Rare Earth, Magnesium Or Alkaline Earth Metal Containing Patents (Class 420/443)
  • Publication number: 20130136648
    Abstract: A metallic coating is provided. The nickel based metallic coating includes tantalum, cobalt, chromium, and aluminum. The nickel based metallic coating does not include silicon and/or hafnium and/or zirconium. A tantalum addition in nickel based coating stabilized the phases gamma/gamma1 at high temperatures leading to a reduction of local stresses.
    Type: Application
    Filed: March 23, 2010
    Publication date: May 30, 2013
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, JR., Werner Stamm
  • Publication number: 20130136948
    Abstract: A known protective layer has a high Cr content and additionally containing a silicon, forms brittle phases, which become additionally embrittled under the influence of carbon during use. A proposed protective layer has the following composition: 24% to 26% cobalt, 10.5% to 11.5% aluminum, 0.1% to 0.7% yttrium and/or at least one equivalent metal from the group of scandium and the rare earth elements, 12% to 15% chromium, optionally 0.1% to 3% tantalum, optionally 0.05% to 0.5% silicon, with the remainder being nickel.
    Type: Application
    Filed: May 31, 2011
    Publication date: May 30, 2013
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20130129522
    Abstract: A rhenium-free nickel-base superalloy for single crystal casting that exhibits excellent high temperature creep resistance, while also exhibiting other desirable properties for such alloys, comprises 5.60% to 5.85% aluminum, 9.4% to 9.9% cobalt, 5.0% to 6.0% chromium, 0.08% 0.35% hafnium, 0.50% to 0.70% molybdenum, 8.0% to 9.0% tantalum, 0.60% to 0.90% titanium, 8.5% to 9.8% tungsten, the balance comprising nickel and minor amounts of incidental elements.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Inventors: Kenneth Harris, Jacqueline B. Wahl
  • Publication number: 20130115072
    Abstract: In an exemplary embodiment, a high temperature oxidation and hot corrosion resistant MCrAlX alloy is disclosed, wherein M comprises cobalt and X comprises, by weight of the alloy, from about 0.001 percent to less than 0.19 percent yttrium. In these alloys, X may also optionally include silicon, including, by weight of the alloy, up to about 1.5 percent. In another exemplary embodiment, a coated article is disclosed. The coated article includes a substrate having a surface. The article also includes a bond coat disposed on the surface. The bond coat comprises a high temperature oxidation and hot corrosion resistant MCrAlX alloy, wherein M comprises cobalt and X comprises, by weight of the alloy, from about 0.001 percent to less than 0.19 percent yttrium.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kivilcim Onal, David Vincent Bucci, Canan Uslu Hardwicke, David Austin Wark
  • Publication number: 20130078136
    Abstract: Nickel-based alloy consisting of (in % by mass) Si 0.8-2.0%, Al 0.001-0.1%, Fe 0.01-0.2%, C 0.001-0.10%, N 0.0005-0.10%, Mg 0.0001-0.08%, O 0.0001-0.010%, Mn max. 0.10%, Cr max. 0.10%, Cu max. 0.50%, S max. 0.008%, balance Ni and the usual production-related impurities.
    Type: Application
    Filed: June 8, 2011
    Publication date: March 28, 2013
    Applicant: THYSSENKRUPP VDM GMBH
    Inventor: Heike Hattendorf
  • Publication number: 20130052077
    Abstract: A nickel-base alloy having the following composition (in weight percent unless otherwise stated): Cr 13/-17.5; Co 2.5-5.6; Fe 8.0-9.3; Si 0-0.6; Mn 0-0.95; Mo 0.5-2.3; W 2.7-3.0; Al 2.2-3.5; Nb 2.7-7.2; Ti 0-0.85; Ta 0-3.25; Hf 0.0-0.5; C 0.01-0.05; B 0.02-0.04; Zr 0.04-0.06; Mg 0.015-0.025; S<50 ppm; P<50 ppm; the balance being Ni and incidental impurities. The alloy has an improved combination of properties (principally resistance to surface environmental damage and dwell fatigue crack growth) compared with known alloys, and is intended to operate for prolonged periods of time above 700° C., and up to peak temperatures of 800° C.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 28, 2013
    Applicant: ROLLS-ROYCE PLC
    Inventor: Mark C. HARDY
  • Publication number: 20130029171
    Abstract: A nickel-base alloy comprising: 12-40 wt % chromium; up to 13 wt % copper; up to 8% aluminium; balance nickel and incidental impurities is disclosed. Such alloys show an improved carbon corrosion resistance at high temperatures. Such an alloy could therefore be utilised in chemical processing or conveying apparatus, such as steam reforming, syngas production, fertilizer production, ammonia production or coal gasification, or more generally where gases with high carbon potentials are present. The alloy may further comprise one or more rare earth elements, up to a combined total of 1 wt %.
