Rare Earth, Magnesium Or Alkaline Earth Metal Containing Patents (Class 420/443)
  • Patent number: 11913120
    Abstract: A coating on a substrate is disclosed having layers including yttrium aluminum garnet (YAG) and yttrium aluminum monoclinic (YAM).
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: February 27, 2024
    Inventors: Eric Jordan, Maurice Gell, Rishi Kumar, Chen Jiang
  • Patent number: 11873543
    Abstract: A nickel-based superalloy includes, in weight percent, 5.9 to 6.5% aluminum, 9.5 to 10.5% cobalt, 4 to 5% chromium, 0.1 to 0.2% hafnium, 0.3 to 0.7% molybdenum, 3.7 to 4.5% rhenium, 7.5 to 8.5% tantalum, 0.2 to 0.7% titanium, 3.2 to 4% tungsten, 0 to 0.1% silicon, the balance being nickel and unavoidable impurities.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: January 16, 2024
    Assignee: SAFRAN
    Inventors: Jérémy Rame, Edern Menou
  • Patent number: 11739407
    Abstract: The production method of a Ni-based alloy according to the present embodiment includes: a casting step of casting a liquid alloy which is a raw material of the Ni-based alloy to produce a Ni-based alloy starting material; and a segregation reducing step of performing, on the Ni-based alloy starting material produced by the casting step, heat treatment, or the heat treatment and complex treatment including hot working and heat treatment after the hot working, to satisfy Formula (1): where, each symbol in Formula (1) is as follows: V R - 0.294 ? 1.27 × 10 3 ? ? n = 1 N ( 1 - Rd n - 1 100 ) - 1 · exp ? ( - 2.89 × 10 4 T n + 273 ) · t n ( 1 ) VR: Solidification cooling rate (° C./min) of the liquid alloy, Tn: Holding temperature (° C.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: August 29, 2023
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Takamitsu Takagi, Masaaki Terunuma, Kiyoko Takeda
  • Patent number: 11692246
    Abstract: Provided are a Ni-based alloy for hot die having a high high-temperature compressive strength and a good oxidation resistance and being capable of suppressing the deterioration in the working environment and the shape deterioration, and a hot forging die made of the Ni-based alloy for hot die. The Ni-based alloy for hot die comprises, in mass %, W: 7.0 to 15.0%, Mo: 2.5 to 11.0%, Al: 5.0 to 7.5%, Cr: 0.5 to 3.0%, Ta: 0.5 to 7.0%, S: 0.0010% or less, one or two or more selected from rare-earth elements, Y, and Mg in a total amount of 0 to 0.020%, and the balance of Ni with inevitable impurities. In addition to the composition described above, one or two elements selected from Zr and Hf can further be contained in a total amount of 0.5% or less.
    Type: Grant
    Filed: March 22, 2022
    Date of Patent: July 4, 2023
    Assignee: PROTERIAL, LTD.
    Inventors: Shogo Suzuki, Tomonori Ueno, Chuya Aoki
  • Patent number: 11525172
    Abstract: A nickel-niobium intermetallic alloy contains, in weight percent, silicon from about 1.5 to about 3.5 percent; chromium from 5 to about 15 percent; nickel from about 45 to about 75 percent; niobium from about 14 to about 30 percent; cobalt up to about 7 percent; and iron up to about 10 percent; wherein the nickel plus niobium content is about 70 to about 90 percent and the total silicon, chromium, cobalt and iron content is about 10 to about 30 percent. The alloy can have a cast microstructure of at least 95 volume percent intermetallic phases and no more than about 5 volume percent solid solution phases. The intermetallic phases can include rod-like intermetallic phases of Ni3Nb and Ni8Nb7. The microstructure can be a lamellar microstructure and/or the microstructure can have less than 5 volume percent Ni—Fe and Ni—Co rich intermetallic phases.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: December 13, 2022
    Assignee: L.E. Jones Company
    Inventors: Cong Yue Qiao, David M. Doll
  • Patent number: 11396686
    Abstract: The invention relates to a nickel-based superalloy comprising, in percentages by mass, 5.0 to 6.0% aluminum, 6.0 to 9.5% tantalum, 0 to 1.50% titanium, 8.0 to 10.0% cobalt, 6.0 to 7.0% chromium, 0.30 to 0.90% molybdenum, 5.5 to 6.5% tungsten, 0 to 2.50% rhenium, 0.05 to 0.15% hafnium, 0.70 to 4.30% platinum, 0 to 0.15% silicon, the remainder being nickel and unavoidable impurities. The invention also relates to a single-crystal blade comprising such an alloy and a turbomachine comprising such a blade.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: July 26, 2022
    Assignees: SAFRAN, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE POITIERS, ECOLE NATIONALE SUPERIEURE DE MECANIQUE AEROTECHNIQUE
    Inventors: Jérémy Rame, Jonathan Cormier
  • Patent number: 11162165
    Abstract: Disclosed herein is a nickel-based heat-resistant material with improved cyclic oxidation properties. The nickel-based heat-resistant material containing gadolinium (Gd) according to the present invention is capable of suppressing the de-lamination of an oxide layer and increasing stability of the oxide layer, thereby forming an overall thin and uniform oxide layer, and has an advantage in that the formation of a nitride may be suppressed since nitrogen is prevented from penetrating through the oxide layer. In addition, due to the slow oxidation rate, there is an advantage in that an Al depletion layer (a ?? denuded zone) by the formation of an oxide layer may be formed to be very thin compared to that of a specimen having no gadolinium added.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: November 2, 2021
