Iron Containing Patents (Class 420/440)
  • Patent number: 5190832
    Abstract: An alloy exhibiting corrosion resistance in a combustion environment where V, Na, S and Cl are present comprises, in weight percent, not more than 0.05% C, 0.02-0.5% Si, 0.02-0.5% Mn, 15-35% Cr, 0.5-4% Mo, more than 40% but not more than 60% Co, 5-15% Fe, 0.5-5% W, 0.0003-0.005% Ca and the remainder of Ni at a content of not less than 4% and unavoidable impurities, provided that Cr (%)+0.5Ni (%)+3Mo (%).gtoreq.30 (%). A composite steel tube exhibiting corrosion resistance in a combustion environment where V, Na, S and Cl are present comprises an inner tube constituted of Cr-containing boiler tube and an outer tube constituted of the alloy.
    Type: Grant
    Filed: December 20, 1991
    Date of Patent: March 2, 1993
    Assignee: Nippon Steel Corporation
    Inventors: Hiroyuki Ogawa, Tetsuo Ishitsuka, Kozo Denpo, Akihiro Miyasaka, Koichi Takeda, Satoshi Araki
  • Patent number: 5154885
    Abstract: A protective coating for metal components formed of nickel or cobalt-based superalloys essentially consists of the following constituents (in percentages by weight):1 to 20% rhenium,22 to 50% chromium,0 to 15% aluminum, the share of chromium and aluminum taken together being at least 25% and at most 53%,0.3 to 2% in total of at least one reactive element from the group consisting of the rare earths, and0 to 3% silicon,impurities, as well as the following elective components:0 to 5% hafnium,0 to 12% tungsten,0 to 10% manganese,0 to 15% tantalum,0 to 5% titanium,0 to 4% niobium, and0 to 2% zirconium,the total share of the elective components being from 0 to a maximum of 15%, and a remainder primarily being at least one of the elements iron, nickel, and cobalt.
    Type: Grant
    Filed: August 10, 1990
    Date of Patent: October 13, 1992
    Assignee: Siemens Aktiengesellschaft
    Inventors: Norbert Czech, Friedhelm Schmitz
  • Patent number: 5151137
    Abstract: A magnetic alloy with ultrafine crystal grains having a composition represented by the general formula:Co.sub.100.sub.-x-y-z-a-b Fe.sub.a M.sub.x B.sub.y X.sub.z T.sub.b (atomic %)wherein M represents at least one element selected from Ti, Zr, Hf, V, Nb, Mo, Ta, Cr, W and Mn, X represents at least one element selected from Si, Ge, P, Ga, Al and N, T represents at least one element selected from Cu, Ag, Au, platinum group elements, Ni, Sn, Be, Mg, Ca, Sr and Ba, 0<a.ltoreq.30, 2.ltoreq.x.ltoreq.15, 10.ltoreq.y.ltoreq.25, 0.ltoreq.z.ltoreq.10, 0<b.ltoreq.10, and 12<x+y+z+b.ltoreq.35. Such a magnetic alloy can be produced by producing an amorphous alloy having the above composition, and subjecting the resulting amorphous alloy to a heat treatment to cause crystallization, thereby providing the resulting alloy having a structure, at least 50% of which is occupied by crystal grains having an average grain size of 500 .ANG. or less.
    Type: Grant
    Filed: November 16, 1990
    Date of Patent: September 29, 1992
    Assignee: Hitachi Metals Ltd.
    Inventors: Yoshihito Yoshizawa, Yoshio Bizen, Kiyotaka Yamauchi, Toshikazu Nishiyama, Shigekazu Suwabe
  • Patent number: 5114503
    Abstract: A magnetic core comprised of an amorphous alloy ribbon wound into a toroidal shape, wherein the said amorphous alloy has a composition of the formula:(Co.sub.1-x-y-z Fe.sub.x Ni.sub.y Mn.sub.z).sub.100-a-b-c M.sub.a Si.sub.b B.sub.cwherein M is at least one element selected from the group consisting of Nb, Cr and Mo, and x, y, z, a, b and c are numbers which satisfy relations of 0<a.ltoreq.6, 13.ltoreq.b.ltoreq.16, 7.ltoreq.b.ltoreq.10, 0<x.ltoreq.0.1, 0.ltoreq.y.ltoreq.0.2 and 0.ltoreq.x.ltoreq.0.13 respectively, said amorphous alloy after heat treatment having a rectangular ratio Br/Bs of at least 80%, a Bs value in a range of 5 KG to 8 KG and a stress relief ratio of at least 75%.
