Heat And Pressure Simultaneously To Effect Sintering Patents (Class 419/48)
-
Patent number: 12138690Abstract: A sintered material includes a composition composed of iron-based alloy, and a texture containing 200 or more and 1350 or less of compound particles having a size of 0.3 ?m or more per unit area of 100 ?m×100 ?m in a cross section, and a relative density is 93% or more.Type: GrantFiled: January 30, 2019Date of Patent: November 12, 2024Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC SINTERED ALLOY, LTD.Inventors: Shigeki Egashira, Takayuki Tashiro, Tomoyuki Ishimine, Kosuke Tominaga
-
Patent number: 12123177Abstract: A composite tooth is described for working the ground or rocks. The tooth includes a ferrous alloy having a portion reinforced at least partially by an insert. The portion reinforced by the insert is configured to allow, after in-situ reaction, the obtention of an alternating macro-microstructure of millimetric areas concentrated with micrometric globular particles of titanium carbides separated by millimetric areas substantially free of micrometric globular particles of titanium carbides. The millimetric areas concentrated with micrometric globular particles of titanium carbides form a microstructure in which the micrometric interstices between the globular particles are also filled by the ferrous alloy. The macro-microstructure generated by the insert is at least 2 mm, preferably at least 3 mm from a distal surface of the tooth.Type: GrantFiled: April 30, 2019Date of Patent: October 22, 2024Assignee: Magotteaux International S.A.Inventor: Guy Berton
-
Patent number: 12068118Abstract: A method for producing an electrical switch contact arrangement for a vacuum circuit breaker includes the following steps: a) providing two electrical contact pieces made of copper or a copper alloy; b) coating the electrical contact pieces with aluminum or an aluminum alloy, the coating of the contact pieces taking place by means of a cold gas spraying method; c) welding each of the sides coated in method step b) to a current transfer contact; and d) arranging the units obtained in method step b) inside the vacuum circuit breaker. There is also described an electrical switch contact arrangement for a vacuum circuit breaker with the contact pieces produced by the method according to the invention.Type: GrantFiled: November 17, 2020Date of Patent: August 20, 2024Assignee: Siemens Energy Global GmbH & Co. KGInventor: Thomas Chyla
-
Patent number: 12006558Abstract: A nickel-based alloy powder for additive manufacturing having in weight %: C:0.09 to 0.17, Ti:3.8 to 4.5, Zr:>0.06, W:1.8 to 2.6, and Al:3.0 to 3.8 is disclosed.Type: GrantFiled: August 2, 2019Date of Patent: June 11, 2024Assignee: LPW TECHNOLOGY LTDInventor: Neil Harrison
-
Patent number: 11992880Abstract: It has been unexpected found that the sound dampening characteristics of powder metal parts can be dramatically improved by incorporating coarse graphite into the part. This is beneficial in applications where parts to generate noise during operation, such as in gears, rotors and sprockets. Surprisingly, the incorporation of the coarse graphite into such parts does not significantly compromise the strength, durability, wear characteristics, or service life of the part. Such parts can also be manufactured to a high level of tolerance and with good uniformity. Such parts are comprised of a sintered powder metal composition which includes 0.1 weight percent to 5 weight percent of a coarse graphite having a particle size wherein at least at least 30 percent of the coarse graphite will not pass through a 325 mesh screen.Type: GrantFiled: July 21, 2020Date of Patent: May 28, 2024Assignee: Keystone Powdered Metal CompanyInventor: Peter G. Imbrogno
-
Patent number: 11971605Abstract: A mirror support for an optical mirror and a method for producing an optical mirror are disclosed. In an embodiment a mirror support includes a mirror body comprising a diamond particle reinforced aluminum composite material and a polishing layer arranged on the mirror body, wherein a content of diamond particles in the aluminum composite material is between 5% by mass and 50% by mass inclusive and is selected such that a thermal coefficient of linear expansion of the mirror body is adapted to a thermal coefficient of linear expansion of the polishing layer.Type: GrantFiled: May 8, 2019Date of Patent: April 30, 2024Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.Inventors: Jan Kinast, Stefan Risse
-