    Type: Application
    Filed: July 19, 2012
    Publication date: January 31, 2013
    Inventors: Philip Johann Meinrad Speck, David J. Young
  • Publication number: 20120328900
    Abstract: Known protective layers having a high chromium content, as well as silicon, have brittle phases that become additionally brittle under the influence of carbon during use. A protective layer including the composition of 18% to 20% cobalt, 6% to 8% aluminum, 0.5% to 0.7% yttrium, 22% to 26% chromium, and the remainder nickel is provided.
    Type: Application
    Filed: January 10, 2011
    Publication date: December 27, 2012
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Patent number: 8334056
    Abstract: An alloy including: about 10 at % to about 30 at % of a Pt-group metal; less than about 23 at % Al; about 0.5 at % to about 2 at % of at least one reactive element selected from Hf, Y, La, Ce and Zr, and combinations thereof; a superalloy substrate constituent selected from the group consisting of Cr, Co, Mo, Ta, Re and combinations thereof; and Ni; wherein the Pt-group metal, Al, the reactive element and the superalloy substrate constituent are present in the alloy in a concentration to the extent that the alloy has a solely ??-Ni3Al phase constitution.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: December 18, 2012
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Brian M. Gleeson, Daniel J. Sordelet, Wen Wang
  • Publication number: 20120308427
    Abstract: An alloy composition includes a blend of a first alloy and a second, different alloy. The blend has a combined composition including about 17.2 wt %-24.25 wt % of chromium, about 6 wt %-10.51 wt % of aluminum, about 3 wt %-23 wt % of cobalt, about 1.5 wt %-3.6 wt % of silicon, about 0.1 wt %-0.175 wt % of boron, up to about 0.163 wt % of hafnium, about 0.075 wt %-0.7 wt % of yttrium, and a balance of nickel.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 6, 2012
    Inventor: Michael Minor
  • Patent number: 8268237
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: September 18, 2012
    Assignee: General Electric Company
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Publication number: 20120213660
    Abstract: An alloy designed for use in gas turbine engines which has high strength and a low coefficient of thermal expansion is disclosed. The alloy may contain in weight percent 7% to 9% chromium, 21% to 24% molybdenum, greater than 5% tungsten, up to 3% iron, with a balance being nickel and impurities. The alloy must further satisfy the following compositional relationship: 31.95<R<33.45, where the R value is defined by the equation: R=2.66Al+0.19Co+0.84Cr?0.16Cu+0.39Fe+0.60Mn+Mo+0.69Nb+2.16Si+0.47Ta+1.36Ti+1.07V+0.40W The alloy has better hardness after being age-hardened at 1400° F. (760° C.) if tungsten is present from greater than 5% up to 10% and a preferred density if the alloy contains greater than 5% up to 7% tungsten.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 23, 2012
    Applicant: HAYNES INTERNATIONAL, INC.
    Inventors: Lee Pike, S. Krishna Srivastava
  • Publication number: 20120189488
    Abstract: A nickel-base y/y? superalloy with a blend of at most moderate cost, high oxidation resistance, high hot corrosion resistance, moderate strengthening, adequate allow stability and comparatively good weldability is provided. The alloy includes up to 20 wt % of the sum of Co and Fe, between 17 and 21 wt % Cr, between 0.5 and 3 wt % of the sum of Mo and W, at most 2 wt % Mo, between 4.8 and 6 wt % Al, between 1.5 and 5 wt % Ta, between 0.01 and 0.2 wt % of the sum of C and B, between 0.01 and 0.2 wt % Zr between 0.05 and 1.5 wt % Hf, between 0.05 and 1.0 wtz % Si, and between 0.01 and 0.5 wt % of the sum of rare earths such as Sc, Y, the actinides and the lanthanides, such that at least two of these rare earths are present in the alloy, and no more than 0.3 wt % of any of these rare earths.
    Type: Application
    Filed: April 7, 2010
    Publication date: July 26, 2012
    Inventor: Magnus Hasselqvist
  • Publication number: 20120128526
    Abstract: A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases ?/?? at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Werner Stamm
  • Publication number: 20120125979
    Abstract: A method for repairing a component of a gas turbine and a solder alloy are disclosed. In an embodiment, the method includes applying the solder alloy to the component in an area of the component having a punctiform damage or a linear imperfection, where the solder alloy is a mixture of a NiCoCrAlY alloy and a Ni-based solder. A molded repair part made of the solder alloy is applied to the component in an area of the component having a planar defect. The component is heat treated to solder the molded repair part on the component and to solder the solder alloy applied to the component in the area of the component having the punctiform damage or the linear imperfection. The component is cooled after the heat treating and, following the cooling, the component is further heat treated.
