Tungsten Base Patents (Class 420/430)
-
Patent number: 11919793Abstract: An amorphous alloy contains Ni and Nb and has a composition including at least one of: a composition containing Nb with a content in the range of 35.6 atomic % to 75.1 atomic %, Ir with a content in the range of 7.2 atomic % to 52.3 atomic %, and Ni with a content in the range of 4.0 atomic % to 48.5 atomic %; a composition containing Nb with a content in the range of 19.6 atomic % to 80.9 atomic %, Re with a content in the range of 7.4 atomic % to 59.2 atomic %, and Ni with a content in the range of 4.1 atomic % to 56.9 atomic %; and a composition containing Nb with a content in the range of 7.5 atomic % to 52.9 atomic %, W with a content in the range of 16.4 atomic % to 47.0 atomic %, and Ni with a content in the range of 22.0 atomic % to 53.3 atomic %.Type: GrantFiled: June 3, 2021Date of Patent: March 5, 2024Assignee: CANON KABUSHIKI KAISHAInventors: Seiichi Hata, Satoko Midorikawa, Hirotaka Fukushima
-
Patent number: 10474017Abstract: A projection apparatus includes a casing, a light source module, an optical engine module, a heat dissipation module and a projection lens. The casing has multiple air inlets and an air outlet. The light source module is disposed in the casing, and is configured to provide an illumination beam, wherein the light source module includes multiple light sources. The optical engine module is disposed in the casing, and is located on a transmission path of the illumination beam, and is configured to convert the illumination beam into an image beam. The heat dissipation module is disposed in the casing, and is connected to the light sources, where the heat dissipation module includes multiple heat sinks located close to the air inlets, respectively. The projection lens is disposed in the casing, and is connected to the optical engine module, and is configured to project the image beam out of the casing.Type: GrantFiled: February 19, 2019Date of Patent: November 12, 2019Assignee: Coretronic CorporationInventors: Jhih-Hao Chen, Shih-Yao Li, Yi-Cheng Hou
-
Patent number: 10029935Abstract: An amorphous alloy contains Ni and Nb and has a composition including at least one of: a composition containing Nb with a content in the range of 35.6 atomic % to 75.1 atomic %, Ir with a content in the range of 7.2 atomic % to 52.3 atomic %, and Ni with a content in the range of 4.0 atomic % to 48.5 atomic %; a composition containing Nb with a content in the range of 19.6 atomic % to 80.9 atomic %, Re with a content in the range of 7.4 atomic % to 59.2 atomic %, and Ni with a content in the range of 4.1 atomic % to 56.9 atomic %; and a composition containing Nb with a content in the range of 7.5 atomic % to 52.9 atomic %, W with a content in the range of 16.4 atomic % to 47.0 atomic %, and Ni with a content in the range of 22.0 atomic % to 53.3 atomic %.Type: GrantFiled: September 1, 2015Date of Patent: July 24, 2018Assignee: Canon Kabushiki KaishaInventors: Seiichi Hata, Satoko Midorikawa, Hirotaka Fukushima
-
Publication number: 20150125338Abstract: Identifying a stable phase of a binary alloy comprising a solute element and a solvent element. In one example, at least two thermodynamic parameters associated with grain growth and phase separation of the binary alloy are determined, and the stable phase of the binary alloy is identified based on the first thermodynamic parameter and the second thermodynamic parameter, wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.Type: ApplicationFiled: March 12, 2012Publication date: May 7, 2015Inventors: Heather Murdoch, Christopher A. Schuh
-
Publication number: 20150125340Abstract: According to one embodiment, a tungsten alloy includes 0.1 to 5 wt % of Zr in terms of ZrC.Type: ApplicationFiled: November 26, 2014Publication date: May 7, 2015Inventors: Shinichi YAMAMOTO, Kayo NAKANO, Hiromichi HORIE
-
Publication number: 20150057144Abstract: A bicontinuous non-porous microstructure comprising a refractory phase and a non-refractory phase, wherein the refractory phase substantially comprises one or more refractory elements and the non-refractory phase comprises a void filled by one or more materials that are different than a material comprising the non-refractory phase in a bicontinuous network from which the nanocomposite refractory material is formed and methods of making the same are disclosed.Type: ApplicationFiled: August 26, 2013Publication date: February 26, 2015Applicant: The Johns Hopkins UniversityInventors: Jonah Erlebacher, Ian McCue
-