    Assignee: KOREA INSTITUTE OF MATERIALS SCIENCE
    Inventors: Seong-Moon Seo, Dae Won Yun, Hi Won Jeong, Young Soo Yoo
  • Patent number: 10968504
    Abstract: The present disclosure relates to an austenitic stainless alloy including in weight % (wt %): C less than 0.03; Si less than 1.0; Mn less than or equal to 1.2; Cr 26.0 to 30.0; Ni 29.0 to 37.0; Mo 6.1 to 7.1 or (Mo+W/2) 6.1 to 7.1; N 0.25 to 0.36; P less than or equal to 0.04 S less than or equal to 0.03; Cu less than or equal to 0.4; and a balance of Fe and unavoidable impurities. The austenitic stainless alloy has a low content of manganese in combination with a high content of nitrogen. The present disclosure also relates to the use of the austenitic stainless alloy, especially in highly corrosive environments and to products made of thereof.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: April 6, 2021
    Assignee: Sandvik Intellectual Property AB
    Inventors: Ulf Kivisakk, Karin Antonsson, Peter Stenvall
  • Patent number: 10914175
    Abstract: A composite blade includes a composite blade body including reinforced fibers and resin; a metal layer provided on an outer side of a leading edge section including a leading edge that is a part of the composite blade body on an upstream side of an air stream, the metal layer having a thickness of equal to or larger than 5 micrometers and equal to or smaller than 100 micrometers; an adhesive layer provided between the composite blade body and the metal layer to bond the metal layer to the composite blade body; and an electric insulating layer provided in contact with a surface of the leading edge section of the composite blade body, the surface being on the side on which the metal layer is provided, the electric insulating layer having an electric insulating property.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: February 9, 2021
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Ryoji Okabe, Masami Kamiya, Kentaro Shindo
  • Patent number: 10675720
    Abstract: Provided is a high Cr Ni-based alloy welding wire with which tensile strength and weld cracking resistance of a welded portion, the integrity of the microstructure of a welded metal, and inhibition of scale generation are improved. The high Cr Ni-based alloy welding wire is configured to have an alloy composition comprising, by mass, C: 0.04% or less, Mn: 7% or less, Fe: 1 to 12%, Si: 0.75% or less, Al: 0.01 to 0.7%, Ti: 0.01 to 0.7%, Cr: 25.0 to 31.5%, Ta: 1 to 10%, and Mo: 1 to 6%, and as inevitable impurities, Ca+Mg: less than 0.002%, N: 0.1% or less, P: 0.02% or less, O: 0.01% or less, S: 0.0015% or less, H: 0.0015% or less, Cu: 0.08% or less, and Co: 0.05% or less, and the balance: Ni. Then, the high CrNi-based alloy welding wire is configured such that the contents of S, Ta, Al, and Ti satisfy the following relation (1) and the contents of Ta, Mo, and N satisfy the following relation (2): 12000S+0.58Ta?2.6Al?2Ti£19.3??(1) Ta+1.6Mo+187N35.7??(2).
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: June 9, 2020
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., NIPPON WELDING ROD CO., LTD.
    Inventors: Kenji Kawasaki, Seiichi Kawaguchi, Masahiko Toyoda, Seiji Asada, Akira Konishi, Yusuke Sano, Tamao Takatsu, Teiichiro Saito, Tetsuya Sango, Norihito Ogawa
  • Patent number: 10189120
    Abstract: The invention concerns a welding wire intended for use in welding together parts of parts consisting of F3-36Ni alloy. The welding wire consists of an alloy comprising, in wt. %: 38.6%?Ni+Co?45.0% trace?Co?0.50% 2.25%?Ti+Nb?0.8667×(Ni+Co)?31.20% if 38.6%?Ni+Co?40.33% 2.25%?Ti+Nb?3.75% if 40.33%?Ni+Co?41.4% 0.4167×(Ni+Co)?15.0%?Ti+Nb?3.75% if 41.4%?Ni+Co?45.0% trace?Nb?0.50% 0.01%?Mn?0.30% 0.01%?Si?0.25% trace?C?0.05% trace?Cr?0.50% the rest consisting of iron and inevitable impurities resulting from production.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: January 29, 2019
    Assignee: APERAM
    Inventors: Pierre-Louis Reydet, Jean-Louis Roy, Roland André Panier
  • Patent number: 10174266
    Abstract: The invention concern methods for converting carbonaceous feedstock slurry into synthetic fuel gas comprising: (a) introducing a carbonaceous feed stock slurry into a first reaction vessel via a continuous feed; (b) converting said carbonaceous feed stock slurry to a carbon char slurry comprising carbon char, and water by allowing said carbonaceous feed stock slurry to have a residency time of between 5 and 30 minutes in said first reaction vessel, said carbonaceous feed stock slurry being heated to a temperature of between about 260 to about 320° C. at a pressure such that water does not flash to steam.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: January 8, 2019
    Assignee: SUSTAINABLE WASTE POWER SYSTEMS, INC.
