Tantalum, Niobium, Vanadium, Or Hafnium Containing Patents (Class 420/447)
  • Patent number: 6475642
    Abstract: An oxidation-resistant coating is described, formed of an alloy containing: about 40 to about 50 atom % aluminum and about 0.5 atom % to about 3 atom % tantalum; with a balance of nickel; cobalt, iron, or combinations thereof. The coating may also include chromium and a precious metal, as well as other components, such as zirconium or molybdenum. A method for applying the oxidation-resistant coating to a substrate is also described. The substrate can be formed of superalloy material, e.g., a turbine engine component. Related articles are also disclosed.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: November 5, 2002
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Ramgopal Darolia
  • Publication number: 20020157738
    Abstract: A high-temperature component made of a nickel super-alloy has the following composition in wt %: 11-13% of Cr, 3-5% of W, 0.5-2.5% of Mo, 3-5% of Al, 3-5% of Ti, 3-7% of Ta, 1-5% of Re and a remainder formed of nickel. A corresponding component which is also provided is formed of an alloy having a composition essentially similar to that mentioned above, but with the rhenium proportion replaced with 0.1-5 wt % of ruthenium.
    Type: Application
    Filed: January 29, 2002
    Publication date: October 31, 2002
    Inventors: Ralf Burgel, Winfried Esser, Jorn Grossmann, Wolfgang Hermann, Hael Mughrabi, Jurgen Preuhs, Florian Pyczak, Alfred Scholz, Robert Singer, Andreas Volek
  • Patent number: 6458318
    Abstract: A heat resistant Ni base alloy comprises, on a mass% basis, 0.1% or less C, 2% or less Si, 2% or less Mn, 0.005% or less S, 10 to 25% Cr, 2.1 to less than 4.5% Al, 0.08% or less N, 0.001 to 1% in total of one or more elements of B: 0.03% or less, Zr: 0.2% or less and Hf: 0.8% or less, and 2.5 to 15% in total of one or more elements of Mo: 0.01 to 15% and W: 0.01 to 9%. The alloy is suitable as a material for a pipe used in ethylene cracking furnace.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: October 1, 2002
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Yoshitaka Nishiyama, Toshiro Anraku, Yoshiatsu Sawaragi, Kazuhiro Ogawa, Hirokazu Okada
  • Publication number: 20020036037
    Abstract: A nickel-based fine grained alloy consisting essentially of 40-55 wt % Ni, 14.5-21 wt % Cr, 2.5-5.5 wt % Nb+Ta, up to 3.3 wt % Mo, 0.65-2.00 wt % Ti, 0.10-0.8 wt % Al, up to 0.35 wt % Mn, up to 0.07 wt % C, up to 0.015 wt % S, up to 0.35 wt % Si, at least 0.016 wt % P, from 0.003 % to 0.030 wt % B, and the balance Fe and incidental impurities, has a high stress rupture life.
    Type: Application
    Filed: April 30, 2001
    Publication date: March 28, 2002
    Inventors: Richard L. Kennedy, Wei-Di Cao
  • Publication number: 20020015656
    Abstract: A low thermal expansion Ni-base superalloy contains, by weight % (hereinafter the same as long as not particularly defined), C: 0.15% or less; Si: 1% or less; Mn: 1% or less; Cr: 5 to 20%; at least one of Mo, W and Re of Mo+½ (W+Re) of 10 to 25%; Al: 0.2 to 2%; Ti: 0.5 to 4.5%; Fe of 10% or less; at least one of B: 0.02% and Zr: 0.2% or less; a remainder of Ni and inevitable impurities; wherein the atomic % of Al+Ti is 2.5 to 7.0.