Publication number: 20150023837Abstract: Provided is a tungsten sintered compact sputtering target, wherein the purity of the tungsten is 5N (99.999%) or more, and the content of impurity carbon in the tungsten is 5 wtppm or less. An object of the present invention is to decrease the specific resistance of a tungsten film sputter-deposited by using a tungsten sintered compact sputtering target by reducing a carbon content in the tungsten target.Type: ApplicationFiled: February 27, 2013Publication date: January 22, 2015Inventors: Kazumasa Ohashi, Takeo Okabe
-
Publication number: 20150004337Abstract: The present invention provides a cold sprayed layer of tungsten, molybdenum, titanium, zirconium, or of mixtures of two or more of tungsten, molybdenum, titanium and zirconium, or of alloys of two or more of tungsten, molybdenum, titanium and zirconium, or of alloys of tungsten, molybdenum, titanium, zirconium with other metals, wherein the cold spayed layer has an oxygen content of below 1,000 ppm.Type: ApplicationFiled: July 4, 2014Publication date: January 1, 2015Inventors: STEFAN ZIMMERMANN, UWE PAPP, HEINRICH KREYE, TOBIAS SCHMIDT
-
Publication number: 20140348203Abstract: Provided in one embodiment is a method of identifying a stable phase of an ordering binary alloy system comprising a solute element and a solvent element, the method comprising: determining at least three thermodynamic parameters associated with grain boundary segregation, phase separation, and intermetallic compound formation of the ordering binary alloy system; and identifying the stable phase of the ordering binary alloy system based on the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter by comparing the first thermodynamic parameter, the second thermodynamic parameter and the third thermodynamic parameter with a predetermined set of respective thermodynamic parameters to identify the stable phase; wherein the stable phase is one of a stable nanocrystalline phase, a metastable nanocrystalline phase, and a non-nanocrystalline phase.Type: ApplicationFiled: May 20, 2014Publication date: November 27, 2014Applicant: Massachusetts Institute of TechnologyInventors: Heather A. Murdoch, Christopher A. Schuh
-
Publication number: 20140301891Abstract: According to one embodiment, a tungsten alloy includes a W component and a Hf component including HfC. A content of the Hf component in terms of HfC is 0.1 wt % or more and 3 wt % or less.Type: ApplicationFiled: June 19, 2014Publication date: October 9, 2014Inventors: Shinichi YAMAMOTO, Kayo NAKANO, Hiromichi HORIE, Takashi SANO, Yoshiko MINAMI, Satoshi YAMAGUCHI
-
Publication number: 20140294663Abstract: A method for finely powdering tungsten powder, which includes electrolytically oxidizing tungsten powder while stirring in an aqueous mineral-acid solution to form an oxide film in the surface of the tungsten powder and removing the oxide film with an alkaline aqueous solution; a method for producing tungsten powder to obtain fine tungsten powder by a process including the above method for finely powdering; and a tungsten powder having an average particle size of 0.04 to 0.4 ?m, in which the dMS value (product of an average particle size d (?m), true density M (g/cm3) and BET specific surface area S (m2/g)) is within the range of 6±0.4.Type: ApplicationFiled: August 29, 2012Publication date: October 2, 2014Applicant: SHOWA DENKO K.K.Inventors: Kazumi Naito, Shoji Yabe
-
Publication number: 20140030596Abstract: A cathode for a sodium-metal halide battery, wherein the cathode comprises a metal microwire. Embodiments of the present invention also relate to a battery comprising a cathode for a sodium-metal halide battery wherein the cathode comprises a metal microwire, and methods for preparing the same and use thereof.Type: ApplicationFiled: July 24, 2012Publication date: January 30, 2014Inventors: Huiqing Wu, Michael Alan Vallance
-
Publication number: 20140017114Abstract: Provided is a cathode material which becomes an alternative material of a cathode material formed of a W—ThO2 alloy and is formed of a tungsten alloy that does not include thorium which is a radioactive element. When particles of a rare earth oxide and tungsten carbide are finely dispersed in a tungsten cathode material used as a discharge cathode material used in TIG, plasma spraying, plasma cutting, electrical discharge machining, discharge lamps and the like, reduction and diffusion of the rare earth oxide are accelerated, and supply of rare earth elements to a cathode surface is ensured, thereby improving discharge characteristics.Type: ApplicationFiled: March 22, 2012Publication date: January 16, 2014Applicant: NIPPON TUNGSTEN CO., LTD.Inventors: Akira Matsuo, Yasutsugu Ueno, Yusuke Kai
-