    Type: Grant
    Filed: March 24, 1987
    Date of Patent: May 19, 1992
    Assignee: Hitachi Metals, Inc.
    Inventors: Yoshihito Yoshizawa, Kiyotaka Yamauchi
  • Patent number: 5084795
    Abstract: A metal-in-gap type magnetic head having a small undulation of reproduction output caused by a pseudo-gap and method of manufacture thereof are provided, wherein the magnetic head employs as a back core a ferrite (particularly, a ferrite containing Sn) and employs in a metal portion which constitutes a front core an alloy film (particularly, a composition transition alloy film) having a composition expressed by T-M-X-N, where T is at least one metal element selected from a group consisting of Fe, Co and Ni, M is at least one metal element selected from a group consisting of Nb, Zr, Ti, Ta, Hf, Cr, Mo, W and Mn, X is at least one metalloid element selected from a group consisting of B, Si and Ge, and N is nitrogen.
    Type: Grant
    Filed: February 5, 1990
    Date of Patent: January 28, 1992
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hiroshi Sakakima, Keita Ihara, Koichi Osano
  • Patent number: 5069872
    Abstract: An improved cutting tool is provided, especially useful for hand shears. The cutting edge of the tool is made of a wear-resistant material of either: (a) 85% to 96% tungsten carbide and 15% to 4% cobalt, (b) 60% to 89% tungsten carbide, 4% to 28% tantalum carbide, 4% to 25% titanium carbide and 3% to 30% cobalt, or (c) 34% to 51% cobalt, 25% to 32% chromium, 14% to 21% tungsten, 2% to 4% carbon and one or more of the metals nickel, silicon, columbium, manganese and iron which, together, comprise no more than 16% of the material. For material "b", preferably the composition contains about 5% to 13% cobalt, 65% to 89% tungsten carbide, titanium carbide and tantalum carbide which, together, are present in an amount no greater than 30% of the composition of the material.
    Type: Grant
    Filed: September 8, 1989
    Date of Patent: December 3, 1991
    Inventor: Frank J. Penoza
  • Patent number: 5039574
    Abstract: The invention concerns a ceramically coated dental prosthesis in which the metal frame comprises an alloy containing, each in percent by weight: 0 to 0.4 carbon, 0.1 to 5.0 silicon, 0.01 to 8.0 manganese, 25 to 35 chromium, 1.0 to 8.0 molybdenum, 0.1 to 5 niobium, 0 to 0.3 nickel, 0 to 1.0 iron, the remainder being cobalt and impurities resulting from manufacturing conditions.
    Type: Grant
    Filed: September 14, 1987
    Date of Patent: August 13, 1991
    Assignee: Vereinigte Edelstahlwerke AG
    Inventor: Alfred Kulmburg
  • Patent number: 5037494
    Abstract: An amorphous alloy free of magnetostriction is employed in anti-theft labels, magnetic field detectors or the like, having a saturation induction of B.sub.s .ltoreq.0.5T and a good responsiveness given an annealing treatment in the magnetic field for achieving a remanance relationship of B.sub.r /B.sub.s >0.6.
    Type: Grant
    Filed: May 15, 1990
    Date of Patent: August 6, 1991
    Assignee: Vacuumschmelze GmbH
    Inventors: Hans R. Hilzinger, Giselher Herzer
  • Patent number: 5034146
    Abstract: The magnetic properties or, in particular, coercive force of a sintered permanent magnet composed of a light rare earth element, boron and iron can be greatly improved without affecting the residual magnetic flux by the admixture of a relatively small amount of additive elements including heavy rare earth elements, aluminum, titanium, vanadium, niobium and molybdenum. In the inventive magnets, the distribution of the additive element is not uniform but localized in the vicinity of the grain boundaries of the matrix particles. Such a localized distribution of the additive elements is obtain by sintering a powder mixture composed of a powder of an alloy of the base ingredients and a powder containing the additive element or elements.