    Type: Application
    Filed: March 2, 2000
    Publication date: February 7, 2002
    Inventors: Ryotaro Magoshi, Yoshikuni Kadoya, Ryuichi Yamamoto, Toshiharu Noda, Susumu Isobe, Michio Okabe
  • Patent number: 6284392
    Abstract: A cast nickel-base superalloy component (10) is made having a composition containing small amounts of both boron and zirconium which are effective in combination to provide increased weldability, where such alloy is adapted for welding by weld (18) to a second superalloy piece, where the two pieces are firmly bonded together and have a Sigmajig transverse stress value (16) greater than 137.9 million Newtons per square meter.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: September 4, 2001
    Assignee: Siemens Westinghouse Power Corporation
    Inventors: Brij B. Seth, Easo P. George, Sudarsanum S. Babu, Gene M. Goodwin, Stanislaus A. David, Carol E. Moyer
  • Patent number: 6242113
    Abstract: A nickel, chromium, iron alloy for use in producing weld deposits. The alloy comprises, in weight percent, about 27 to 31.5 chromium; about 7 to 11 iron; about 0.005 to 0.05 carbon; less than about 1.0 manganese, preferably 0.30 to 0.95 manganese; about 0.60 to 0.95 niobium; less than 0.50 silicon, preferably 0.10 to 0.30 silicon; 0.01 to 0.35 titanium; 0.01 to 0.25 aluminum; less than 0.20 copper; less than 1.0 tungsten; less than 1.0 molybdenum; less than 0.12 cobalt; less than 0.10 tantalum; less than about 0.10 zirconium, preferably 0.002 to 0.10 zirconium; less than about 0.01 sulfur; less than about 0.01 boron, preferably 0.001 to 0.01 boron; less than about 0.02 phosphorous; and balance nickel and incidental impurities.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: June 5, 2001
    Assignee: Inco Alloys International, Inc.
    Inventor: Samuel D. Kiser
  • Patent number: 6210635
    Abstract: A composition comprises cobalt; chromium; carbon; boron; zirconium; aluminum; at least one refractory material; and nickel. The composition is used as a repair material for repairing superalloy articles in a repair process.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: April 3, 2001
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Aaron Todd Frost, Charles Gitahi Mukira, Ann Melinda Ritter, Paul Vincent Crimi, Raymond Alan White
  • Patent number: 6132535
    Abstract: Provided is a process for improving alloy properties which can improve the high-temperature ductility of a Ni-base heat-resisting alloy while maintaining its excellent high-temperature strength and weldability.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: October 17, 2000
    Assignees: Mitsubishi Heavy Industries, Ltd., Mitsubishi Steel Mfg. Co., Ltd.
    Inventors: Ikuo Okada, Taiji Torigoe, Hisataka Kawai, Koji Takahashi, Itaru Tamura, Shyuichi Sakashita
  • Patent number: 6054096
    Abstract: Improved compositions for fabricating nickel superalloy single crystal articles are described. The compositions are characterized by the substantial absence of carbon, boron, zirconium and vanadium and intentional additions of cobalt. The cobalt additions increase the stability of the compositions and provide enhanced heat treatability. Single crystal articles of these compositions have utility as gas turbine engine components.
    Type: Grant
    Filed: November 3, 1997
    Date of Patent: April 25, 2000
    Assignee: United Technologies Corporation
    Inventors: David N. Duhl, Alan D. Cetel
  • Patent number: 5997809
    Abstract: An alloy resistant to carburization and high temperature oxidation. The alloy consists essentially of, by weight percent, 27 to 35 chromium, 0 to 7 iron, about 3 to 4.4 aluminum, 0 to 0.4 titanium, 0.2 to 3 niobium, 0.12 to 0.5 carbon, 0 to 0.05 zirconium, 0.002 to 0.05 total cerium and yttrium, 0 to I manganese, 0 to I silicon, 0 to 0.5 calcium plus magnesium, 0 to 0.1 boron and balance nickel plus incidental impurities.
    Type: Grant
    Filed: December 8, 1998
    Date of Patent: December 7, 1999
    Assignee: Inco Alloys International, Inc.
    Inventors: Gaylord Darrell Smith, Norman Farr, Brian Allen Baker
  • Patent number: 5964966
    Abstract: Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: October 12, 1999
    Assignee: Lockheed Martin Energy Research Corporation
    Inventors: Amit Goyal, Eliot D. Specht, Donald M. Kroeger, Mariappan Paranthaman
  • Patent number: 5939204
    Abstract: An article that is used to transport a hot oxidizing gas, in particular a flue gas in a gas turbine, has a surface acted upon by the gas. This surface is formed by an alloy which has 10 to 40 wt. % chrome, 1 to 20 wt. % gallium and optionally other specific elements in a base including at least one element from the group of iron, cobalt and nickel. In the alloy the gallium replaces aluminum and/or silicon. The alloy is deposited especially as a protective layer on a superalloy substrate and optionally coated with a gas-permeable ceramic layer.