Patent number: 8613885Abstract: Many known solder alloys according to prior art utilize silicon or boron as melting point reducers, which, however, form brittle phases that have an undesirable effect on the thermo-mechanical properties. The invention relates to a solder ally that comprises gallium and/or germanium, preferably forms the Y? phase and has improved mechanical properties.Type: GrantFiled: February 26, 2008Date of Patent: December 24, 2013Assignee: Siemens AktiengesellschaftInventors: Paul Heinz, Robert Singer
-
Patent number: 8486541Abstract: A composite is produced by the steps of (a) blending a first mixture of metallic powders; (b) compacting the blended first mixture of metallic powders to a plurality of discretely shaped articles; (c) blending a second mixture of metallic powders; (d) mixing the plurality of discretely shaped articles with the blended second mixture of metallic powders to form a precursor blend; (e) compacting the precursor blend; and (f) sintering the precursor blend. The composite has a metallic matrix with embedded shapes dispersed throughout the matrix where the embedded shapes have an incipient liquid phase sintering temperature less than an incipient liquid phase sintering temperature of the matrix.Type: GrantFiled: June 12, 2007Date of Patent: July 16, 2013Assignee: Aerojet-General CorporationInventors: Timothy J. Brent, Michael T. Stawovy
-
Publication number: 20130155581Abstract: Recovery of a metal from scrap materials or other source materials containing two or more metals or other materials by iodization of the materials or parts of them to create multiple metal iodides of respective metals, separating the iodides and dissociating at least one of the iodides to recover its metal component.Type: ApplicationFiled: July 3, 2012Publication date: June 20, 2013Applicant: ORCHARD MATERIAL TECHNOLOGY LLCInventors: Lawrence F. McHugh, Leonid N. Shekhter, Yuri V. Blagoveshchenskiy
-
Publication number: 20130008748Abstract: A friction disc (2) with an anti-abrasion layer (1) and integrated wear indication, the friction disc (2) having a friction surface (2?) which is completely covered by the anti-abrasion layer (1). At least one indication surface element (3) which occupies a part of the friction surface (2?) and differs from at least one of the components friction surface (2?) and anti-abrasion layer (1) of the friction disc (2) in at least one of the features coloring and texture is provided between the anti-abrasion layer (1) and the friction disc (2). Compositions of the anti-abrasion layer (1) of the friction disc (2).Type: ApplicationFiled: March 16, 2011Publication date: January 10, 2013Applicant: DAIMLER AGInventors: Oliver Lembach, Ralph Mayer
-
Patent number: 8349248Abstract: A metallic material is made from at least one refractory metal or an alloy based on at least one refractory metal. The metallic material has an oxygen content of about 1,000 to about 30,000 ?g/g and the oxygen is interstitial.Type: GrantFiled: April 13, 2006Date of Patent: January 8, 2013Assignee: Heraeus Precious Metals GmbH & Co. KGInventors: Jens Trotzschel, Bernd Spaniol
-
Publication number: 20120282132Abstract: Methods of the invention allow rapid production of high-porous, large-surface-area nanostructured metal and/or metal oxide at attractive low cost applicable to a wide variety of commercial applications such as sensors, catalysts and photovoltaics.Type: ApplicationFiled: July 13, 2010Publication date: November 8, 2012Inventors: James J. Watkins, Christos Fotios Karanikas, David Reisner, Xinqing Ma, Jeff Roth, T. Danny Xiao, Stephen Paul Murphy
-
Publication number: 20120283096Abstract: The present invention relates to (i) a plant growth-improving agent containing a growth-improving component that increases a concentration of an oxoanion in an area around a plant, the oxoanion being heavier than a sulfate ion and containing four oxygen atoms, (ii) a seed to which such a plant growth-improving agent has been applied, and (iii) a plant growth-improving method including a cultivating step of growing a plant in the presence of such a growth-improving component.Type: ApplicationFiled: January 26, 2011Publication date: November 8, 2012Applicant: Incorporated Administrative Agency National Agricu lture and Food Research OrganizationInventor: Yoshitaka Hara
-