    Inventors: Michael Joseph Gillespie, Christopher Paul Gillespie, Joseph J. Zambito
  • Patent number: 10109874
    Abstract: A multi-stage shift reactor includes a vessel having an inner chamber configured to contain a first shift catalyst, the first shift catalyst configured to receive anode exhaust gas form a fuel cell and to output a first shifted gas, and an outer chamber annularly disposed about the inner chamber and configured to contain a second shift catalyst, the second shift catalyst configured to receive the first shifted gas and output a second shifted gas. The shift reactor further includes a water injection port downstream from the inner chamber and packing between the water injection port and the outer chamber, the packing configured to prevent liquid water from passing therethrough.
    Type: Grant
    Filed: November 4, 2016
    Date of Patent: October 23, 2018
    Assignee: FUELCELL ENERGY, INC.
    Inventors: Fred C. Jahnke, Matthew Lambrech
  • Patent number: 9856553
    Abstract: A subject for the invention is to diminish the occurrence of streak-type segregation in producing a material comprising a Ni-based superalloy. The invention relates to a Ni-based superalloy having excellent unsusceptibility to segregation, characterized by comprising: 0.005 to 0.15 mass % of C; 8 to 22 mass % of Cr; 5 to 30 mass % of Co; equal or greater than 1 and less than 9 mass % of Mo; 5 to 21 mass % of W; 0.1 to 2.0 mass % of Al; 0.3 to 2.5 mass % of Ti; up to 0.015 mass % of B; and up to 0.01 mass % of Mg, with the remainder comprising Ni and unavoidable impurities.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: January 2, 2018
    Assignee: THE JAPAN STEEL WORKS, LTD.
    Inventors: Satoru Ohsaki, Tatsuya Takahashi, Koji Kajikawa, Eiji Maeda, Yoshikuni Kadoya, Ryuichi Yamamoto, Takashi Nakano
  • Patent number: 9657373
    Abstract: A nickel-chromium-aluminum-iron alloy includes (in wt.-%) 24 to 33% chromium, 1.8 to 4.0% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% silicon, 0.005 to 2.0% manganese, 0.00 to 0.60% titanium, 0.0002 to 0.05% each of magnesium and/or calcium, 0.005 to 0.12% carbon, 0.001 to 0.050% nitrogen, 0.0001 to 0.020% oxygen, 0.001 to 0.030% phosphorus, not more than 0.010% sulfur, not more than 2.0% molybdenum, not more than 2.0% tungsten, the remainder nickel and the usual process-related impurities, wherein the following relations must be satisfied: Cr+Al?28 (2a) and Fp?39.9 (3a) with Fp=Cr+0.272*Fe+2.36*Al+2.22*Si+2.48*Ti+0.374*Mo+0.538*W?11.8*C (4a), wherein Cr, Fe, Al, Si, Ti, Mo, W and C is the concentration of the respective elements in % by mass.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: May 23, 2017
    Assignee: VDM Metals International GmbH
    Inventor: Heike Hattendorf
  • Patent number: 9650698
    Abstract: The invention relates to a nickel-chromium alloy comprising (in wt.-%) 29 to 37% chromium, 0.001 to 1.8% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% silicon, 0.005 to 2.0% manganese, 0.00 to 1.00% titanium and/or 0.00 to 1.10% niobium, 0.0002 to 0.05% each of magnesium and/or calcium, 0.005 to 12% carbon, 0.001 to 0.050% nitrogen, 0.001 to 0.030% phosphorus, 0.0001 to 0.020% oxygen, not more than 0.010% sulfur, not more than 2.0% molybdenum, not more than 2.0% tungsten, the remainder nickel and the usual process-related impurities, wherein the following relations must be satisfied: Cr+Al?30 (2a) and Fp?39.9 (3a) with Fp=Cr+0.272*Fe+2.36*Al+2.22*Si+2.48*Ti+0.374*Mo+0.538*W?11.8*C (4a), wherein Cr, Fe, Al, Si, Ti, Mo, W and C is the concentration of the respective elements in % by mass.
    Type: Grant
    Filed: May 15, 2013
    Date of Patent: May 16, 2017
    Assignee: VDM Metals International GmbH
    Inventor: Heike Hattendorf
  • Patent number: 9551051
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.43% silicon, up to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 24, 2017
    Assignee: Haynes International, Inc.