Patent number: 11938541Abstract: A method for manufacturing a wrought metallic article from metallic-powder compositions comprises steps of (1) compacting the metallic-powder composition to yield a compact, having a surface, a cross-sectional area, and a relative density of less than 100 percent, (2) reducing the cross-sectional area of the compact via an initial forming pass of a rotary incremental forming process so that the compact has a decreased cross-sectional area, and (3) reducing the decreased cross-sectional area of the compact via a subsequent forming pass of the rotary incremental forming process by a greater percentage than that, by which the cross-sectional area of the compact was reduced during the initial forming pass.Type: GrantFiled: June 9, 2021Date of Patent: March 26, 2024Assignee: The Boeing CompanyInventors: Austin E. Mann, Ali Yousefiani, Joe Pecina
-
Patent number: 11919087Abstract: A multi-metallic pressure-controlling component and a hot isostatic pressure (HIP) manufacturing process and system are disclosed. An example multi-metallic ram includes a first portion formed from a first metal alloy, a second portion formed from a second metal alloy, and a diffusion bond at an interface between the first metal alloy and the second metal alloy that joins the first metal alloy to the second metal alloy within the multi-metallic ram.Type: GrantFiled: May 24, 2021Date of Patent: March 5, 2024Assignee: SCHLUMBERGER TECHNOLOGY CORPORATIONInventors: Micah Threadgill, Terry Clancy, Herman Ernesto Amaya, Christopher Nault
-
Patent number: 11904438Abstract: A tool bit with a surface layer metallurgically bonded on a substrate layer using electrospark deposition (ESD) that allows the tool bit to reduce camout and engage a fastener head for one-handed starting and removal. The surface layer has a rougher finish, compared to conventional tool bits, and therefore better grips engagement surfaces of a mating recess of the fastener during use. The reduction of camout provides greater durability to the tool bit and resists erosion and wear of the engagement surfaces of the fastener.Type: GrantFiled: October 27, 2022Date of Patent: February 20, 2024Assignee: Snap-on IncorporatedInventor: Ottoleo Kuter-Arnebeck
-
Patent number: 11885990Abstract: An apparatus which includes an ultraviolet laser and at least one reflective mirror having a substrate which is made from beryllium, an aluminum metal matrix, or silicon carbide. The at least one mirror is adapted to reflect a laser beam generated from the ultraviolet laser, which can then be used on a silicon film used in the production of an electronic display. The laser beam can be used to anneal the silicon film, or in a laser lift-off process for separating the silicon film from a temporary substrate upon which the silicon film was mounted.Type: GrantFiled: August 23, 2019Date of Patent: January 30, 2024Assignee: Materion CorporationInventors: Ki-Sung Song, Hunho Lee, Edgar E. Vidal, Kyung H. Chung, Jason R. Clune
-
Patent number: 11821524Abstract: The present disclosure is a combination of a cylinder and a piston ring, the combination including a cylinder of an internal combustion engine and a piston ring sliding on an inner peripheral surface of the cylinder. The piston ring has an outer peripheral surface sliding on the inner peripheral surface of the cylinder, and the outer peripheral surface is formed of a substantially hydrogen-free amorphous carbon coating. The Vickers hardness Hd of the amorphous carbon coating and the Vickers hardness Hb of the inner peripheral surface of the cylinder satisfy Hd+Hb?2500 HV. The ratio ID/IG of the peak intensity of the D band to the peak intensity of the G band in a Raman spectrum obtained by measuring the amorphous carbon coating by Raman spectroscopy is 0.60 or more and 1.33 or less.Type: GrantFiled: November 19, 2020Date of Patent: November 21, 2023Assignee: KABUSHIKI KAISHA RIKENInventor: Akio Shinohara
-
Patent number: 11745262Abstract: The invention relates to a method for producing a metal foam of at least one first metal that contains the main constituent Mg, Al, Pb, Au, Zn, Ti or Fe in a quantity of at least approximately 80 wt. % in relation to the quantity of the at least one first metal, said method comprising the following steps: (I) providing a semi-finished product comprising a foamable mixture that comprises the at least one first metal and at least one foaming agent, (II) submerging the semi-finished product in a heatable bath comprising a liquid, and (III) heating the semi-finished product in the bath in order to foam the foamable mixture by removing gas from the at least one foaming agent for forming the metal foam. The invention also relates to a metal foam, to a composite material that can be obtained by the method, and to a component comprising the metal foam and/or the composite material.Type: GrantFiled: September 14, 2018Date of Patent: September 5, 2023Assignee: POHLTEC METALFOAM GMBHInventors: Wolfgang Seeliger, Stefan Sattler
-