    Type: Grant
    Filed: July 16, 1990
    Date of Patent: July 23, 1991
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Ken Ohashi, Yoshio Tawara
  • Patent number: 5002731
    Abstract: Disclosed is a cobalt-base alloy that has a valuable combination of both corrosion- and wear-resistant properties. The alloy nominally contains, in percent by weight, 25.5 chromium, 8.5 nickel, 3.0 iron, 5 molybdenum, 2 tungsten, 0.40 silicon, 0.75 manganese, 0.06 carbon, 0.08 nitrogen and the balance cobalt plus normal impurities normally found in alloys of this class. The alloy may also contain copper and certain "carbide formers" (i.e., columbium, tantalum, titanium, vanadium and the like) to tie up excess carbon and/or nitrogen that may be present.
    Type: Grant
    Filed: April 17, 1989
    Date of Patent: March 26, 1991
    Assignee: Haynes International, Inc.
    Inventors: Paul Crook, Aziz I. Asphahani, Steven J. Matthews
  • Patent number: 4938267
    Abstract: A series of glassy metal alloys with near zero magnetostriction and Perminvar characteristics of relatively constant permeability at low magnetic field excitations and constricted hysteresis loops is disclosed. The glassy alloys have the compositions Co.sub.a Fe.sub.b Ni.sub.c M.sub.d B.sub.e Si.sub.f where M is at least one member selected from the group consisting of Cr, Mo, Mn and Nb, and "a-f" are in atom percent where "a" ranges from about 66 to 71, "b" ranges from about 2.5 to 4.5, "c" ranges from about 0 to 3, "d" ranges from about 0 to 2 except when M.dbd.Mn in which case "d" ranges from about 0 to 4, "e" ranges from about 6 to 24 and "f" ranges from about 0 to 19, with the proviso that the sum of "a", "b" and "c" ranges from about 72 to 76 and the sum of "e" and "f" ranges from about 25 to 27. The glassy alloy has a value of magnetostriction ranging from about -1.times.10.sup. -6 to about +1.times.10.sup.-6, a saturation induction ranging from about 0.
    Type: Grant
    Filed: August 18, 1988
    Date of Patent: July 3, 1990
    Assignee: Allied-Signal Inc.
    Inventor: Ryusuke Hasegawa
  • Patent number: 4874577
    Abstract: Disclosed is a wear-resistant intermetallic compound alloy having superior machineability which consists essentially of: 45-60% of either Ni or Co or both with cobalt content of at least 5%, at least one of 0.1-2% of Hf and 0.05-2% of Re, 0-2% of at least one element selected from the group consisting of Si, P, Cu, Zn, Ga, Ge, Cd, In, Sn, Sb, Pb and Bi, 0-2% of C, and 0-5% of at least one element selected from the group consisting of Zr, Fe, V, Nb, Ta, Cr, Mo, W and Mn, the balance being Ti and incidental impurities, the percent being atomic percent.
    Type: Grant
    Filed: November 9, 1987
    Date of Patent: October 17, 1989
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Saburo Wakita, Junji Hoshi
  • Patent number: 4837389
    Abstract: A dimensional composition, a dimensionally restored alloy structure and a method of dimensionally restoring gas turbine and the like components that will be subsequently coated which includes low-pressure plasma spraying onto a damaged vane or other components, an alloy composition consisting essentially by weight of 1 to 4% aluminum, 0 to 1.5% hafnium and 0 to 20% nickel in the base composition of the cobalt alloy component, grinding to final dimension and diffusion coating. Tantalum is substituted for columbium where the base composition of the alloy contains columbium.
    Type: Grant
    Filed: June 4, 1984
    Date of Patent: June 6, 1989
    Assignee: Turbine Components Corporation
    Inventors: Srinivasan Shankar, George W. Goward
  • Patent number: 4830824
    Abstract: An alloy for producing dental castings comprises 26.5 to 27.5% Cr, 4.5 to 5.5% Mo, 0.65 to 0.8% Mn, 0.4 to 0.5% Si, up to 1% Fe, up to 0.05% C, and the balance Co.
    Type: Grant
    Filed: March 19, 1987
    Date of Patent: May 16, 1989
    Assignee: Fried. Krupp Gesellschaft mit beschrankter Haftung
    Inventor: Jurgen Lindigkeit
  • Patent number: 4822567
    Abstract: Antibiotic alloys adapted for making sanitary articles, such as orthodontic fittings and component parts of water purifying apparatus, the alloy containing cobalt to impart an antibiotic ability hereto, and iron and nickel to enhance the workability thereof so that the alloy can be easily worked into intricate shapes.