    Type: Application
    Filed: August 5, 2010
    Publication date: May 24, 2012
    Applicant: MTU AERO ENGINES GMBH
    Inventors: Bernd Daniels, Michael Hillen
  • Publication number: 20120128525
    Abstract: A nickel-based coating or alloy is provided. The coating includes tantalum preferably without rhenium. The coating or alloy has stabilized the formation of phases ?/?? at high temperatures leading to a reduction of local stresses. A component is also provided. The substrate of the component includes a nickel-based or cobalt-based superalloy.
    Type: Application
    Filed: November 24, 2010
    Publication date: May 24, 2012
    Inventors: Anand A. Kulkarni, Jonathan E. Shipper, Werner Stamm
  • Patent number: 8137613
    Abstract: An austenitic stainless steel welded joint, whose base metal and weld metal each comprises, by mass percent, C: not more than 0.3%, Si: not more than 2%, Mn: 0.01 to 3.0%, P: more than 0.04% to not more than 0.3%, S: not more than 0.03%, Cr: 12 to 30%, Ni: 6 to 55%, rare earth metal(s): more than 0.2% to not more than 0.6%, sol. Al: 0.001 to 3% and N: not more than 0.3%, with the balance being Fe and impurities, and satisfies the formula of (Cr+1.5×Si+2×P)/(Ni+0.31×Mn+22×C+14.2×N+5×P)<1.388, in spite of having a high P content and showing the fully austenitic solidification, has excellent resistance to the weld solidification cracking. Therefore, the said austenitic stainless steel welded joint can be widely used in such fields where a welding fabrication is required. Each element symbol in the above formula represents the content by mass percent of the element concerned.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 20, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Takahiro Osuki, Kazuhiro Ogawa, Hirokazu Okada, Masaaki Igarashi
  • Publication number: 20120034127
    Abstract: A single crystal casting having substantially improved high-temperature oxidation resistance, hot corrosion (sulfidation) resistance, and resistance to creep under high temperature and high stress is characterized by an as-cast composition comprising a maximum sulfur content of 0.5 ppm by weight, a maximum phosphorus content of 20 ppm by weight, a maximum nitrogen content of 3 ppm by weight, a maximum oxygen content of 3 ppm by weight, and a combined yttrium and lanthanum content of 5-80 pm by weight. It has been discovered that careful control of the deleterious impurities, particularly sulfur, phosphorus, nitrogen and oxygen, in combination with a carefully controlled addition of yttrium and/or lanthanum provides unexpected improvements in corrosion and oxidation resistance, while also enhancing high-temperature, high-stress resistance to creep, without any detrimental effects on other mechanical properties, processing or producability, particularly castability.
    Type: Application
    Filed: August 5, 2010
    Publication date: February 9, 2012
    Inventor: Kenneth Harris
  • Publication number: 20120034098
    Abstract: A Ni-based single crystal superalloy which has the following composition: Co: 0.0 wt % or more to 15.0 wt % or less, Cr: 4.1 to 8.0 wt %, Mo: 2.1 to 4.5 wt %, W: 0.0 to 3.9 wt %, Ta: 4.0 to 10.0 wt %, Al: 4.5 to 6.5 wt %, Ti: 0.0 to 1.0 wt %, Hf: 0.00 to 0.5 wt %, Nb: 0.0 to 3.0 wt %, Re: 8.1 to 9.9 wt % and Ru: 0.5 to 6.5 wt % with the remainder including Ni and unavoidable impurities. As a result, the Ni-based single crystal superalloy which includes more than 8 wt % of Re in the composition ratio and has excellent specific creep strength and the turbine blade incorporating the Ni-based single crystal superalloy may be made.
    Type: Application
    Filed: April 16, 2010
    Publication date: February 9, 2012
    Inventors: Yasuhiro Aoki, Nobuhito Sekine, Akihiro Sato, Kazuhito Miyata, Kazuyoshi Chikugo
  • Patent number: 8101121
    Abstract: A hydrogen absorbing alloy represented by the formula Ln1?xMgxNiy?aAla (where Ln is at least one element selected from rare earth elements, 0.05?x<0.20, 2.8?y?3.9 and 0.10?a?0.25) which is used for an alkaline storage battery.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: January 24, 2012
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Shigekazu Yasuoka, Jun Ishida, Tetsuyuki Murata, Hiroshi Nakamura
  • Publication number: 20120014832
    Abstract: The Ni-based single crystal alloy disclosed here is a single crystal and has a chemical composition containing, as % by mass, Co: 8 to 12%, Cr: 5 to 7.5%, Mo: 0.2 to 1.2%, W: 5 to 7%, Al: 5 to 6.5%, Ta: 8 to 12%. Hf: 0.01 to 0.2%, Re: 2 to 4%, Si: 0.005 to 0.1%, with the balance of Ni and inevitable impurities.