Publication number: 20120251380Abstract: The invention relates to a process for producing an iron-and/or tungsten containing powder or powder agglomerate including the steps of: a) mixing at least a first powder fraction comprising a tungsten carbide containing powder, and at least a second powder fraction comprising an iron oxide powder and/or a tungsten oxide containing powder and optionally an iron powder, the weight of the first fraction being in the range of 50-90% by weight of the mix and the weight of the second fraction being in the range of 10-50% by weight of the mix, b) heating the mix of step a) to a temperature in the range of 400-1300° C., preferably 1000-1200° C. The invention also relates to an iron-and/or tungsten containing powder or powder agglomerate.Type: ApplicationFiled: October 26, 2010Publication date: October 4, 2012Applicant: MINPRO AKTIEBOLAGInventor: Johan Arvidsson
-
Publication number: 20120236997Abstract: An alloy comprising at least two refractory metals and a method for forming such alloy are proposed. In the alloy, a first refractory metal such as tantalum forming a minor portion of the alloy is completely dissolved in a second refractory metal such as tungsten forming a major portion of the alloy. The alloy may be formed by providing the two refractory metals in a common crucible (step S1), melting both refractory metals by application of an electron beam (step S2), mixing the molten refractory metals (step S3) and solidifying the melt (step S4). Due to the possible complete mixing of the refractory metal components in a molten state, improved material properties of the solidified alloy may be achieved. Furthermore, due to the use of tantalum instead of rhenium together with tungsten, a cheap and resistant refractory metal alloy may be produced, which alloy may be used for example for forming a focal track region of an X-ray anode.Type: ApplicationFiled: November 30, 2010Publication date: September 20, 2012Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.Inventors: Paul Xu, Kevin Kraft, Min He, Gerald James Carlson
-
Publication number: 20120148436Abstract: Nanomaterial preparation methods, compositions, and articles are disclosed and claimed. Such methods can provide nanomaterials with improved morphologies relative to previous methods. Such materials are useful in electronic applications.Type: ApplicationFiled: November 4, 2011Publication date: June 14, 2012Inventors: David R. Whitcomb, William D. Ramsden, Doreen C. Lynch
-
Patent number: 8177947Abstract: Provided is a sputtering target in which the ratio of X-ray intensity of (110) measured with X-ray diffraction is 0.4 or less, and even 0.2 or less in a Ta or Ta alloy target. Further provided is a sputtering target in which the ratio of X-ray intensity of (110) on a Ta or Ta alloy target surface measured with X-ray diffraction is 0.8 or less, and the ratio of the foregoing X-ray intensity at a depth of 100 ?m or deeper is 0.4 or less. This Ta or Ta alloy target is capable of minimizing the fluctuation of the deposition speed for each target throughout the target life of a sputtering target, and thereby improving and stabilizing the production efficiency of semiconductors during the sputtering process, and contributing to the reduction of production costs.Type: GrantFiled: March 28, 2006Date of Patent: May 15, 2012Assignee: JX Nippon Mining & Metals CorporationInventor: Hirohito Miyashita
-
Publication number: 20110243787Abstract: This invention is related to a powder of a tungsten alloy with a transition metal dissolved therein as a solid solution that is suitable as material for a cemented carbide represented by formula [1] and a material for a catalyst. The powder of tungsten alloy is characterized in that at least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel is dissolved as a solid solution in a tungsten grating and a peak derived from a bcc tungsten phase appears in an X-ray diffraction diagram. Formula [1]: M?W wherein M represents one or more elements selected from Co, Fe, Mn and Ni. The use of tungsten alloy powder can provide a tungsten carbide with a transition metal dissolved therein as a solid solution in which a solid solution phase comprising at least one transition metal element selected from the group consisting of cobalt, iron, manganese and nickel, tungsten and carbon is included in a tungsten carbide skeleton, and a tungsten carbide diffused cemented carbide.Type: ApplicationFiled: August 19, 2009Publication date: October 6, 2011Applicant: Sanalloy Industry Co., Ltd.Inventors: Masao Morishita, Hiroaki Yamamoto, Masaaki Ikebe, Masahiro Iwasaki, Hidefumi Yanagita, Hiroshi Nishimaki
-
Publication number: 20110206944Abstract: The present invention relates to a process for producing shaped articles composed of refractory metals.Type: ApplicationFiled: June 18, 2007Publication date: August 25, 2011Applicant: H.C. Starck GmbHInventors: Henning Uhlenhut, Uwe Blümling, Klaus Andersson, Bernd Döbling, Michael Svec, Karl-Hermann Buchner
-