Patent number: 11725262Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.Type: GrantFiled: August 12, 2022Date of Patent: August 15, 2023Assignee: The United States of America as represented by the Secretary of the ArmyInventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
-
Patent number: 11702369Abstract: A method of making a ceramic composite component includes providing a fibrous preform or a plurality of fibers, providing a first plurality of particles, coating the first plurality of particles with a coating to produce a first plurality of coated particles, delivering the first plurality of coated particles to the fibrous preform or to an outer surface of the plurality of fibers, and converting the first plurality of coated particles into refractory compounds. The first plurality of particles or the coating comprises a refractory metal.Type: GrantFiled: November 2, 2020Date of Patent: July 18, 2023Assignee: Raytheon Technologies CorporationInventors: Wayde R. Schmidt, Paul Sheedy
-
Patent number: 11685971Abstract: A degradable, high-strength zinc composition suitable for use in producing degradable tools and components for in use in oil and gas and related application fields.Type: GrantFiled: April 23, 2019Date of Patent: June 27, 2023Assignee: TERVES, LLCInventors: Andrew Sherman, Josh Caris, Nicholas Farkas, Gabriel Santillan
-
Patent number: 11638987Abstract: A tool bit for driving a fastener includes a shank having a tool coupling portion configured to be coupled to a tool. The tool coupling portion has a hexagonal cross-sectional shape. The shank also has a head portion configured to engage the fastener. The head portion is composed of powdered metal (PM) steel having carbide particles distributed uniformly throughout the head portion.Type: GrantFiled: December 3, 2018Date of Patent: May 2, 2023Assignee: MILWAUKEE ELECTRIC TOOL CORPORATIONInventors: James J. Van Essen, Michael J. Zimmermann, Smith C. Theiler, Zachary J. Geschke, Carl Dietz
-
Patent number: 11614136Abstract: A method of manufacturing a plurality of wear liner segments may comprise selecting a number of wear liner segments for a wear liner assembly. The wear liner assembly may be annular in shape. The number of wear liner segments may selected based on minimizing a waste portion of a textile board and/or maximizing a production capacity of a plurality of the wear liner assembly.Type: GrantFiled: January 14, 2020Date of Patent: March 28, 2023Assignee: GOODRICH CORPORATIONInventors: Scott Whittle, Nathaniel John Herrmann
-
Patent number: 11491718Abstract: Methods, systems, and apparatus, for hybrid additive manufacturing of parts. In one aspect, a method includes providing a workpiece and manufacturing multiple additive layers on a surface of the workpiece. Manufacturing each of the multiple additive layers includes forming one or more formed layers on a surface of the workpiece by depositing a quantity of powder material on a growth surface, the growth surface inclusive of at least one of a first surface of the workpiece and a second surface of a previously formed layer, and applying a first amount of energy to the quantity of powder material to fuse the particles of the powder material into a formed layer fused to the growth surface, where the formed layer includes a formed surface, and further applying a secondary process to a particular area of the formed surface of the one or more formed layers on the workpiece.Type: GrantFiled: December 18, 2020Date of Patent: November 8, 2022Assignee: NUtech VenturesInventors: Michael Patrick Sealy, Haitham Hadidi, Guru Charan Reddy Madireddy, Cody Kanger
-
Patent number: 11434549Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.Type: GrantFiled: November 9, 2017Date of Patent: September 6, 2022Assignee: The United States of America as represented by the Secretary of the ArmyInventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
-
Patent number: 11383873Abstract: In a method and apparatus for producing a small pouch with a predetermined amount of particulate material therein, a predetermined amount of the particulate material is portioned from a bulk supply and compacted into a single discrete caplet. The caplet is then deposited into an open hollow pouch closed at one end thereof, and the open end is then closed with the caplet between the closed ends of the pouch. The caplet in the pouch is then compressed to return it to its particulate form. The particulate material may be granular or shredded tobacco.Type: GrantFiled: September 28, 2020Date of Patent: July 12, 2022Assignee: Philip Morris USA Inc.Inventors: Martin T. Garthaffner, Barry S. Smith
-