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Patent number: 9476110
    Abstract: The invention relates to a nickel-chromium-aluminum-iron alloy, comprising (in wt %) 12 to 28% chromium, 1.8 to 3.0% aluminum, 1.0 to 15% iron, 0.01 to 0.5% silicon, 0.005 to 0.5% manganese, 0.01 to 0.20% yttrium, 0.02 to 0.60% titanium, 0.01 to 0.2% zirconium, 0.0002 to 0.05% magnesium, 0.0001 to 0.05% calcium, 0.03 to 0.11% carbon, 0.003 to 0.05% nitrogen, 0.0005 to 0.008% boron, 0.0001 to 0.010% oxygen, 0.001 to 0.030% phosphorus, max. 0.010% sulfur, max. 0.5% molybdenum, max. 0.5% tungsten, the remainder nickel and the common contaminants resulting from the process, wherein the following relations must be satisfied: 7.7C?x·a<1.0, wherein a=PN if PN>0 or a=0 if PN?0. Here, x=(1.0 Ti+1.06 Zr)/(0.251 Ti+0.132 Zr), PN=0.251 Ti+0.132 Zr?0.857 N, and Ti, Zr, N, and C are the concentration of the respective element in mass percent.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 25, 2016
    Assignee: VDM Metals International GmbH
    Inventors: Heike Hattendorf, Jutta Kloewer
  • Patent number: 9464343
    Abstract: To provide, in producing a large product through casting, a Ni-based alloy with a composition that minimizes variations in strength at different locations even when the solidification rate becomes slow and the amount of micro segregation increases. The Ni-based casting alloy of the present invention has a composition of, in mass %, 0.001% to 0.1% C, 15% to 23% Cr, 0% to 11.5% Mo, 3% to 18% W, 5 or less % Fe, 10 or less % Co, 0.4 or less % Ti, 0.4 or less % Al, and Nb and Ta (where 0.5%?Nb+Ta?4.15%), in which 7%?Mo+1/2W?13% is satisfied, and the composition also contains inevitable impurities and Ni.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: October 11, 2016
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventors: Hironori Kamoshida, Shinya Imano, Kenichi Murata
  • Patent number: 9464730
    Abstract: An exhaust valve spindle for an exhaust valve in an internal combustion engine has a shaft and a valve disc at the lower end of the shaft, which valve disc at its upper surface has a seat area. The seat area is of a seat material comprising at least from 34.0 to 44.0% Cr, an aggregate amount of Nb and Ta in the range from at least 2.8 to 6.1%, from 0.3 to 2.0% Ti, at the most 0.2% Al, at the most 0.04% B, at the most 0.8% Fe, at the most 0.04% C, at the most 0.4% Si, and a balance of Ni, where the amount of Ti+Nb+0.5×Ta is in the range from 3.4 to 6.6%, and where the amount of Nb+0.5×Ta is less than 3.0% if the amount of Ti is larger than 1.5%.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: October 11, 2016
    Assignee: MAN DIESEL & TURBO. FILIAL AF MAN DIESEL & TURBO SE. TYSKLAND
    Inventor: Uffe Bihlet
  • Patent number: 9175369
    Abstract: A Ni-based superalloy component includes a bond coat layer having a chemical composition not allowing interdiffusion to occur on a Ni-base superalloy substrate, and by allowing the bond coat layer to have Pt and/or Ir content equal to or higher than 0.2% but not exceeding 15% by mass, generation of an SRZ, which occurs at an interface between the Ni-base superalloy substrate and the bond coat layer in a high-temperature oxidizing atmosphere, can be suppressed, and at the same time adhesion at the interface between a ceramic thermal barrier coat layer and the bond coat layer is improved. Thus, a long-life Ni-based superalloy component with suppressed elemental interdiffusion between the Ni-base superalloy substrate and the bond coat layer even at temperatures exceeding 1100° C. is provided.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: November 3, 2015
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Rudder Wu, Kyoko Kawagishi, Kazuhide Matsumoto, Hiroshi Harada
  • Patent number: 9074476
    Abstract: A nickel-base alloy having the following composition (in weight percent unless otherwise stated): Cr 13.7-17.5; Co 2.5-5.6; Fe 8.0-9.3; Si 0-0.6; Mn 0-0.95; Mo 0.5-2.3; W 2.7-3.0; Al 2.2-3.5; Nb 2.7-7.2; Ti 0-0.85; Ta 0-3.25; Hf 0.0-0.5; C 0.01-0.05; B 0.02-0.04; Zr 0.04-0.06; Mg 0.015-0.025; S<50 ppm; P<50 ppm; the balance being Ni and incidental impurities. The alloy has an improved combination of properties (principally resistance to surface environmental damage and dwell fatigue crack growth) compared with known alloys, and is intended to operate for prolonged periods of time above 700° C., and up to peak temperatures of 800° C.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: July 7, 2015
    Assignee: ROLLS-ROYCE plc
    Inventor: Mark Christopher Hardy
  • Publication number: 20150093288
    Abstract: The invention relates to a nickel-chromium alloy comprising (in wt.-%) 29 to 37% chromium, 0.001 to 1.8% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% silicon, 0.005 to 2.0% manganese, 0.00 to 1.00% titanium and/or 0.00 to 1.10% niobium, 0.0002 to 0.05% each of magnesium and/or calcium, 0.005 to 12% carbon, 0.001 to 0.050% nitrogen, 0.001 to 0.030% phosphorus, 0.0001 to 0.020% oxygen, not more than 0.010% sulfur, not more than 2.0% molybdenum, not more than 2.0% tungsten, the remainder nickel and the usual process-related impurities, wherein the following relations must be satisfied: Cr+Al?30 (2a) and Fp?39.9 (3a) with Fp=Cr+0.272*Fe+2.36*Al+2.22*Si+2.48*Ti+0.374*Mo+0.538*W?11.8*C (4a), wherein Cr, Fe, Al, Si, Ti, Mo, W and C is the concentration of the respective elements in % by mass.