Patent number: 8003765Abstract: The present disclosure relates to detection of the presence or absence of cerebrospinal fluid (CSF) in a sample, in particular to the analysis of the CSF protein lipocalin-type prostaglandin D2 synthase (L-PGDS). The present disclosure provides assays for the analysis of L-PGDS indicating the presence or absence of CSF in a sample.Type: GrantFiled: April 14, 2008Date of Patent: August 23, 2011Assignee: Stony Brook Anaesthesiology, University Faculty Practice CorporationInventor: Srinivas N. Pentyala
-
Publication number: 20110194970Abstract: Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a soichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.Type: ApplicationFiled: February 5, 2010Publication date: August 11, 2011Applicant: BATTELLE MEMORIAL INSTITUTEInventors: John G. Frye, Kenneth Scott Weil, Curt A. Lavender, Jin Yong Kim
-
Publication number: 20110176988Abstract: The ammonia decomposition catalyst of the present invention is a catalyst for decomposing ammonia into nitrogen and hydrogen, including a catalytically active component containing at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel, preferably including: (I) a catalytically active component containing: at least one kind selected from the group consisting of molybdenum, tungsten, and vanadium; (II) a catalytically active component containing a nitride of at least one kind of transition metal selected from the group consisting of molybdenum, tungsten, vanadium, chromium, manganese, iron, cobalt, and nickel; or (III) a catalytically active component containing at least one kind of iron group metal selected from the group consisting of iron, cobalt, and nickel, and at least one metal oxide, thereby making it possible to effectively decompose ammonia into nitrogen and hydrogen at relatively low temperatures and atType: ApplicationFiled: September 17, 2009Publication date: July 21, 2011Inventors: Junji Okamura, Masaru Kirishiki, Masanori Yoshimune, Hideaki Tsuneki
-
Publication number: 20100272889Abstract: The present invention is directed to a process for the preparation of a metal powder having a purity at least as high as the starting powder and having an oxygen content of 10 ppm or less comprising heating said metal powder containing oxygen in the form of an oxide, with the total oxygen content being from 50 to 3000 ppmf in an inert atmosphere at a pressure of from 1 bar to 10?7 to a temperature at which the oxide of the metal powder becomes thermodynamically unstable and removing the resulting oxygen via volatilization. The metal powder is preferably selected from the group consisting of tantalum, niobium, molybdenum, hafnium, zirconium, titanium, vanadium, rhenium and tungsten. The invention also relates to the powders produced by the process and the use of such powders in a cold spray process.Type: ApplicationFiled: October 3, 2007Publication date: October 28, 2010Applicant: H.C. Starch Inc.Inventors: Leonid N. Shekhter, Steven A. Miller, Leah F. Haywiser, Rong-Chein Richard Wu
-
Publication number: 20100247489Abstract: The present invention relates to a composition comprising one or more minerals selected from the group consisting of selenium, molybdenum or tungsten, which is carried out galenically or chemically in a way that the mineral or minerals are released completely or in part, just before, during or shortly after arrival at the large intestine, and their use in the manufacture of a medicament for administering to a mammal for the prevention or reduction of gas formation in the colon thus conditioned abdominal complaints, particularly bloatings, meteorism or abdominal cramps. Furthermore, the invention relates to a procedure for the isolation of acetogenic and butyrogenic bacterial strains that are suitable for therapeutic purposes outlined above.Type: ApplicationFiled: December 21, 2007Publication date: September 30, 2010Inventor: Roland SAUR-BROSCH
-
Publication number: 20100248297Abstract: Particles and manufacturing methods thereof are provided. The manufacturing method of the particle includes providing a precursor solution containing a precursor dissolved in a solution, and irradiating the precursor solution with a high energy and high flux radiation beam to convert the precursor to nano-particles. Particles with desired dispersion, shape, and size are manufactured without adding a stabilizer or surfactant to the precursor solution.Type: ApplicationFiled: August 22, 2009Publication date: September 30, 2010Inventors: Yeu-Kuang Hwu, Chang-Hai Wang, Chi-Jen Liu, Cheng-Liang Wang, Chi-Hsiung Chen, Chung-Shi Yang, Hong-Ming Lin, Jung-Ho Je, Giorgio Margartondo
-