Patent number: 11370908Abstract: Provided is a curable composition containing a reactive mixture of components including an polyethersulfone having a chemical group reactive with an epoxide, a cycloaliphatic polyepoxide resin, a polyepoxide having a functionality greater than two, a liquid diepoxide resin, a first curative containing 9,9-bis(aminophenyl)fluorene or a derivative therefrom and having a curing onset temperature of from 150° C. to 200° C. The components can further comprise a second curative having a curing onset temperature of from 60° C. to 180° C. When thermally curing this composition, the second epoxy curative starts to cure before the first epoxy curative, thereby inhibiting vertical flow of the adhesive during the curing process.Type: GrantFiled: June 25, 2019Date of Patent: June 28, 2022Assignee: 3M Innovative Properties CompanyInventors: Lianzhou Chen, Dmitriy Salnikov
-
Patent number: 11103926Abstract: An inventive method is provided for synthesizing an intermetallic compound. According to exemplary inventive practice, two metallic elements are weighed out in quantities corresponding to their molecular weights in an intermetallic compound of interest. The two metallic elements are mixed together to produce a metallic mixture in powder form. According to many inventive embodiments, a ball-mill device is implemented to thoroughly or intimately mix the two metallic elements into a fine powder. The powdered metallic mixture is exothermically reacted to produce an at least substantially pure intermetallic compound in powder form. According to many inventive embodiments, the exothermic reaction is brought about in a vacuous or inert-gaseous (e.g., helium) environment through electrification of a tungsten wire filament that is completely embedded in the powdered metallic mixture.Type: GrantFiled: March 7, 2018Date of Patent: August 31, 2021Assignee: The United States of America, as represented by the Secretary of the NavyInventors: William A. Ferrando, Mark M. Opeka, James A. Zaykoski
-
Patent number: 10926334Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.Type: GrantFiled: January 27, 2020Date of Patent: February 23, 2021Assignee: Tenneco Inc.Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
-
Patent number: 10569362Abstract: A method of making a component includes depositing a metallic powder on a workplane; directing a beam from a directed energy source to fuse the powder in a pattern corresponding to a cross-sectional layer of the component; repeating in a cycle the steps of depositing and fusing to build up the component in a layer-by layer fashion; and during the cycle of depositing and melting, using an external heat control apparatus separate from the directed energy source to maintain a predetermined temperature profile of the component, such that the resulting component has a directionally-solidified or single-crystal microstructure.Type: GrantFiled: November 12, 2014Date of Patent: February 25, 2020Assignee: General Electric CompanyInventors: Todd Jay Rockstroh, Michael Francis Xavier Gigliotti, William Thomas Carter, David Henry Abbott, Rajendra Machukar Kelkar
-
Patent number: 10202820Abstract: A lightweight, selectively degradable composite material includes a compacted powder mixture of a first powder and a second powder. The first powder comprises first metal particles comprising Mg, Al, Mn, or Zn, having a first particle oxidation potential. The second powder comprises low-density ceramic, glass, cermet, intermetallic, metal, polymer, or inorganic compound second particles. At least one of the first particles and the second particles includes a metal coating layer of a coating material disposed on an outer surface having a coating oxidation potential that is different than the first particle oxidation potential. The compacted powder mixture has a microstructure comprising: a matrix comprising the first metal particles; the second particles dispersed within the matrix; and a network comprising interconnected adjoining metal coating layers that extends throughout the matrix, the lightweight, selectively degradable composite material having a density of about 3.5 g/cm3 or less.Type: GrantFiled: December 17, 2014Date of Patent: February 12, 2019Assignee: BAKER HUGHES, A GE COMPANY, LLCInventors: Zhiyue Xu, Bobby J. Salinas, Zhihui Zhang
-
Patent number: 10183331Abstract: A method manufactures a metal alloy part by spark plasma sintering. The method includes the simultaneous application, inside a die, of a uniaxial pressure and of an electric current to a powder component material that has the following composition: 42 to 49% aluminum, 0.05 to 1.5% boron, at least 0.2% of at least one element selected from tungsten, rhenium and zirconium, optionally 0 to 5% of one or more elements selected from chromium, niobium, molybdenum, silicon and carbon, the balance being titanium and the total of the elements without aluminum and titanium being between 0.25 and 12%.Type: GrantFiled: June 11, 2014Date of Patent: January 22, 2019Assignees: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE—CNRS—, ONERA (OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AÉROSPATIALES)Inventors: Alain Couret, Jean-Philippe Monchoux, Marc Thomas, Thomas Voisin