    Type: Application
    Filed: May 15, 2013
    Publication date: April 2, 2015
    Inventor: Heike Hattendorf
  • Publication number: 20150050182
    Abstract: A nickel-chromium-aluminum-iron alloy includes (in wt.-%) 24 to 33% chromium, 1.8 to 4.0% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% silicon, 0.005 to 2.0% manganese, 0.00 to 0.60% titanium, 0.0002 to 0.05% each of magnesium and/or calcium, 0.005 to 0.12% carbon, 0.001 to 0.050% nitrogen, 0.0001 to 0.020% oxygen, 0.001 to 0.030% phosphorus, not more than 0.010% sulfur, not more than 2.0% molybdenum, not more than 2.0% tungsten, the remainder nickel and the usual process-related impurities, wherein the following relations must be satisfied: Cr+Al?28 (2a) and Fp?39.9 (3a) with Fp=Cr+0.272* Fe+2.36*Al+2.22 *Si+2.48*Ti+0.374*Mo+0.538*W?11.8*C (4a), wherein Cr, Fe, Al, Si, Ti, Mo, W and C is the concentration of the respective elements in % by mass.
    Type: Application
    Filed: May 15, 2013
    Publication date: February 19, 2015
    Applicant: VDM Metals GmbH
    Inventor: Heike Hattendorf
  • Patent number: 8920883
    Abstract: Alloy composition for the manufacture of protective coatings, comprising cobalt, nickel, chromium, aluminium, yttrium and iridium in amounts so as to obtain the phases ?, ? and ?, in particular for coating a super-alloy article. Preferably, such super-alloy article is a turbine component.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: December 30, 2014
    Assignee: Ansaldo Energia S.p.A.
    Inventors: Sergio Corcoruto, Tatiana Falcinelli, Fabrizio Casadei
  • Publication number: 20140370258
    Abstract: An electrode material contains, on a mass percent basis, Al: 0.005% to 0.2%, Si: 0.2% to 1.6%, Cr: 0.05% to 1.0%, Ti: 0.05% to 0.5%, and Y: 0.2% to 1.0%. The remainder are Ni and inevitable impurities. The Si/Cr mass ratio is 1 or more. Because of the inclusion of specific amounts of Al, Si, Cr, and Y and the Si content higher than the Al content, the electrode material has an oxidation inhibiting effect. The inclusion of the specific amount of Ti can reduce the occurrence of expansion and cracking of the oxide film. Because of the inclusion of the specific amount of Y, the oxide film can maintain the microstructure even at high temperatures and have high resistance to high-temperature oxidation. Having a Si/Cr ratio of 1 or more, the oxide film has improved corrosion resistance and is resistant to corrosion by corrosive liquids.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 18, 2014
    Inventors: Hajime Ota, Taichiro Nishikawa, Masao Sakuta, Kazuo Yamazaki, Takeshi Tokuda, Shin Tomita, Yoshiyuki Takaki
  • Patent number: 8906296
    Abstract: The present invention relates to an oxidation resistant Nickel alloy, characterized in the following chemical composition (in % by weight): 4-7 Cr, 4-5 Si, 0.1-0.2 Y, 0.1-0.2 Mg, 0.1-0.2 Hf, remainder Ni and unavoidable impurities. A preferred embodiment has the following chemical composition (in % by weight): 6 Cr, 4.4 Si, 0.1 Y, 0.15 Mg, 0.1 Hf, remainder Ni and unavoidable impurities. This alloy has an improved oxidation resistance and good creep properties at high temperatures.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: December 9, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Mohamed Youssef Nazmy, Andreas Künzler, Hanspeter Zinn, Giuseppe Bandiera
  • Patent number: 8858875
    Abstract: A Ni based alloy material consists of by mass percent, C?0.03%, Si: 0.01 to 0.5%, Mn: 0.01 to 1.0%, P?0.03%, S?0.01%, Cr: not less than 20% to less than 30%, Ni: more than 40% to not more than 50%, Cu: more than 2.0% to not more than 5.0%, Mo: 4.0 to 10%, Al: 0.005 to 0.5%, W: 0.1 to 10%, N: more than 0.10% to not more than 0.35%, optionally one or more elements selected from Ca?0.01% and Mg?0.01%, with the balance being Fe and impurities, and the formula of “0.5Cu+Mo?6.5” is satisfied. The material has a surface hardness of a Vickers hardness of not less than 350 at 500° C., a corrosion resistance equivalent to that of Ni based alloys having high Mo contents, and excellent erosion resistance in a severe environment.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 14, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Masaki Ueyama, Masaaki Terunuma
  • Publication number: 20140261910
    Abstract: Disclosed herein are nickel beryllium alloys having improved corrosion and hardness characteristics relative to known nickel beryllium alloys. The alloys have a chemical composition with about 1.5% to 5% beryllium (Be) by weight, about 0.5% to 7% niobium (Nb) by weight; and nickel (Ni). Up to about 5 wt % chromium (Cr) may also be included. The alloys display improved hardness and corrosion resistance properties.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: MATERION CORPORATION
    Inventors: Carole L. Trybus, John C. Kuli, Fritz C. Grensing
  • Publication number: 20140234155
    Abstract: A Ni-based heat resistant alloy as pipe, plate, rod, forgings and the like consists of C?0.15%, Si?2%, Mn?3%, P?0.03%, S?0.01%, Cr: 15% or more and less than 28%, Mo: 3 to 15%, Co: more than 5% and not more than 25%, Al: 0.2 to 2%, Ti: 0.2% to 3%, Nd: fn to 0.08%, and O?0.4Nd, further containing, as necessary, at least one kind of Nb, W, B, Zr, Hf, Mg, Ca, Y, La, Ce, Ta, Re and Fe of specific amounts, the balance being Ni and impurities, wherein, fn=1.7×10?5d+0.05{(Al/26.98)+(Ti/47.88)+(Nb/92.91)}. In the formula, d denotes an average grain size (?m), and each element symbol denotes the content (mass %) of that element. If the alloy contains W, Mo+(W/2)?15% holds. The alloy has improved ductility after long-term use at high temperatures, and cracking due to welding can be avoided.