Patent number: 7803314Abstract: Non-toxic shot having 40-60% tungsten, 20-60% tin and 0-10% iron. A process of formulating the material is disclosed in which 95% by weight of the particles of each component having mesh sizes less than 325 are blended with a flux having 99.9% by weight particles less than 100 mesh. The blended material is then compaction formed into shape at a pressure range of between 20 and 40 tons per square inch. Finally, the blended material is sintered at a temperature in the range of 350 and 425° F. bonding the powdered metals and driving off the flux.Type: GrantFiled: December 18, 2003Date of Patent: September 28, 2010Inventor: Daniel George Tercho
-
Patent number: 7718117Abstract: A method of manufacturing a tungsten sputtering target includes pressing a high purity tungsten powder to form a pressed compact, first sintering the pressed compact at a temperature of 1450-1700° C. for one hour or longer after the pressed compact is heated at a heating-up rate of 2-5° C./min on the way to a maximum sintering temperature, second sintering the pressed compact to form a sintered body at a temperature of 1900° C. or higher for 5 hours or longer, working the sintered body to obtain a shape of a target, subjecting the target to a grinding work of at least one of rotary grinding and polishing, and subjecting the target to a finishing work of at least one of etching and reverse sputtering.Type: GrantFiled: September 3, 2001Date of Patent: May 18, 2010Assignee: Kabushiki Kaisha ToshibaInventors: Koichi Watanabe, Yoichiro Yabe, Takashi Ishigami, Takashi Watanabe, Hitoshi Aoyama, Yasuo Kohsaka, Yukinobu Suzuki
-
Publication number: 20100043662Abstract: A diffusion alloyed iron powder is provided wherein tungsten W is bonded to the surfaces of the particles of an iron or iron-based powder, and wherein the diffusion alloyed iron powder comprises by weight-%: 30-60 W, with the balance being essentially only iron and unavoidable impurities.Type: ApplicationFiled: January 21, 2008Publication date: February 25, 2010Applicant: HOGANAS AB (publ)Inventors: Johan Arvidsson, Hans Söderhjelm
-
Publication number: 20090317281Abstract: This invention provides a method for atomic transformations carried out under conditions akin to chemical catalysis. Liquid and solid state catalysts are used in a two-step process. We have found that the high ionic/electric activity of concentrated sodium hydroxide solution in combination with heating is sufficient to induce atomic transformation and provide a solid phase catalyst of high aluminum and silicon content. This product when heated at a temperature of 1000° C. yields numerous elements of higher atomic masses.Type: ApplicationFiled: June 18, 2008Publication date: December 24, 2009Inventor: Peter Grandics
-
Patent number: 7608560Abstract: A fuel cell catalyst comprising platinum, titanium and tungsten. In one or more embodiments, the concentration of platinum is less than 60 atomic percent, and/or the concentration of titanium is at least 20 atomic percent, and/or the concentration of tungsten is at least 25 atomic percent.Type: GrantFiled: June 7, 2004Date of Patent: October 27, 2009Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki KaishaInventors: Qun Fan, Peter Strasser, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Konstantinos Chondroudis, Keith James Cendak
-
Publication number: 20090169888Abstract: Provided are an ancillary material, used for shape processing, which is capable of shortening a processing time, avoiding a reduction in quality of a shape provided to a workpiece material, and allowing a relatively low manufacturing cost; a processing method using the ancillary material; and a method of manufacturing the ancillary material. The tungsten alloy grains (1) comprise: tungsten of greater than or equal to 80% by mass and less than or equal to 98% by mass; nickel; at least one kind of metal selected from the group consisting of iron, copper, and cobalt; and an inevitable impurity, a maximum diameter thereof is greater than or equal to 0.1 mm and less than or equal to 5.00 mm, and a specific surface area thereof is less than or equal to 0.02 m2/g. The tungsten alloy grains (1, 10), the workpiece material (30), an abrasive (20) are blended in a container (100) and the container is rotated, thereby processing the shape of the workpiece material (30).Type: ApplicationFiled: November 20, 2006Publication date: July 2, 2009Inventors: Shinji Kikuhara, Hitoshi Inoue, Noboru Uenishi, Satoshi Umemoto
-
Patent number: 7553381Abstract: A metal film according to the present invention has a cubic crystal structure having a periodic pattern of crystal orientation in a plane. The crystal orientation is gradually rotated about a particular crystal-axis direction such that a {100} plane, a {110} plane, and a {111} plane appear.Type: GrantFiled: August 7, 2007Date of Patent: June 30, 2009Assignee: Canon Kabushiki KaishaInventors: Akemi Ishizaki, Isao Kimura, Mitsuru Otsuka