    Type: Grant
    Filed: October 29, 1987
    Date of Patent: April 18, 1989
    Assignee: Sankin Kogyo Kabushiki Kaisha
    Inventors: Isamu Kato, Sadayuki Yuhda, Naoki Oda, Masahiro Suganuma
  • Patent number: 4781771
    Abstract: An amorphous Co-based metal filament having a circular cross-section made of an alloy composed mainly of Co-Si-B or Co-Me-Si-B (wherein Me is at least one metal selected from the group consisting of Fe, Ni, Cr, Ta, Nb, V, Mo, Mn, W and Zr). This filament is produced by jetting the above alloy into a rotating member containing therein a cooling liquid through a spinning nozzle having a hole diameter which is determined according to the amorphous metal-forming ability (critical thickness to form an amorphous phase) to thereby cool-solidify the jetted molten alloy and form a filament, and then winding the filament continuously on the inner walls of the rotating member by the rotary centrifugal force thereof. This amorphous metal filament is corrosion resistant, is tough and has high electromagnetic characteristics, and is very useful as industrial materials, such as electric and electronic parts, composite materials and fibrous materials.
    Type: Grant
    Filed: December 30, 1986
    Date of Patent: November 1, 1988
    Assignees: Unitika Ltd., Tsuyoshi Masumoto
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Michiaki Hagiwara, Kiyomi Yasuhara
  • Patent number: 4761169
    Abstract: An alloy suitable for use as a spinner in forming glass fibers, the alloy being cobalt-based and including the following elements in percent by weight: chromium--about 34.0 to about 38.0; nickel--about 10.0 to about 15.0; wolfram--about 4.0 to about 7.0; tantalum--about 2.0 to about 5.0; zirconium--about 0.1 to about 0.4: silicon--present but about 0.15 max; carbon--about 0.65 to about 0.95; boron--about 0.005 to about 0.02; hafnium--about 0.4 to about 1.0; aluminum--0.0 to about 0.2; titanium--0.0 to about 0.2; manganese--0.0 to about 0.5; molybdenum--0.0 toabout 0.1; iron--0.0 to about 2.0; and cobalt--balance; and further that: ##EQU1## said percents of the elements in equation Nos. 1 and 2 each being atom percent.
    Type: Grant
    Filed: October 3, 1986
    Date of Patent: August 2, 1988
    Assignee: Owens-Corning Fiberglas Corporation
    Inventor: David J. Gaul
  • Patent number: 4735772
    Abstract: The invention relates to magnetic Pd-Co alloys for use in dental prostheses, in particular in root caps. The alloys contain, by weight, 40-60% Pd, 20-59% Co, 0-40% Ni, 0.1-5% Cr, 0.05-0.2% Re, 0.01-0.5% Fe, 0.5-3% Ga, 0-0.1% B, 0-5% Pt or Au, and the gallium may be replaced, in full or in part, by Sn, In, Zn or Mn.
    Type: Grant
    Filed: November 25, 1986
    Date of Patent: April 5, 1988
    Assignee: Elephant Edelmetaal B.V.
    Inventor: Joseph M. van der Zel
  • Patent number: 4728495
    Abstract: The invention relates to removable dental appliances made of cobalt-chromium-cast alloys containing (in % by weight) 0,1 to 1,0% C, 0,05 to 0,5% N, 0,5 to 3,0% Si, 0,3 to 10,0% Mn, 20 to 35% Cr, 2 to 10% Mo, 5 to 40% Fe, at least 20% Cobalt as rest including incidental impurities.
    Type: Grant
    Filed: March 20, 1986
    Date of Patent: March 1, 1988
    Assignee: Thyssen Edelstahlwerke AG
    Inventor: Leo Rademacher
  • Patent number: 4675609
    Abstract: An apparatus for nuclear magnetic resonance scanning and imaging which employs a primary magnetic field, an rf field, and a detector for detecting a nuclear magnetic resonance signal, the primary magnetic field being produced by an assembly of relatively low energy flux magnetic material combined with an assembly of relatively high energy flux magnetic material. The magnetic flux of the relatively low energy flux magnetic material is concentrated in a magnetic flux conductor means which is in turn combined with the magnetic flux of the relatively high energy flux magnetic material and is concentrated at a pole piece.