    Type: Application
    Filed: July 31, 2012
    Publication date: August 21, 2014
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hiroyuki Semba, Hirokazu Okada, Hiroyuki Hirata, Mitsuru Yoshizawa, Atsuro Iseda
  • Publication number: 20140234652
    Abstract: Coatings as may be used in a gas turbine are provided. A nickel based coating may include 15 to 40 wt % cobalt, 10 to 25 wt % chromium, 5 to 15 wt % aluminum, 0.05 to 1 wt % yttrium and/or at least one of elements from lanthanum series, 0.05 to 8 wt % ruthenium or iron, 0 to 1 wt % iridium, 0.05 to 5 wt % molybdenum, 0 to 3 wt % silicon, 0 to 5 wt % tantalum, 0 to 2 wt % hafnium, unavoidable impurities, and a balance of nickel. A cobalt based coating may include 15 to 40 wt % nickel, 15 to 28 wt % chromium, 5 to 15 wt % aluminum, 0.05 to 1 wt % yttrium and/or at least one of elements from lanthanum series, 0.05 to 5 wt % ruthenium and/or molybdenum, 0 to 2 wt % iridium, 0 to 3 wt % silicon, 0 to 5 wt % tantalum, hafnium, unavoidable impurities, and a balance of cobalt.
    Type: Application
    Filed: September 18, 2012
    Publication date: August 21, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventor: Xin-Hai Li
  • Patent number: 8784730
    Abstract: Nickel-based alloy consisting of (in % by mass) Si 0.8-2.0%, Al 0.001-0.1%, Fe 0.01-0.2%, C 0.001-0.10%, N 0.0005-0.10%, Mg 0.0001-0.08%, O 0.0001-0.010%, Mn max. 0.10%, Cr max. 0.10%, Cu max. 0.50%, S max. 0.008%, balance Ni and the usual production-related impurities.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 22, 2014
    Assignee: Outokumpu VDM GmbH
    Inventor: Heike Hattendorf
  • Patent number: 8771398
    Abstract: An alloy composition includes a blend of a first alloy and a second, different alloy. The blend has a combined composition including about 17.2 wt %-24.25 wt % of chromium, about 6 wt %-10.51 wt % of aluminum, about 3 wt %-23 wt % of cobalt, about 1.5 wt %-3.6 wt % of silicon, about 0.1 wt %-0.175 wt % of boron, up to about 0.163 wt % of hafnium, about 0.075 wt %-0.7 wt % of yttrium, and a balance of nickel.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: July 8, 2014
    Assignee: United Technologies Corporation
    Inventor: Michael Minor
  • Publication number: 20140134353
    Abstract: A nickel-based super alloy includes, by weight, about 1.5% to about 5.5% chromium, about 8% to about 12% aluminum, about 4% to about 8% tantalum, about 1.5% to about 5.5% tungsten, less than about 1% of one or more of elements selected from a group consisting of carbon, boron, zirconium, yttrium, hafnium, and silicon, and a balance of nickel.
    Type: Application
    Filed: November 13, 2012
    Publication date: May 15, 2014
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Don Mittendorf
  • Publication number: 20140076467
    Abstract: Nickel based alloys capable of forming bulk metallic glass are provided. The alloys include Ni—Cr—Si—B compositions, with additions of P and Mo, and are capable of forming a metallic glass rod having a diameter of at least 1 mm. In one example of the present disclosure, the Ni—Cr—Mo—Si—B—P composition includes about 4.5 to 5 atomic percent of Cr, about 0.5 to 1 atomic percent of Mo, about 5.75 atomic percent of Si, about 11.75 atomic percent of B, about 5 atomic percent of P, and the balance is Ni, and wherein the critical metallic glass rod diameter is between 2.5 and 3 mm and the notch toughness between 55 and 65 MPa m1/2.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 20, 2014
    Applicant: Glassimetal Technology Inc.