-
Publication number: 20080238289Abstract: A thermo-optically functional composition is disclosed. The composition includes a solid solution of at least two materials selected such that the composition emits thermal radiation, wherein each material is selected from the group consisting of metal carbides, metal nitrides, metal oxides, metal borides, metal silicides and combinations thereof, wherein each metal is selected from the group consisting of tungsten or tungsten alloys, hafnium or hafnium alloys, niobium or niobium alloys, tantalum or tantalum alloys, titanium or titanium alloys, zirconium or zirconium alloys, and combinations of two or more thereof.Type: ApplicationFiled: March 30, 2007Publication date: October 2, 2008Applicant: GENERAL ELECTRIC COMPANYInventors: SERGIY ZALYUBOVSKIY, WILLIAM PAUL MINNEAR, VIKAS MIDHA
-
Publication number: 20080210066Abstract: A method for separating long, unwound items like fiber, fiber strands, yarn, etc. having a liquid chemical sizing on the surfaces into short lengths by chopping is disclosed. Improved chopping life is achieved by using blades, or at least blade edges of cemented tungsten carbide, and selecting the liquid chemical sizings having a pH of about 7 or greater to apply to the surfaces of the items being chopped. Also disclosed are blades having at least the sharp edges of the chopping blades coated with various materials including a material selected from a group consisting of tungsten carbide, titanium nitride, diamond like carbon, polycrystalline diamond, polycrystalline cubic boron nitride, cemented tungsten carbide, or mixture of two or more of these materials.Type: ApplicationFiled: March 2, 2007Publication date: September 4, 2008Inventors: Russell Donovan Arterburn, Glenn Allen Torbett, Jonathan Nicolas Allred, Jennifer Kristin Pergola, Jason J. Blush
-
Publication number: 20080206552Abstract: Proposed are molybdenum or tungsten particles having a stable face-centered cubic structure of molybdenum and tungsten belonging to a VI group in a periodic table or a thin film formed from the foregoing particles, and a manufacturing method thereof. Specifically, provided are molybdenum or tungsten particles having a face-centered cubic (fcc) crystal structure or a thin film formed from the foregoing particles, wherein the particles have a large-diameter particle structure that is thermodynamically stable or metastable; and molybdenum or tungsten particles having a face-centered cubic (fcc) crystal structure or a thin film formed from the foregoing particles, wherein the particles have a pentagonal and star-shaped particle structure.Type: ApplicationFiled: February 25, 2008Publication date: August 28, 2008Applicant: National Institute of Advanced Industrial Science and TechnologyInventors: Yoshiki Shimizu, Takeshi Sasaki, Naoto Koshizaki, Kazuo Tereshima
-
Publication number: 20080170959Abstract: A sputter target is provided with a first elemental phase of a first material, the first material being either cobalt or tungsten, a first intermetallic phase including the first material and a second material, the second material being either tungsten or cobalt and different from the first material, the first material in a greater atomic percentage than the second material, and a second intermetallic phase including the second material and the first material, the second material in a greater atomic percentage than the first material. The sputter target includes 20-80 at. % cobalt, and has a density greater than 99% of a theoretical maximum density thereof. The sputter target is fabricated by selecting a cobalt powder and a tungsten powder having the same particle size distribution, blending the cobalt powder and the tungsten powder to form a blended powder, canning the blended powder, hot pressing the blended powder to form a solid, and machining the solid to form a sputter target.Type: ApplicationFiled: January 11, 2007Publication date: July 17, 2008Applicant: Heraeus IncorporatedInventors: Fenglin Yang, Bernd Kunkel, Steven Roger Kennedy, Anirban Das
-
Publication number: 20080038147Abstract: A metal film according to the present invention has a cubic crystal structure having a periodic pattern of crystal orientation in a plane. The crystal orientation is gradually rotated about a particular crystal-axis direction such that a {100} plane, a {110} plane, and a {111} plane appear.Type: ApplicationFiled: August 7, 2007Publication date: February 14, 2008Applicant: CANON KABUSHIKI KAISHAInventors: Akemi Ishizaki, Isao Kimura, Mitsuru Otsuka