-
Patent number: 10173930Abstract: In one aspect, sintered ceramic bodies are described herein which, in some embodiments, demonstrate improved resistance to wear and enhanced cutting lifetimes. For example, a sintered ceramic body comprises tungsten carbide (WC) in an amount of 40-95 weight percent, alumina in an amount of 5-30 weight percent and ditungsten carbide (W2C) in an amount of at least 1 weight percent.Type: GrantFiled: July 5, 2017Date of Patent: January 8, 2019Assignee: KENNAMETAL INC.Inventors: Jason Goldsmith, Sheng Chao
-
Patent number: 10138913Abstract: A cartridge assembly having a chamber for containing hydraulic fluid, an intensifier element capable of reciprocating in the chamber and displacing the hydraulic fluid responsive to a drive system acting on the intensifier element, and a piston capable of reciprocating in the chamber and being displaceable responsive to a change in the pressure of the hydraulic fluid. The cartridge assembly is configured so that when the pressure in the fluid increases responsive to a first force being applied by the drive system on the intensifier, the hydraulic fluid will exert a second force on the piston, the second force being greater than the first force; the mass of the hydraulic fluid being substantially conserved within the cartridge assembly.Type: GrantFiled: March 22, 2013Date of Patent: November 27, 2018Assignee: Element Six LimitedInventors: Maximilian Voggenreiter, Thomas Heinrich Voggenreiter, Michael Martin Petri
-
Patent number: 9903212Abstract: A method of manufacturing an assembly (10), including: positioning a first component (12) and a second component (14) in a desired positional relationship with each other; and building-up a locking component (16) by depositing layer after layer of material onto a surface (24, 26) of the assembly until a completed locking component is formed in-situ that holds the first component and the second component in the desired positional relationship.Type: GrantFiled: July 30, 2013Date of Patent: February 27, 2018Assignee: SIEMENS AKTIENGESELLSCHAFTInventor: Allister William James
-
Patent number: 9707607Abstract: Disclosed is an impact extrusion can making system that uses induction heating to preheat an extruder punch and an extruder forming die, to increase yield during a cold start. In addition, a highly precise laser measuring device is used to measure dome thickness, so that stroke length and/or position of an extruder and/or extrusion die can be automatically adjusted in a predictive control system. High quality products with high yield are produced using these techniques.Type: GrantFiled: October 24, 2014Date of Patent: July 18, 2017Assignee: Integrated Packaging Solutions, LLCInventors: Michael W. Calahan, Kevin M. Gillest
-
Patent number: 9709058Abstract: A compressor includes a closed container, a compression element disposed in the closed container, and a motor disposed in the closed container to drive the compression element via a shaft. The compression element includes a first and second bearings supporting the shaft. At least one cylinder having at least one cylinder chamber is disposed between the first and second bearings, with at least one roller fitted to the shaft disposed in the at least one cylinder chamber. The first bearing is disposed closer to the motor than the second bearing. The first and second bearings have first and second annular grooves formed in first and second opposing surfaces opposed to end faces of the at least one roller. The first and second annular grooves are opened to the at least one cylinder chamber. A width of the second annular groove is larger than a width of the first annular groove.Type: GrantFiled: August 29, 2012Date of Patent: July 18, 2017Assignee: Daikin Industries, Ltd.Inventors: Takehiro Kanayama, Naoto Tomioka, Yuuichirou Watanabe
-
Patent number: 9701587Abstract: Provided is a method for producing an inorganic fiber-bonded ceramic material, which can produce, at a high yield, an inorganic fiber-bonded ceramic material with fewer defects, and with an end part and a central part equivalent to each other in microstructure and mechanical properties, and also makes it possible to increase the ceramic material in size. The method for producing an inorganic fiber-bonded ceramic material is characterized in that it includes: a first pressing step of setting, in a carbon die, a laminate to be surrounded by a ceramic powder, the laminate obtained by stacking a coated inorganic fiber shaped product including an inorganic fiber part of inorganic fibers that have a pyrolysis initiation temperature of 1900° C. or lower, and a surface layer of an inorganic substance for bonding the inorganic fibers to each other, and pressing the laminate at a temperature of 1000 to 1800° C.Type: GrantFiled: March 21, 2013Date of Patent: July 11, 2017Assignee: Ube Industries, Ltd.Inventors: Kenji Matsunaga, Shinji Kajii, Shohei Suizu, Tsutomu Kodama