    Inventors: Jong Hyun Na, Michael Floyd, Glenn Garrett, Marios D. Demetriou, William L. Johnson
  • Publication number: 20140050609
    Abstract: The present invention relates to an oxidation resistant Nickel alloy, characterized in the following chemical composition (in % by weight): 4-7 Cr, 4-5 Si, 0.1-0.2 Y, 0.1-0.2 Mg, 0.1-0.2 Hf, remainder Ni and unavoidable impurities. A preferred embodiment has the following chemical composition (in % by weight): 6 Cr, 4.4 Si, 0.1 Y, 0.15 Mg, 0.1 Hf, remainder Ni and unavoidable impurities. This alloy has an improved oxidation resistance, good creep properties at high temperatures and.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 20, 2014
    Applicant: ALSTOM Technology Ltd
    Inventors: Mohamed Youssef NAZMY, Andreas Künzler, Hanspeter Zinn, Giuseppe Bandiera
  • Publication number: 20130337286
    Abstract: Known protective coatings having a high Cr content, as well as silicon, have brittle phases that become additionally brittle under the influence of carbon during use. A protective coating is provided. The protective coating includes the composition of 24% to 26% cobalt, 10% to 12% aluminum, 0.2% to 0.5% yttrium, 12% to 14% chromium, and the remainder nickel.
    Type: Application
    Filed: October 19, 2011
    Publication date: December 19, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20130323113
    Abstract: The invention relates to a nickel-chromium-aluminum-iron alloy, comprising (in wt %) 12 to 28% chromium, 1.8 to 3.0% aluminum, 1.0 to 15% iron, 0.01 to 0.5% silicon, 0.005 to 0.5% manganese, 0.01 to 0.20% yttrium, 0.02 to 0.60% titanium, 0.01 to 0.2% zirconium, 0.0002 to 0.05% magnesium, 0.0001 to 0.05% calcium, 0.03 to 0.11% carbon, 0.003 to 0.05% nitrogen, 0.0005 to 0.008% boron, 0.0001 to 0.010% oxygen, 0.001 to 0.030% phosphorus, max. 0.010% sulfur, max. 0.5% molybdenum, max. 0.5% tungsten, the remainder nickel and the common contaminants resulting from the process, wherein the following relations must be satisfied: 7.7C?x·a<1.0, wherein a=PN if PN>0 or a=0 if PN?0. Here, x=(1.0 Ti+1.06 Zr)/(0.251 Ti+0.132 Zr), PN=0.251 Ti+0.132 Zr?0.857 N, and Ti, Zr, N, and C are the concentration of the respective element in mass percent.
    Type: Application
    Filed: February 17, 2012
    Publication date: December 5, 2013
    Applicant: OUTOKUMPU VDM GMBH
    Inventors: Heike Hattendorf, Jutta Kloewer
  • Publication number: 20130302638
    Abstract: Known protective layers with a high Cr content and additionally silicon form brittle phases which additionally embrittle during use under the influence of carbon. A protective layer including the composition of from 24% to 26% cobalt, from 10% to 12% aluminium, from 0.2% to 0.5T yttrium, from 12% to 14% chromium, remainder nickel is provided.
    Type: Application
    Filed: November 28, 2011
    Publication date: November 14, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20130294964
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.43% silicon, up to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Application
    Filed: July 12, 2013
    Publication date: November 7, 2013
    Applicant: HAYNES INTERNATIONAL, INC.
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Publication number: 20130288072
    Abstract: An alloy to a protective layer for protecting a component against corrosion and/or oxidation, in particular at high temperatures is proposed. Known protective layers with a high Cr content and in addition silicon form brittle phases which additionally embrittle during use under the influence of carbon. The proposed protective layer has the composition of from 24% to 26% cobalt, from 10% to 12% aluminum, from 0.2% to 0.5% yttrium, from 12% to 14% chromium, from 0.3% to 5.0% tantalum, nickel.
    Type: Application
    Filed: November 22, 2011
    Publication date: October 31, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Patent number: 8568901
    Abstract: An alloy for use as a welding overlay for boiler tubes in a low NOx coal-fired boiler comprising in % by weight: 36 to 43% Cr, 0.2 to 5.0% Fe, 0-2.0% Nb, 0-1% Mo, 0.3 to 1% Ti, 0.5 to 2% Al, 0.005 to 0.05% C, 0.005 to 0.020% (Mg+Ca), 0-1% Mn, 0-0.5% Si, less than 0.01% S, balance substantially Ni and trace additions and impurities. The alloy provides exceptional coal ash corrosion resistance in low partial pressures of oxygen. The alloy also increases in hardness and in thermal conductivity at service temperature over time. The increased hardness improves erosion resistance of the tubes while the increased thermal conductivity improves the thermal efficiency of the boiler and its power generation capabilities.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: October 29, 2013
    Assignee: Huntington Alloys Corporation
    Inventors: Samuel D. Kiser, Brian A. Baker
  • Patent number: 8545643
    Abstract: An alloy designed for use in gas turbine engines which has high strength and a low coefficient of thermal expansion is disclosed. The alloy may contain in weight percent 7% to 9% chromium, 21% to 24% molybdenum, greater than 5% tungsten, up to 3% iron, with a balance being nickel and impurities. The alloy must further satisfy the following compositional relationship: 31.95<R<33.45, where the R value is defined by the equation: R=2.66Al+0.19Co+0.84Cr?0.16Cu+0.39Fe+0.60Mn+Mo+0.69Nb+2.16Si+0.47Ta+1.36Ti+1.07V+0.40W The alloy has better hardness after being age-hardened at 1400° F. (760° C.) if tungsten is present from greater than 5% up to 10% and a preferred density if the alloy contains greater than 5% up to 7% tungsten.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: October 1, 2013
    Assignee: Haynes International, Inc.