    Type: Application
    Filed: January 15, 2010
    Publication date: January 19, 2012
    Inventors: Hiroshi Harada, Tadaharu Yokokawa, Yutaka Koizumi, Toshiharu Kobayashi, Masao Sakamoto, Kyoko Kawagishi, Ikuo Okada, Hidataka Oguma, Tøiji Torigoe, Masaki Taneike, Eisaku Ito, Junichiro Masada, Keizo Tsukagoshi, Hidemichi Koyabu
  • Publication number: 20110272070
    Abstract: A nickel chromium alloy with 0.4 to 0.6% carbon, 28 to 33% chromium, 15 to 25% iron, 2 to 6% aluminum, up to 2% silicon, up to 2% manganese, up to 1.5% niobium, up to 1.5% tantalum, up to 1.0% tungsten, up to 1.0% titanium, up to 1.0% zirconium, up to 0.5% yttrium, up to 1.0% cerium, up to 0.5% molybdenum, up to 0.1% nitrogen, remainder nickel, has a high oxidation and carburization stability, long-term rupture strength and creep resistance. This alloy is particularly suited as a material for components of petrochemical plants and for parts, for example tube coils of cracker and reformer furnaces, pre-heaters, and reformer tubes, as well as for use for parts of iron ore direct reduction plants.
    Type: Application
    Filed: October 13, 2009
    Publication date: November 10, 2011
    Applicant: Schmidt + Clemens GmbH + Co. KG
    Inventors: Dietlinde Jakobi, Peter Karduck, Alexander Freiherr Von Richthofen
  • Publication number: 20110274579
    Abstract: A welding additive is provided. A component including a welding additive is also provided. The welding additive improves the weldability of a few nickel-based superalloys and includes the following contents (in wt %): 10.0%-20.0% chromium, 5.0%-15.0% cobalt, 0.0%-10.0% molybdenum, 0.5-3.5% tantalum, 0.0%-5.0% titanium, 1.5%-5.0% aluminum, 0.3%-0.6% boron, remainder nickel.
    Type: Application
    Filed: September 10, 2009
    Publication date: November 10, 2011
    Inventor: Nikolai Arjakine
  • Publication number: 20110256421
    Abstract: A metallic coating for use in a high temperature application is created from a nickel base alloy containing from 5.0 to 10.5 wt % aluminum, from 4.0 to 15 wt % chromium, from 2.0 to 8.0 wt % tungsten, from 3.0 to 10 wt % tantalum, and the balance nickel. The metallic coating has particular utility in protecting single crystal superalloys used in high temperature applications such as turbine engine components.
    Type: Application
    Filed: April 16, 2010
    Publication date: October 20, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Sudhangshu Bose, Alan D. Cetel, David A. Litton, Michael J. Maloney, Venkatarama K. Seetharaman, Shiela Woodard
  • Publication number: 20110250463
    Abstract: Nickel based alloy intended for use at high temperatures wherein it comprises in percent by weight (wt-%) C 0.05-0.2 Si max 1.5 Mn max 0.5 Cr 15-20 Al 4-6 Fe 15-25 Co max 10 N 0.03-0.15 O max 0.5 one or more elements selected from the group consisting of Ta, Zr, Hf, Ti and Nb 0.25-2.2 one or more elements selected from the group consisting of REM max 0.5 balance Ni and normally occurring impurities.
    Type: Application
    Filed: November 6, 2009
    Publication date: October 13, 2011
    Applicant: Sandvik Intellectual Property AB
    Inventors: Thomas Helander, Mats Lundberg, Bo Jönsson
  • Patent number: 8034469
    Abstract: There is described a two-Level Layer System with Pyrochlore Phase and Oxides. Besides a good thermal insulation property, thermal insulation layer systems must also have a long lifetime of the thermal insulation layer. The layer system has a layer sequence of a metallic bonding layer, an inner ceramic layer and an outer ceramic layer, which are specially matched to one another.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: October 11, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventor: Ramesh Subramanian
  • Publication number: 20110200443
    Abstract: A nickel base gamma prime strengthened superalloy with a unique blend of adequate hot corrosion resistance, high oxidation resistance, high coating compatibility, adequate phase stability, adequate creep resistance and low density is disclosed. The composition comprises: Up to 20 wt % Co, between 12 and 14 wt % Cr, between 1 and 2 wt % Mo, between 1.4 and 2.8 wt % W, between 5.1 and 5.9 wt % Al, between 1.1 and 1.6 wt % Ti, between 3 and 7 wt % Ta, between 0.01 and 0.3 wt % of C+Zr+B, between 0.05 and 1 wt % Hf, between 0.05 and 1 wt % Si, and between 0.01 and 0.2 wt % of the sum of rare earths such as Sc, Y, the actinides and the lanthanides. The composition is intended for use in hot components such as gas turbine blades, and said components are preferably produced by clean casting.