-
Patent number: 9199308Abstract: One embodiment of the invention may include a method of producing a composite article comprising a container, filling the container with a powdered metal, and compacting the powdered metal in the container such that an interfacial bond is created between the compacted powdered metal and the container.Type: GrantFiled: September 20, 2011Date of Patent: December 1, 2015Assignee: GM Global Technology Operations LLCInventors: Chongmin Kim, Anil K. Sachdev
-
Patent number: 9079246Abstract: A method of making a powder metal compact is disclosed. The method includes forming a coated metallic powder comprising a plurality of coated metallic powder particles having particle cores with nanoscale metallic coating layers disposed thereon, wherein the metallic coating layers have a chemical composition and the particle cores have a chemical composition that is different than the chemical composition of the metallic coating layers. The method also includes applying a predetermined temperature and a predetermined pressure to the coated powder particles sufficient to form a powder metal compact by solid-phase sintering of the nanoscale metallic coating layers of the plurality of coated powder particles to form a substantially-continuous, cellular nanomatrix of a nanomatrix material, a plurality of dispersed particles dispersed within the cellular nanomatrix and a solid-state bond layer extending throughout the cellular nanomatrix.Type: GrantFiled: December 8, 2009Date of Patent: July 14, 2015Assignee: Baker Hughes IncorporatedInventors: Zhiyue Xu, Gaurav Agrawal, Bobby Salinas
-
Patent number: 9011763Abstract: The present invention is generally directed to nanocomposite thermoelectric materials that exhibit enhanced thermoelectric properties. The nanocomposite materials include two or more components, with at least one of the components forming nano-sized structures within the composite material. The components are chosen such that thermal conductivity of the composite is decreased without substantially diminishing the composite's electrical conductivity. Suitable component materials exhibit similar electronic band structures. For example, a band-edge gap between at least one of a conduction band or a valence band of one component material and a corresponding band of the other component material at interfaces between the components can be less than about 5kBT, wherein kB is the Boltzman constant and T is an average temperature of said nanocomposite composition.Type: GrantFiled: September 20, 2012Date of Patent: April 21, 2015Assignees: Massachusetts Institute of Technology, Trustees of Boston CollegeInventors: Gang Chen, Mildred Dresselhaus, Zhifeng Ren
-
Patent number: 8961647Abstract: The invention is a process for manufacturing a nano aluminum/alumina metal matrix composite and composition produced therefrom. The process is characterized by providing an aluminum powder having a natural oxide formation layer and an aluminum oxide content between about 0.1 and about 4.5 wt. % and a specific surface area of from about 0.3 and about 5 m2/g, hot working the aluminum powder, and forming a superfine grained matrix aluminum alloy. Simultaneously there is formed in situ a substantially uniform distribution of nano particles of alumina. The alloy has a substantially linear property/temperature profile, such that physical properties such as strength are substantially maintained even at temperatures of 250° C. and above.Type: GrantFiled: December 4, 2012Date of Patent: February 24, 2015Inventors: Thomas G. Haynes, III, Martin Walcher, Martin Balog
-
Patent number: 8961719Abstract: A method for making a treated super-hard structure, the method including providing a super-hard structure comprising super-hard material selected from polycrystalline cubic boron nitride (PCBN) material or thermally stable polycrystalline diamond (PCD) material; subjecting the super-hard structure to heat treatment at a treatment temperature of greater than 700 degrees centigrade at a treatment pressure at which the super-hard material is not thermodynamically stable, for a treatment period of at least about 5 minutes to produce the treated super-hard structure.Type: GrantFiled: May 25, 2012Date of Patent: February 24, 2015Assignee: Element Six LimitedInventors: Stig Åke Andersin, Bernd Heinrich Ries, Frank Friedrich Lachmann, Lars-Ivar Nilsson