    Type: Grant
    Filed: March 20, 1986
    Date of Patent: June 23, 1987
    Assignee: Fonar Corporation
    Inventors: Gordon T. Danby, Raymond V. Damadian, Lawrence A. Minkoff
  • Patent number: 4668290
    Abstract: A dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization containing a fine oxide dispersion, and characterized, after fabrication by gas atomization, thermomechanical processing and further high temperature exposure, by excellent corrosion resistance, high fatigue strength, high ductility and high temperature stability; a process for producing said alloy and prostheses formed from said alloy.
    Type: Grant
    Filed: August 13, 1985
    Date of Patent: May 26, 1987
    Assignee: Pfizer Hospital Products Group Inc.
    Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton
  • Patent number: 4659632
    Abstract: A composite article comprising a metal substrate having a cobalt-base alloy built-up surface portion consisting essentially of a cobalt-base alloy welding metal which has been deposited on said substrate by an overlay welding process using a cobalt-base welding metal which consists essentially of 1.1 to 3.0% Si, 0.2 to 0.5% C, 25.0 to 30.0% Cr, 0.1 to 1.0% W, 0.2 to 3.0% Fe, 0.4 to 6.0% Mo, 0.1 to 2.0% MN, 1.0 to 4.0% Ni, the balance being Co and incidental impurities, the percentage being on a weight basis. The built-up surface portion has high resistance to wear and to weld cracking.
    Type: Grant
    Filed: December 7, 1984
    Date of Patent: April 21, 1987
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Masaki Morikawa, Junya Ohe, Akifumi Mishima, Sadao Saitoh
  • Patent number: 4657604
    Abstract: A fine amorphous metallic wire having a circular cross section and stability to a bias magnetic field, said wire being composed of an alloy having the following composition formula(Co.sub.1-a-b Fe.sub.a M.sub.b).sub.100-x-y Si.sub.x B.sub.ywherein M is at least one element selected from Cr, Mo, Ni, Nb, Ta, Pd, Pt, and Cu, x<20 atomic %, 7 atomic %.ltoreq.y<35 atomic %, 7 atomic %<x+y.ltoreq.35 atomic %, 0.01.ltoreq.a.ltoreq.0.1, and 0.001.ltoreq.b.ltoreq.0.05. The fine amorphous metallic wire has low magnetostriction, high magnetic permeability, high saturation magnetic flux density, and excellent toughness, and is stable against a bias magnetic field. Hence, it can be used as a material for electromagnetic devices such as a coordinate reading device, a current sensor, an eddy current sensor, a magnetic sensor, or a displacement sensor.
    Type: Grant
    Filed: July 28, 1986
    Date of Patent: April 14, 1987
    Assignee: Unitika Ltd.
    Inventors: Isamu Ogasawara, Kiyotsugu Maekawa, Hiroyuki Tomioka, Shinji Furukawa
  • Patent number: 4618474
    Abstract: A Co-base heat resistant alloy consisting essentially of:from 0.05 to 1% by weight of C,from 0.05 to 2% by weight of one or both of Si and Mn,from 31 to 40% by weight of Cr,from 5 to 15% by weight of Ni,from 2 to 12% by weight of one or both of W and Mo andfrom 0.1 to 5% by weight of Hf, and optionally further containing:from 0.01 to 1% by weight of one or both of Al and Y,from 0.5 to 3% by weight of one or both of Ta and Nb andfrom 0.005 to 0.1% by weight of one or both of B and Zr,the rest being Co and unavoidable impurities.
    Type: Grant
    Filed: January 25, 1985
    Date of Patent: October 21, 1986
    Assignees: Asahi Fiber Glass Company, Limited, Asahi Glass Company, Limited, Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Junya Ohe, Saburo Wakita, Kiichi Yamatsuta, Shoji Goto, Yukinori Kutsukake, Masuo Sugizaki
  • Patent number: 4594104
    Abstract: The present invention provides a method for producing a consolidated article composed of a transition metal alloy. The method includes the step of selecting a rapidly solidified alloy which is at least about 50% glassy. The alloy is formed into a plurality of alloy bodies, and these alloy bodies are compacted at a pressing temperature of not more than about 0.6 Ts (solidus temperature in .degree.C.) to consolidate and bond the alloy bodies together into a glassy metal compact having a density of at least about 90% T.D. (theoretical density). The compacted glassy alloy bodies are then heat treated at a temperature generally ranging from about 0.55-0.85 Ts, but, in any case, above the alloy crystallization temperature, for a time sufficient to produce a fine grain crystalline alloy structure in the compacted article.
