceramic powder and a platinum powder are wetly mixed to form a platinum-ceramic (Pt-ceramic) slurry, in which the ceramic powder is applied onto the platinum powder's surface uniformly. Next, the CoCr alloy powder and the Pt-ceramic slurry are wetly mixed to form a CoCrPt-ceramic slurry. Thereafter, the CoCrPt-ceramic slurry is dried, molded and compressed to form the cobalt alloy-based ceramic composite sputtering target. The resulted cobalt alloy-based ceramic composite sputtering target, which has a fine and dense structure, uniform composition and lower magnetic permeability, is beneficial to a magnetron sputter deposition process, as well as a film sputtering process used in the magnetic recording industry.
    Type: Grant
    Filed: November 4, 2010
    Date of Patent: February 5, 2013
    Assignee: China Steel Corporation
    Inventors: Rong-Zhi Chen, Chun-Hao Chiu, Jui-Tung Chang, Deng-Far Hsu, Chih-Huang Lai
  • Publication number: 20130028781
    Abstract: A method of making a selectively corrodible article is disclosed. The method includes forming a powder comprising a plurality of metallic powder particles, each metallic powder particle comprising a nanoscale metallic coating layer disposed on a particle core. The method also includes forming a powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles. In one embodiment, forming the powder compact includes compacting the powder particles into a billet, and forming the billet to provide the powder compact of the powder particles, wherein the powder particles are substantially elongated in a predetermined direction to form substantially elongated powder particles.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventor: Zhiyue Xu
  • Patent number: 8329093
    Abstract: A method for preparing metal-matrix composites including cold-process isostatic compaction of previously mixed powders and hot-process uniaxial pressing of the resulting compact is disclosed. The method enables metal-matrix composites with improved properties to be obtained. A device for implementing isostatic compaction comprising a latex sheath into which the mixture of powders is poured, a perforated cylindrical container in which the latex sheath is arranged, and means for sealed insulation of the mixture of powders contained in the sheath is also disclosed.
    Type: Grant
    Filed: March 14, 2006
    Date of Patent: December 11, 2012
    Assignee: Forges de Bologne
    Inventor: Jacques Tschofen
  • Patent number: 8293168
    Abstract: The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5kBT, wherein kB is the Boltzman constant and T is an average temperature of said nanocomposite composition.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: October 23, 2012
    Assignees: Massachusetts Institute of Technology, The Trustees of Boston College
    Inventors: Gang Chen, Mildred Dresselhaus, Zhifeng Ren