-
Patent number: 8951465Abstract: A method for preparing an implant having a porous metal component. A loose powder mixture including a biocompatible metal powder and a spacing agent is prepared and compressed onto a metal base. After being compressed, the spacing agent is removed, thereby forming a compact including a porous metal structure pressed on the metal base. The compact is sintered, forming a subassembly, which is aligned with a metal substrate portion of an implant. A metallurgical bonding process, such as diffusion bonding, is performed at the interface of the subassembly and the metal substrate to form an implant having a porous metal component.Type: GrantFiled: February 25, 2013Date of Patent: February 10, 2015Assignee: Biomet Manufacturing, LLCInventor: Gautam Gupta
-
Publication number: 20150034483Abstract: Provided is a Fe—Co-based alloy sputtering target material having a composition represented as an atomic ratio by the compositional formula: (Fea—Co100-a)100-b-c-d—Tab—Nbc-Md, wherein 0<a?80, 0?b?10, 0?c?15, 5?b+c?15, 2?d?20, 15?b+c+d?25, and M represents one or more elements selected from the group consisting of Mo, Cr and W, with the balance consisting of unavoidable impurities, wherein the sputtering target material has a bending fracture strain ?fB at 300° C. of 0.4% or more.Type: ApplicationFiled: May 30, 2013Publication date: February 5, 2015Inventors: Jun Fukuoka, Kazuya Saito, Kouichi Sakamaki, Tomoyuki Hata
-
Publication number: 20140377120Abstract: A method of manufacturing a thermoelectric material comprising: ball-milling a compound comprising a plurality of components, the first component M comprising at least one of a rare earth metal, an actinide, an alkaline-earth metal, and an alkali metal, the second component T comprising a metal of subgroup VIII, and the third component X comprises a pnictogen atom. The compound may be ball-milled for up to 5 hours, and then thermo-mechanically processed by, for example, hot pressing the compound for less than two hours. Subsequent to the thermo-mechanical processing, the compound comprises a single filled skutterudite phase with a dimensionless figure of merit (ZT) above 1.0 and the compound has a composition following a formula of MT4X12.Type: ApplicationFiled: June 19, 2014Publication date: December 25, 2014Inventors: Qing Jie, Zhifeng Ren
-
Publication number: 20140356218Abstract: A method for producing a high speed steel that with reference to its chemical composition consists of the following elements: 1-3 wt-% carbon (C), 3-6 wt-% chromium (Cr), 0-7 wt-% molybdenum (Mo), 0-15 wt-% tungsten (W), 3-14 wt-% vanadium (V), 0-10 wt-% cobalt (Co), 0-3 wt-% niobium (Nb), 0-0.5 wt-% nitrogen (N), 0.2-1 wt-% yttrium (Y), and remainder iron (Fe) and unavoidable impurities, and wherein Mo+0.5W=2-10 weight %, characterized in that the method comprises the steps of: providing a powder comprising the elements of the high speed steel, forming a body of the powder, and subjecting the body to elevated heat and pressure such that a consolidation of the powder thereof is achieved.Type: ApplicationFiled: September 19, 2012Publication date: December 4, 2014Applicant: SANDVIK INTELLECTUAL PROPERTY ABInventor: Tomas Berglund
-
Publication number: 20140346038Abstract: Provided are a crystalline alloy having significantly better thermal stability than an amorphous alloy as well as glass-forming ability, and a method of manufacturing the crystalline alloy. The present invention also provides an alloy sputtering target that is manufactured by using the crystalline alloy, and a method of manufacturing the alloy target. According to an aspect of the present invention, provided is a crystalline alloy having glass-forming ability which is formed of three or more elements having glass-forming ability, wherein the average grain size of the alloy is in a range of 0.1 ?m to 5 ?m and the alloy includes 5 at % to 20 at % of aluminum (Al), 15 at % to 40 at % of any one or more selected from copper (Cu) and nickel (Ni), and the remainder being zirconium (Zr).Type: ApplicationFiled: December 4, 2012Publication date: November 27, 2014Inventors: Seung-Yong Shin, Kyoung-Il Moon, Ju-Hyun Sun, Chang-Hun Lee
-
Publication number: 20140334964Abstract: Titanium alloy containing iron, that is, iron-containing titanium alloy having high strength and hardness in which iron in a composition which cannot be realized in a conventional method, is contained with no segregation, and is provided in lower cost. The ?+? titanium alloy or ? titanium alloy is produced by a forming process such as hot extrusion of titanium alloy powder containing 3 to 15 mass % of iron powder. The method for production of the ?+? titanium alloy or ? titanium alloy includes a step of mixing 3 to 15 mass % of iron powder and titanium alloy powder as the remainder, and a step of performing a forming process of hot extrusion on this powder mixture.Type: ApplicationFiled: December 16, 2011Publication date: November 13, 2014Inventors: Osamu Kanou, Satoshi Sugawara, Hideo Takatori