    Type: Grant
    Filed: April 26, 1985
    Date of Patent: June 10, 1986
    Assignee: Allied Corporation
    Inventor: Derek Reybould
  • Patent number: 4517017
    Abstract: Disclosed is a temperature sensitive amorphous magnetic alloy which shows a Curie point of not higher than 200.degree. C. and whose composition is represented by the formula:(M.sub.1-a Ni.sub.a).sub.100-z X.sub.zwhereinM=Co or Fe;X=at least one of P, B, C and Si;0.2.ltoreq.a.ltoreq.0.8 when M is Co, or 0.4.ltoreq.a.ltoreq.0.9 when M is Fe; and15.ltoreq.z.ltoreq.30.
    Type: Grant
    Filed: February 8, 1982
    Date of Patent: May 14, 1985
    Assignee: Tokyo Shibaura Denki Kabushiki Kaisha
    Inventors: Koichiro Inomata, Shinichi Murata
  • Patent number: 4497771
    Abstract: A cobalt-base alloy, particularly suitable for the fabrication of glass spinners and containing up to about 1.2 weight percent tantalum is disclosed.
    Type: Grant
    Filed: March 7, 1983
    Date of Patent: February 5, 1985
    Assignee: Owens-Corning Fiberglas Corporation
    Inventors: Robert E. Spencer, Donald L. Clarke
  • Patent number: 4473417
    Abstract: There is disclosed an amorphous alloy for a magnetic core material represented by the formula(Co.sub.1-x.sbsb.1.sub.-x.sbsb.2 Fe.sub.x.sbsb.1 M.sub.x.sbsb.2).sub.x.sbsb.3 B.sub.x.sbsb.4 Si.sub.100-x.sbsb.3.sub.-x.sbsb.4wherein M is at least one element selected from the group consisting of Ti, V, Cr, Mn, Ni, Zr, Nb, Mo, Ru, Hf, Ta, W and Re, and x.sub.1, x.sub.2, x.sub.3 and x.sub.4 are numbers which satisfy relations of 0.ltoreq.x.sub.1 .ltoreq.0.10, 0.ltoreq.x.sub.2 .ltoreq.0.10, 70.ltoreq.x.sub.3 .ltoreq.79 and 5.ltoreq.x.sub.4 .ltoreq.9, respectively.According to the present invention, it could be provided an amorphous alloy suitable for a magnetic core material of a magnetic amplifier in which its coercive force is as low as 0.4 oersted or less at a high frequency of 20 KHz or more, particularly even at 50 KHz, and its rectangular ratio is as much as 85% or more.
    Type: Grant
    Filed: August 6, 1982
    Date of Patent: September 25, 1984
    Assignee: Tokyo Shibaura Denki Kabushiki Kaisha
    Inventors: Koichiro Inomata, Michio Hasegawa, Masakatsu Haga, Takao Sawa
  • Patent number: 4464208
    Abstract: Disclosed is an amorphous alloy for a magnetic head, which is of the formula:(Co.sub.1-a-b-c Fe.sub.a Ru.sub.b TM.sub.c).sub.100-x-y Si.sub.x B.sub.ywherein TM is at least one of Ti, V, Cr, Mn, Ni, Zr, Nb, Mo, Hf, Ta and W, and, in atomic concentrations, 0.02.ltoreq.a.ltoreq.0.08, 0.07.ltoreq.b.ltoreq.0.2, c=0 or 0.01.ltoreq.c.ltoreq.0.1, 0.ltoreq.x.ltoreq.20 and 4.ltoreq.y.ltoreq.9, which is excellent in abrasion-resistance and simultaneously has high permeability.
    Type: Grant
    Filed: December 30, 1982
    Date of Patent: August 7, 1984
    Assignee: Tokyo Shibaura Denki Kabushiki Kaisha
    Inventor: Hiroshi Tateishi
  • Patent number: 4439236
    Abstract: Boron-containing transition metal alloys based on one or more of iron, cobalt and nickel, and containing at least two metal components, are characterized by being composed of ultrafine grains of a primary solid-solution phase randomly interspersed with particles of complex borides which are predominantly located at the junctions of at least three grains of the primary solid-solution phase. These alloys are obtained by devitrification of the solid, amorphous state under specific heat-treatment conditions. These alloys can be consolidated into three-dimensional bodies.