    Type: Application
    Filed: July 8, 2009
    Publication date: August 18, 2011
    Inventor: Magnus Hasselqvist
  • Publication number: 20110154947
    Abstract: A brazing composition for the brazing of superalloys including a base material with at least one initial phase is provided. The initial phase has a solidus temperature that is below the solidus temperature of the base material and, above a certain temperature, forms with the base material and/or with at least one further initial phase at least one resultant phase, the solidus temperature of which is higher that the solidus temperature of the initial phases. Heat treatment takes place in two stages, wherein the temperature of the second heat treatment is preferably 800-1200° C. The brazing composition may likewise be of the type MCrAlX, and the power particles of the initial phase may be in the form of nanoparticles.
    Type: Application
    Filed: March 9, 2011
    Publication date: June 30, 2011
    Inventors: Brigitte Heinecke, Volker Vosberg
  • Publication number: 20110142713
    Abstract: Disclosed is a welding material for a Ni-based alloy, comprising components expressed as follows: C?0.05 mass %; 8 mass %?Cr?25 mass %; Fe?4.0 mass %; W?15 mass %; 5 mass %?Mo+½(W+Re)?20 mass %; Co?20 mass %; 0.01 mass %?Al<2.0 mass %; 0.01 mass %?Ti<2.0 mass %; Al+½Ti?3.0 mass %; Nb+½Ta?1.5 mass %; B?0.007 mass %; Zr?0.04 mass %; 0.01 mass %?Si?0.5 mass %; Mn?1.0 mass %; P?0.010 mass %; S?0.002 mass %; O?0.005 mass %; and Ni and unavoidable impurities which constitute the balance.
    Type: Application
    Filed: June 29, 2009
    Publication date: June 16, 2011
    Inventors: Kenji Kawasaki, Ryuichi Yamamoto, Yoshikuni Kadoya, Shin Nishimoto, Seiichi Kawaguchi
  • Publication number: 20110142712
    Abstract: A nickel base gamma prime strengthened superalloy with a unique blend of high hot corrosion resistance, high oxidation resistance, high coating compatibility, good weldability, high phase stability and at least moderate creep resistance is disclosed. The composite includes: Up to 20 wt % Co, between 17 and 21 wt % Cr, between 2 and 5 wt % of Mo+W+Re, at most 2 wt % Mo, between 4 and 4.7 wt % AL, between 3 and 7 wt % Ta, 0.01 and 0.2 wt % Ta, between 0.01 and 0.3 wt % of C+Zr+B between 0.05 and 1 wt % Hf, between 0.05 and 1 wt % Si, and between 0.01 and 0.2 wt % of the sum of rare earths such as SC, Y, the actinides and the lanthanides. The composition is intended for use as base alloy for moderately stressed hot components and as filler alloy for cladding and weld repair in moderately stressed parts of hot components.
    Type: Application
    Filed: February 27, 2009
    Publication date: June 16, 2011
    Inventors: Magnus Hasselqvist, Gordon Mccolvin
  • Publication number: 20110135489
    Abstract: Nickel-based superalloys, turbine blades, and methods of improving or repairing turbine engine components are included. A nickel-based superalloy includes, by weight, about 5% to about 12% cobalt, about 3% to about 10% chromium, about 5.5% to about 6.3% aluminum, about 5% to about 10% tantalum, about 3% to about 10% rhenium, about 2% to about 5% of one or more of elements selected from a group consisting of platinum, ruthenium, palladium, and iridium, about 0.1% to about 1.0% hafnium, about 0.01% to about 0.4% yttrium, about 0.01% to about 0.15% silicon, and a balance of nickel.
    Type: Application
    Filed: December 8, 2009
    Publication date: June 9, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Tom Strangman
  • Publication number: 20110101619
    Abstract: A MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal are provided. The MCrAlY alloy includes chromium, aluminum, yttrium and iron and optionally titanium, hafnium or silicon. The honeycomb seal includes a substrate, honeycomb cells and a protective coating on side walls of the honeycomb cells or a diffusion area inside side walls of the honeycomb cells, the protective coating or the diffusion area including the MCrAlY alloy.