-
Patent number: 8883047Abstract: Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.Type: GrantFiled: April 30, 2009Date of Patent: November 11, 2014Assignees: Massachusetts Institute of Technology, Trustees of Boston CollegeInventors: Zhifeng Ren, Jian Yang, Xiao Yan, Qinyu He, Gang Chen, Qing Hao
-
Patent number: 8845956Abstract: The disclosure relates to a method for production of a component, such as a contact piece, for a switchgear assembly. To introduce a slot and apply a contact outer contour directly during the powder-metallurgical production process of the contact material, contouring in the form of a slot or slots is introduced into the powder-metal material, which is located in a mold, essentially in a direction parallel to a normal to a surface of the component, to form the component with a slot.Type: GrantFiled: November 30, 2009Date of Patent: September 30, 2014Assignee: ABB Technology AGInventors: Dietmar Gentsch, Guenter Pilsinger
-
Patent number: 8834785Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.Type: GrantFiled: July 11, 2011Date of Patent: September 16, 2014Assignee: Climax Engineered Materials, LLCInventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
-
Patent number: 8795585Abstract: There is provided cryogenic milled nanophase copper alloys and methods of making the alloys. The alloys are fine grained having grains in the size range from about 2 to about 100 nanometers, and greater. The nanophase alloys possess desirable physical properties stemming from the fine grain size, such as potentially high strength. Some embodiments of the cryogenic milled copper alloys may also be tailored for ductility, toughness, fracture resistance, corrosion resistance, fatigue resistance and other physical properties by balancing the alloy composition. In addition, embodiments of the alloys generally do not require extensive or expensive post-cryogenic milling processing.Type: GrantFiled: December 21, 2006Date of Patent: August 5, 2014Assignee: The Boeing CompanyInventors: Barun Majumdar, James D. Cotton, Clifford C. Bampton
-
Patent number: 8795489Abstract: [Problems] To provide a sputtering target that is capable of forming a Cu—Ga film to which Na is favorably added by a sputtering method, and a method for producing the same. [Means for Solving the Problems] The sputtering target is provided wherein 20 to 40 at % of Ga and 0.05 to 1 at % of Na are contained as metal components except fluorine (F) of the sputtering target, a remaining portion has a component composition consisting of Cu and unavoidable impurities, and Na is contained in the state of a NaF compound. Also, a method for producing the sputtering target includes the steps of forming a molded article consisting of a mixed powder of NaF powder and Cu—Ga powder or a mixed powder of NaF powder, Cu—Ga powder, and Cu powder; and sintering the molded article in a vacuum atmosphere, an inert gas atmosphere, or a reducing atmosphere.Type: GrantFiled: November 4, 2010Date of Patent: August 5, 2014Assignee: Mitsubishi Materials CorporationInventors: Shoubin Zhang, Yoshinori Shirai
-
Patent number: 8790438Abstract: A colored metal composite including a metal matrix; and colored particles distributed throughout the metal matrix AND/OR a method including providing metal powder as a first phase of a composite; providing colored particles to form a second phase of the composite; mixing the metal powder and colored particles; and sintering the metal powder around the colored particles to form a metal matrix that has colored particles distributed throughout.Type: GrantFiled: December 29, 2009Date of Patent: July 29, 2014Assignee: Nokia CorporationInventors: Caroline Elizabeth Millar, Stuart Paul Godfrey
-
Patent number: 8784728Abstract: There is provided cryogenic milled copper alloys and methods of making the alloys. The alloys are fine grained and possess desirable physical properties stemming from the fine grain size. Embodiments include desirable physical properties, such as potentially high strength. Some embodiments of the cryogenic milled copper alloys may also be tailored for ductility, toughness, fracture resistance, corrosion resistance, fatigue resistance and other physical properties by balancing the alloy composition. In addition, embodiments of the alloys generally do not require extensive or expensive post-cryogenic milling processing.Type: GrantFiled: December 5, 2006Date of Patent: July 22, 2014Assignee: The Boeing CompanyInventors: Clifford C. Bampton, James D. Cotton, Barun Majumdar