    Type: Grant
    Filed: April 26, 1982
    Date of Patent: March 27, 1984
    Assignee: Allied Corporation
    Inventor: Ranjan Ray
  • Patent number: 4436697
    Abstract: A soldering alloy containing 25 to 35% iron, 15 to 25% chromium, 3 to 6% silicon, 1 to 4% molybdenum, the remainder essentially cobalt.
    Type: Grant
    Filed: September 23, 1982
    Date of Patent: March 13, 1984
    Assignee: Fried. Krupp Gesellschaft mit beschrankter Haftung
    Inventors: Ronald Friedrich, Manfred Muller
  • Patent number: 4416709
    Abstract: The present invention relates to an amorphous magnetic alloy material suited for use as a core material of a magnetic head.When the magnetic head is subjected to a slide contact with a magnetic tape over a long period of time, a film of oxide and the like is formed on the surface of an amorphous magnetic alloy material due to chemically corrosive media frequently contained in the magnetic coating layer of the magnetic tape or due to carbon dioxide, water and the like contained in the air.The amorphous magnetic alloy material of the present invention is highly corrosion resistant due to the combination of chromium and platinum family element(s), and, the inconveniences in a magnetic head, due to chemical wear, can be prevented even where the magnetic head is operated or stored in a considerably severe condition.
    Type: Grant
    Filed: September 10, 1981
    Date of Patent: November 22, 1983
    Assignee: TDK Electronics Co., Ltd.
    Inventors: Kazuo Ohya, Hiroki Fujishima, Norio Ishijima, Hiroyoshi Itoga, Yasuhiko Kominami
  • Patent number: 4396575
    Abstract: A low or zero magnetostriction ferromagnetic alloy is used for a magnetic recording medium. The alloy is (Fe.sub.y Co.sub.1-y).sub.1-x Cr.sub.x where y (Fe) is preferably 15-23 atomic percent of the FeCo part of the alloy. The value of x (Cr) is 7-20 atomic percent of the alloy and the remainder 1-x (FeCo) is 83-92 atomic percent of the alloy. The maximum ranges of the composition of the alloy are about as follows:Fe - 8-24 atomic percentCo - 56-83 atomic percentCr - 7-20 atomic percentThe material is adapted for use at room temperature below the Curie temperature of the specific alloy employed. When y (Fe) is 13 at. % and x (Cr) is 7 at. % the magnetostriction remains at zero, but the material is not corrosion resistant and thus it is useful for magnetic recording applications only where corrosion is not a problem. Thus the percentage of Cr must be within the range from 7-17 atomic percent.
    Type: Grant
    Filed: December 31, 1980
    Date of Patent: August 2, 1983
    Assignee: International Business Machines Corporation
    Inventors: Joseph A. Aboaf, Erik Klokholm
  • Patent number: 4374665
    Abstract: A magnetostrictive device comprises a magnetostrictive component consisting essentially of an amorphous alloy of iron, boron, lanthanum and lanthanide.
    Type: Grant
    Filed: October 23, 1981
    Date of Patent: February 22, 1983
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Norman C. Koon
  • Patent number: RE33022
    Abstract: A ferromagnetic amorphous alloy having a composition represented by (Co.sub.x Ni.sub.y Fe.sub.z).sub.a M.sub.b G.sub.c, wherein M is Cr, Mo and/or W, G is Zr, Hf and/or Ti and x,y,z and a, b, c are selected to meet the conditions of x=1-y-z, 0.ltoreq.y.ltoreq.0.2, 0.ltoreq.z.ltoreq.0.7, a=1-b-c, 0.ltoreq.b.ltoreq.0.05 and 0.05.ltoreq.c.ltoreq.0.2 This amorphous alloy has a superior magnetic characteristic and a high thermal stability.
    Type: Grant
    Filed: November 5, 1987
    Date of Patent: August 15, 1989
    Assignees: Hitachi, Ltd., Hitachi Metals, Ltd., Research Development Corp. of Japan
    Inventors: Shinji Takayama, Yasuo Tsukuda, Kazuo Shiiki, Shigekazu Otomo, Mitsuhiro Kudo, Yasunobu Ogata, Yoshizo Sawada