    Type: Application
    Filed: January 23, 2009
    Publication date: May 5, 2011
    Inventors: David Fairbourn, Paul Mathew Walker
  • Publication number: 20110076179
    Abstract: A nickel-base superalloy composition including (measured in % by weight) from about 6.8 to about 7.5% aluminum, from about 4 to about 8% tantalum, from about 4 to about 10% chromium, from about 2 to about 7% tungsten, from 0 to about 6% rhenium, from 0 to about 5% cobalt, from 0 to about 0.2% silicon, optionally, from about 0.15 to about 0.7% hafnium, from 0 to about 0.5% titanium, from 0 to about 4% molybdenum, from 0 to about 0.005% boron, from 0 to about 0.06% carbon, from 0 to about 0.03% of a rare earth addition selected from the group consisting of yttrium, lanthanum, cesium, and combinations thereof, balance nickel and incidental impurities. The nickel-base superalloy composition may be used in single-crystal or directionally solidified superalloy articles such as high pressure turbine blades for a gas turbine engine.
    Type: Application
    Filed: March 24, 2009
    Publication date: March 31, 2011
    Inventors: Kevin Swayne O'Hara, Laura Jill Carroll
  • Publication number: 20110076180
    Abstract: Rhenium-free nickel based alloys are provided. More particularly, the alloys comprise preferred levels and ratios of elements so as to achieve good high temperature strength of both gamma matrix phase and gamma prime precipitates, as well as good environmental resistance, without using rhenium. When cast and directionally solidified into single crystal form, the alloys exhibit creep and oxidation resistance substantially equivalent to or better than rhenium-bearing single-crystal alloys. Further, the alloys can be processed by directional solidification into articles in single crystal form or columnar structure comprising fine dendrite arm spacing, e.g., less than 400 ?m, if need be, so that further improvements in mechanical properties in the articles can be seen.
    Type: Application
    Filed: September 30, 2009
    Publication date: March 31, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Akane Suzuki, Michael Francis Xavier Gigliotti, JR., Shyh-Chin Huang, Pazhayannur Ramanathan Subramanian
  • Publication number: 20110059323
    Abstract: A nickel-based protective layer which has a high percentage in chromium and optionally silicon and/or yttrium is provided. The nickel-based protective layer is used as low-temperature corrosion protective layer of nickel-or cobalt-based alloys. The alloy of which the layer is made and a layer system are also provided. The alloy may also include a refractory element such as hafnium or scandium.
    Type: Application
    Filed: March 4, 2008
    Publication date: March 10, 2011
    Inventors: Friedhelm Schmitz, Werner Stamm
  • Publication number: 20100310411
    Abstract: A subject for the invention is to diminish the occurrence of streak-type segregation in producing a material comprising a Ni-based superalloy. The invention relates to a Ni-based superalloy having excellent unsusceptibility to segregation, characterized by comprising: 0.005 to 0.15 mass % of C; 8 to 22 mass % of Cr; 5 to 30 mass % of Co; equal to or greater than 1 and less than 9 mass % of Mo; 5 to 21 mass % of W; 0.1 to 2.0 mass % of Al; 0.3 to 2.5 mass % of Ti; up to 0.015 mass % of B; and up to 0.01 mass % of Mg, with the remainder comprising Ni and unavoidable impurities.
    Type: Application
    Filed: February 13, 2009
    Publication date: December 9, 2010
    Applicants: THE JAPAN STEEL WORKS, LTD., MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Satoru Ohsaki, Tatsuya Takahashi, Koji Kajikawa, Eiji Maeda, Yoshikuni Kadoya, Ryuichi Yamamoto, Takashi Nakano
  • Publication number: 20100297472
    Abstract: A metallic coating for protecting a substrate from high temperature oxidation and hot corrosion environments comprising about 2.5 to about 13.5 wt. % cobalt, about 12 to about 27 wt. % chromium, about 5 to about 7 wt. % aluminum, about 0.0 to about 1.0 wt. % yttrium, about 0.0 to about 1.0 wt. % hafnium, about 1.0 to about 3.0 wt. % silicon, about 0.0 to about 4.5 wt. % tantalum, about 0.0 to about 6.5 wt. % tungsten, about 0.0 to about 2.0 wt. % rhenium, about 0.0 to about 1.0 wt. % molybdenum and the balance nickel.
    Type: Application
    Filed: May 22, 2009
    Publication date: November 25, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Michael Minor, Paul M. Pellet, Michael L. Miller, Brian S. Tryon
  • Publication number: 20100279148
    Abstract: Nickel-based alloys and turbine components are provided. In an embodiment, by way of example only, a nickel-based alloy includes, by weight, about 29.5 percent to about 31.5 percent aluminum, about 0.20 percent to about 0.60 percent hafnium, about 0.08 percent to about 0.015 percent yttrium, and a balance of nickel. In another embodiment, by way of example only, a nickel-based alloy includes, by weight, about 9.7 percent to about 10.3 percent of cobalt, about 15.5 percent to about 16.5 percent of chromium, about 6.6 percent to about 7.2 percent of aluminum, about 5.7 percent to about 6.3 percent of tantalum, about 2.7 percent to about 3.3 percent of tungsten, about 1.8 percent to about 2.3 percent of rhenium, about 0.20 percent to about 1.2 percent of hafnium, about 0.20 percent to about 0.60 percent of silicon, and a balance of nickel.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: Yiping Hu
  • Publication number: 20100266865
    Abstract: An article of manufacture for reducing susceptibility of a metal pipe to metal dusting degradation. The article includes a multi-layer tubing having an alloy layer and a copper layer. The alloy layer can include a Ni based, an Al based and an Fe based alloy layer. In addition, layers of chrome oxide, spinel and aluminum oxide can be used.