    Inventors: Lee Pike, S. Krishna Srivastava
  • Publication number: 20130224068
    Abstract: A metallic coating or alloy is provided. The metallic coating includes iron, cobalt, chromium, and aluminum. Tantalum may also be included. A new addition in nickel based coating with stabilized gamma/gamma? phases at high temperatures lead to a reduction of local stresses. A component including the metallic coating or alloy is also provided.
    Type: Application
    Filed: March 23, 2010
    Publication date: August 29, 2013
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Anand A. Kulkarni, Jonathon E. Shipper, JR., Werner Stamm
  • Patent number: 8506883
    Abstract: A weldable, high temperature oxidation resistant alloy with low solidification crack sensitivity and good resistance to strain age cracking. The alloy contains by weight percent, 25% to 32% iron, 18% to 25% chromium, 3.0% to 4.5% aluminum, 0.2% to 0.6% titanium, 0.2% to 0.4% silicon, 0.2% to 0.5% manganese and the balance nickel plus impurities. The Al+Ti content should be between 3.4 and 4.2 and the Cr/Al ratio should be from about 4.5 to 8.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: August 13, 2013
    Assignee: Haynes International, Inc.
    Inventors: Dwaine L. Klarstrom, Steven J. Matthews, Venkat R. Ishwar
  • Publication number: 20130200068
    Abstract: The invention relates to an iron-nickel-chromium-silicon alloy comprising (in wt.-%) 19 to 34% or 42 to 87% nickel, 12 to 26% chromium, 0.75 to 2.5% silicon, and additives of 0.05% to 1% Al, 0.01 to 1% Mn, 0.01 to 0.26% lanthanum, 0.0005 to 0.05% magnesium, 0.04 to 0.14% carbon, 0.02 to 0.14% nitrogen, and further comprising 0.0005 to 0.07% Ca, 0.002 to 0.020% P, a maximum of 0.01% sulfur, a maximum of 0.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 8, 2013
    Applicant: OUTOKUMPU VDM GMBH
    Inventor: OUTOKUMPU VDM GMBH
  • Publication number: 20130177442
    Abstract: A nickel-base superalloy for turbine vanes or turbine blades is provided. The nickel-base superalloy has in wt %: C: equal to or greater 0.1; Si: </=0.2; Mn: </=0.2; P: </=0.005; S:</=0.0015; Al: 4.0 to 5.5; B: </=0.03; Co: 5.0 to 9.0; Cr: 18.0 to 22.0; Cu: </=0.1; Fe: </=0.5; Hf: 0.9 to 1.3; Mg:</=0.002; Mo: </=0.5; N: </=0.0015; Nb: </=0.01; 0: </=0.0015; Ta: 4.8 to 5.2; Ti: 0.8 to 2.0; W: 1.8 to 2.5; Zr: </=0.01; Ni: balance; and inevitable impurities.
    Type: Application
    Filed: August 19, 2011
    Publication date: July 11, 2013
    Inventors: Paul Mathew Walker, Mick Whitehurst
  • Publication number: 20130164558
    Abstract: An oxidation resistant coating has a composition which comprises from 11 to 14 wt % chromium, from 11 to 14 wt % cobalt, from 7.5 to 9.5 wt % aluminum, from 0.20 to 0.60 wt % yttrium, from 0.10 to 0.50 wt % hafnium, from 0.10 to 0.30 wt % silicon, from 0.10 to 0.20 wt % zirconium, and the balance nickel.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 27, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Benjamin Joseph Zimmerman, Michael J. Maloney
  • Publication number: 20130157078
    Abstract: In an exemplary embodiment, a high temperature oxidation and hot corrosion resistant MCrAlX alloy is disclosed, wherein, by weight of the alloy, M comprises nickel in an amount of at least about 30 percent and X comprises from about 0.005 percent to about 0.19 percent yttrium. In another exemplary embodiment, a coated article is disclosed. The article includes a substrate having a surface. The article also includes a bond coat disposed on the surface, the bond coat comprising a high temperature oxidation and hot corrosion resistant MCrAlX alloy, wherein, by weight of the alloy, M comprises at least about 30 percent nickel and X comprises about 0.005 percent to about 0.19 percent yttrium.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kivilcim Onal, Canan Uslu Hardwicke, Jon Conrad Schaeffer
  • Publication number: 20130142637
    Abstract: A low rhenium nickel-base superalloy for single crystal casting that exhibits excellent high temperature creep resistance, while also exhibiting other desirable properties for such alloys, comprises 5.60% to 5.80% aluminum by weight, 9.4% to 9.9% cobalt by weight, 4.9% to 5.5% chromium by weight, 0.08% to 0.35% hafnium by weight, 0.50% to 0.70% molybdenum by weight, 1.4% to 1.6% rhenium by weight, 8.1% to 8.5% tantalum by weight, 0.60% to 0.80 titanium by weight, 7.6 to 8.0% tungsten by weight the balance comprising nickel and minor amounts of incidental impurity elements.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Inventors: Kenneth Harris, Jacqueline B. Wahl