-
Patent number: 6914032Abstract: The present invention relates to a method of producing W—Cu based composite powder, which is used in heat-sink materials for high-power integrated circuits, electric contact materials, etc, and to a method of producing a W—Cu based sintered alloy by using the composite powder. The method of producing tungsten-copper based composite powder includes first preparing composite oxide powder by dissolving ammonium metatungstate, [(NH4)6(H2W12O40).Type: GrantFiled: October 16, 2002Date of Patent: July 5, 2005Assignees: Korea Institute of Machinery and Materials, Nanotech Co., Ltd.Inventors: Byoung Kee Kim, Seong Hyeon Hong, Yong Won Woo
-
Patent number: 6899926Abstract: Disclosed is an alloy coating which can be advantageously applied to members for high temperature apparatuses so as to prolong the service life of the members. The alloy coating comprises an alloy. This alloy comprises: at least one member, as a base, selected from the group consisting of Re, Ir, Nb, Ta, Mo, and W; and at least one alloying element for imparting corrosion resistance. A method for forming the alloy coating, and a member for high temperature apparatuses, to which the alloy coating has been applied, are also disclosed.Type: GrantFiled: May 6, 2004Date of Patent: May 31, 2005Assignees: EBARA CorporationInventors: Toshio Narita, Shigenari Hayashi, Hiroshi Yakuwa, Manabu Noguchi, Matsuho Miyasaka
-
Patent number: 6890480Abstract: Medium- and high-density articles are formed from melting and casting alloys containing tungsten, iron, nickel and optionally manganese and/or steel. In some embodiments, the articles have densities in the range of 8-10.5 g/cm3, and in other embodiments, the articles have densities in the range of 10.5-15 g/cm3. In some embodiments, the articles are ferromagnetic, and in others the articles are not ferromagnetic. In some embodiments, tungsten forms the largest weight percent of the alloy, and in other embodiments the alloy contains no more than 50 wt % tungsten. In some embodiments, the articles are shell shot.Type: GrantFiled: February 3, 2003Date of Patent: May 10, 2005Inventor: Darryl D. Amick
-
Patent number: 6830827Abstract: Disclosed is an alloy coating which can be advantageously applied to members for high temperature apparatuses so as to prolong the service life of the members. The alloy coating comprises an alloy. This alloy comprises: at least one member, as a base, selected from the group consisting of Re, Ir, Nb, Ta, Mo, and W; and at least one alloying element for imparting corrosion resistance. A method for forming the alloy coating, and a member for high temperature apparatuses, to which the alloy coating has been applied, are also disclosed.Type: GrantFiled: March 6, 2001Date of Patent: December 14, 2004Assignees: Ebara CorporationInventors: Toshio Narita, Shigenari Hayashi, Hiroshi Yakuwa, Manabu Noguchi, Matsuho Miyasaka
-
Patent number: 6830637Abstract: A large-diameter tungsten-lanthana rod having an elongated grain structure substantially parallel to the longitudinal axis of the rod is described. The large diameter rod is produced by rolling at a temperature greater than 1400° C. and less than 1700° C. to achieve at least about a 40% reduction in cross-sectional area. The high strength of the longitudinally elongated grain structure is desirable for applications such as rocket nozzles.Type: GrantFiled: May 31, 2002Date of Patent: December 14, 2004Assignee: Osram Sylvania Inc.Inventors: Ricky D. Morgan, Thomas J. Dixon, Harry D. Martin, III
-
Patent number: 6823798Abstract: Manufacturing processes for articles that are formed from compositions of matter that include powders containing tungsten and at least one binder, as well as articles formed thereby. In some embodiments, the processes include compacting the mixture of powders under a first pressure to yield a desired intermediate structure, then reshaping the structure under a second pressure that is lower than the first pressure to yield the desired article. The compacting steps may include punches and/or dies having different configurations and/or materials of construction. The composition of matter preferably is selected to reflow, or be reshaped, without fragmenting or otherwise disintegrating into discrete particles or particulate. In some embodiments, the compacted intermediate structure and/or final article has an extrusion constant of less than 30,000 psi. In some embodiments, the mixture of powders has an ASTM Hall flowmeter reading for fifty grams through a cone (without tapping) of less than 18 seconds.Type: GrantFiled: October 17, 2003Date of Patent: November 30, 2004Inventor: Darryl D. Amick