    Type: Application
    Filed: November 20, 2007
    Publication date: October 21, 2010
    Inventors: Krishnamurti Natesan, Zuotao Zeng
  • Publication number: 20100254822
    Abstract: A nickel-base superalloy composition including (measured in % by weight) from about 6.5 to about 7.5% aluminum, from about 4 to about 8% tantalum, from about 3 to about 10% chromium, from about 2 to about 7% tungsten, from 0 to about 4% molybdenum, from 0 to about 6% rhenium, from 0 to less than about 0.001% niobium, from 0 to about 5% cobalt, from 0 to about 0.2% silicon, from 0 to about 0.06% carbon, optionally, from 0 to about 0.5% titanium, from 0 to about 0.005% boron, from about 0.15 to about 0.7% hafnium, from 0 to about 0.03% of a rare earth addition selected from the group consisting of yttrium, lanthanum, cesium, and combinations thereof, balance nickel and incidental impurities. The nickel-base superalloy composition may be used in single-crystal or directionally solidified superalloy articles such as high pressure turbine blades for a gas turbine engine.
    Type: Application
    Filed: September 30, 2009
    Publication date: October 7, 2010
    Inventors: Brian Thomas Hazel, Kevin Swayne O'Hara, Laura Jill Carroll
  • Patent number: 7785532
    Abstract: A nickel-molybdenum-chromium alloy, capable of withstanding both strong oxidizing and strong reducing 2.5% hydrochloric acid solutions at 121° C., contains 20.0 to 23.5 wt. % molybdenum and 13.0 to 16.5 wt. % chromium with the balance being nickel plus impurities and residuals of elements used for control of oxygen and sulfur.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: August 31, 2010
    Assignee: Haynes International, Inc.
    Inventor: Paul Crook
  • Publication number: 20100172789
    Abstract: A method of coating a substrate with cryo-milled, nano-grained particles includes forming a face-centered-cubic gamma matrix comprising nickel, cobalt, chromium, tungsten and molybdenum, adding a dispersion strengthening material to the gamma matrix to form a first mixture, cryo-milling the first mixture to form a second mixture to form a nano-grained structure, and cold spraying the second mixture onto a substrate to form a coating having a nano-grained structure.
    Type: Application
    Filed: January 8, 2009
    Publication date: July 8, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Eklavya Calla, Krishnamurthy Anand, Pazhayannur Ramanathan Subramanian, Sanjay Kumar Sondhi, Ramkumar Oruganti
  • Publication number: 20100172790
    Abstract: The invention relates to an iron-nickel-chromium-silicon alloy comprising (in wt.-%) 19 to 34% or 42 to 87% nickel, 12 to 26% chromium, 0.75 to 2.5% silicon, and additives of 0.05% to 1% Al, 0.01 to 1% Mn, 0.01 to 0.26% lanthanum, 0.0005 to 0.05% magnesium, 0.04 to 0.14% carbon, 0.02 to 0.14% nitrogen, and further comprising 0.0005 to 0.07% Ca, 0.002 to 0.020% P, a maximum of 0.01% sulfur, a maximum of 0.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 8, 2010
    Inventors: Heike HATTENDORF, Juergen Webelsiep
  • Publication number: 20100166594
    Abstract: An austenitic heat resistant alloy, which comprises, by mass percent, C?0.15%, Si?2%, Mn?3%, Ni: 40 to 80%, Cr: 15 to 40%, W and Mo: 1 to 15% in total content, Ti?3%, Al?3%, N?0.03%, O?0.03%, with the balance being Fe and impurities, and among the impurities P?0.04%, S?0.03%, Sn?0.1%, As?0.01%, Zn?0.01%, Pb?0.01% and Sb?0.01%, and satisfies the conditions [P1=S+{(P+Sn)/2}+{(As+Zn+Pb+Sb)/5}?0.050], [0.2?P2=Ti+2Al?7.5?10×P1], [P2?9.0?100×O] and [N?0.002×P2+0.019] can prevent both the liquation crack in the HAZ and the brittle crack in the HAZ and also can prevent defects due to welding fabricability, which occur during welding fabrication, and moreover has excellent creep strength at high temperatures. Therefore, the alloy can be used suitably as a material for constructing high temperature machines and equipment, such as power generating boilers, plants for the chemical industry and so on.
    Type: Application
    Filed: December 24, 2009
    Publication date: July 1, 2010
    Inventors: Hiroyuki Hirata, Atsuro Iseda, Hirokazu Okada, Hiroyuki Semba, Kaori Kawano, Osamu Miyahara
  • Patent number: 7740719
    Abstract: A cutter is composed of a Ni—Cr alloy containing from 32 to 44 mass percent of Cr, from 2.3 to 6.0 mass percent of Al, the balance being Ni, impurities, and additional trace elements and having a Rockwell C hardness of 52 or more. This Ni—Cr alloy provides a cutter produced with a superior workability and by a significantly simplified process, having a low deterioration in the hardness even when heated in use, having excellent corrosion resistance and low-temperature embrittlement resistance, and satisfactorily maintaining the cutting performance for a long time.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: June 22, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohisa Arai, Takashi Rokutanda, Tadaharu Kido
  • Publication number: 20100143745
    Abstract: NiCoCrAl layers used as anticorrosive layers characterized by additional corrosion stability enhancing agents that substantially improve the anticorrosive properties are provided. Corrosion stability is not only determined by the composition and the percentage of the main alloy elements of nickel, cobalt, chromium and aluminium, but also by the addition of corrosion stability enhancing agents, such yttrium, cerium, tantalum, niobium, silicon, titanium, zirconium, and hafnium.
    Type: Application
    Filed: August 15, 2007
    Publication date: June 10, 2010
    Inventor: Werner Stamm
  • Publication number: 20100135846
    Abstract: A first embodiment of a nickel based alloy consists essentially of from 3.0 to 5.2 wt % chromium, from 1.5 to 3.0 wt % molybdenum, from 6.0 to 12.5 wt % tungsten, from 5.0 to 11 wt % tantalum, from 5.5 to 6.5 wt % aluminum, from 11 to 14 wt % cobalt, from 0.001 to 1.75 wt % rhenium, from 0.2 to 0.6 wt % hafnium, up to 0.05 wt % yttrium, up to 3.0 wt % ruthenium, and the balance nickel. Another embodiment of a nickel based alloy consists essentially of from 1.0 to 3.0 wt % chromium, up to 2.5 wt % molybdenum, from 11 to 16 wt % tungsten, from 4.0 to 8.0 tantalum, from 5.7 to 6.5 wt % aluminum, from 11 to 15 wt % cobalt, from 2.0 to 4.0 wt % rhenium, from 0.2 to 0.6 wt % hafnium, up to 0.05 wt % yttrium, up to 3.0 wt % ruthenium, and the balance nickel.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Alan D. Cetel, Dilip M. Shah
  • Patent number: 7662740
    Abstract: A fuel cell catalyst comprising platinum, chromium, and copper, nickel or a combination thereof. In one or more embodiments, the concentration of platinum is less than 50 atomic percent, and/or the concentration of chromium is less than 30 atomic percent, and/or the concentration of copper, nickel, or a combination thereof is at least 35 atomic percent.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: February 16, 2010
    Assignees: Symyx Technologies, Inc., Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Konstantinos Chondroudis, Alexander Gorer, Martin Devenney, Ting He, Hiroyuki Oyanagi, Daniel M. Giaquinta, Kenta Urata, Hiroichi Fukuda, Qun Fan, Peter Strasser, Keith James Cendak, Jennifer N. Cendak, legal representative
  • Publication number: 20100028712
    Abstract: An alloy including about 16 at % to about 23 at % Al; about 3 at % to about 10 at % Cr; up to about 5 at % Si; up to about 0.3 at % of at least two reactive elements selected from Y, Hf, Zr, La, and Ce; and Ni. The alloy has a volume fraction of ??-Ni3Al phase greater than about 75%.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Inventor: Brian M. Gleeson
  • Publication number: 20100003163
    Abstract: Nickel-based alloy, consisting of (in % by mass) Al 1.2-<2.0% Si 1.2-<1.8% C 0.001-0.1% S 0.001-0.1% Cr 0.03-0.1% Mn 0.03-0.1% Cu max. 0.1% Fe 0.02-0.2% Mg 0.005-0.06% Pb max. 0.005% Y 0.05-0.15% and Hf 0.05-0.10% or Y 0.05-0.15% and La 0.05-0.10% or Y 0.05-0.15% and Hf 0.05-0.10% and La 0.05-0.10% Ni remainder together with manufacturing-related impurities.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 7, 2010
    Inventors: Jutta Kloewer, Frank Scheide