    Type: Grant
    Filed: February 17, 1998
    Date of Patent: August 17, 1999
    Assignee: Siemens Aktiengesellschaft
    Inventor: Norbert Czech
  • Patent number: 5730792
    Abstract: Thick opaque ceramic coatings are used to protect delicate microelectronic devices against excited energy sources, radiation, light, abrasion, and wet etching techniques. The thick opaque ceramic coating are prepared from a mixture containing tungsten carbide (WC), tungsten metal (W), and phosphoric anhydride, i.e., phosphorous pentoxide (P.sub.2 O.sub.5), carried in an aqueous alkanol dispersion of colloidal silica and partial condensate of methylsilanetriol. The coating is pyrolyzed to form a ceramic SiO.sub.2 containing coating. A second coating of plasma enhanced chemical vapor deposited (PECVD) silicon carbide (SiC), diamond, or silicon nitride (Si.sub.3 N.sub.4), can be applied over the thick opaque ceramic coating to provide hermeticity. These coatings are useful on patterned wafers, electronic devices, and electronic substrates. The thick opaque ceramic coating is unique because the methyl silsesquioxane resin is resistant to etching using wet chemicals, i.e., acids such as H.sub.3 PO.sub.4 and H.sub.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: March 24, 1998
    Assignee: Dow Corning Corporation
    Inventors: Robert Charles Camilletti, Loren Andrew Haluska, Keith Winton Michael
  • Patent number: 5728279
    Abstract: Target for a magnetron-cathode sputtering apparatus is made from a cobalt base alloy containing additional elements in such concentrations that intermetallic phases are formed with at least one of these elements and intermetallic phases are observed on the basis of the phase diagram in the state of equilibrium at the operating temperature of the target. The grain boundaries, sub-grain boundaries, twin-grain boundaries or slip bands of the cobalt mixed crystal forming the matrix are decorated with the elements forming the intermetallic phases. X-ray diffraction diagrams made from the target display reflections of an intermetallic phase which is largely absent in the cast state and which forms only during a heat treatment in the temperature range below the solidus temperature of the alloy by a solid state reaction.
    Type: Grant
    Filed: December 15, 1994
    Date of Patent: March 17, 1998
    Assignee: Leybold Materials GmbH
    Inventors: Martin Schlott, Martin Weigert, Kwei Teng, Bruce Gehman
  • Patent number: 5599385
    Abstract: A protective coating resistant to corrosion at medium and high temperatures is applied on a nickel-based or cobalt-based superalloy component. The protective coating essentially consists of the following elements (in percent by weight): 25 to 40% nickel, 28 to 32% chromium, 7 to 9% aluminum, 1 to 2% silicon, 0.3 to 1% of at least one reactive element of the rare earths, at least 5% cobalt; and impurities, as well as selectively from 0 to 15% of at least one of the elements of the group consisting of rhenium, platinum, palladium, zirconium, manganese, tungsten, titanium, molybdenum, niobium, iron, hafnium, and tantalum. The total share of the elements of the group is from 0 to a maximum of 15% and a remainder of at least 5% cobalt. The component and the coating applied thereon have a ductile brittle transition temperature below 500.degree. C.
    Type: Grant
    Filed: December 6, 1995
    Date of Patent: February 4, 1997
    Assignee: Siemens Aktiengesellschaft
    Inventors: Norbert Czech, Friedhelm Schmitz
  • Patent number: 5582635
    Abstract: A protective coating resistant to corrosion at medium and high temperatures is applied on a nickel-based or cobalt-based superalloy component. The protective coating essentially consists of the following elements (in percent by weight): 25 to 40% nickel, 28 to 32% chromium, 7 to 9% aluminum, 1 to 2% silicon, 0.3 to 1% of at least one reactive element of the rare earths, at least 5% cobalt; and impurities, as well as selectively from 0 to 15% of at least one of the elements of the group consisting of rhenium, platinum, palladium, zirconium, manganese, tungsten, titanium, molybdenum, niobium, iron, hafnium, and tantalum. The total share of the elements of the group is from 0 to a maximum of 15% and a remainder of at least 5% cobalt. The component and the coating applied thereon have a ductile brittle transition temperature below 500.degree. C.
    Type: Grant
    Filed: March 28, 1995
    Date of Patent: December 10, 1996
    Assignee: Siemens Aktiengesellschaft
    Inventors: Norbert Czech, Friedhelm Schmitz
  • Patent number: 5543109
    Abstract: A high Cr austenitic heat resistant alloy excellent in high temperature strength which essentially consists of, in weight percent, from more than 0.02% to 0.10% C, not more than 1.0% Si, not more than 2.0% Mn, 28 to 38% Cr, 35 to 60% Ni, from more than 0.5% to 1.5% Ti, not more than 0.05% N, 0.01 to 0.3% Al, 0.001 to 0.01% B, 0 to 0.1% Zr, 0 to 1.0% Nb, one or both of 0.5 to 3.0% Mo and 1.0 to 6.0% W, and the balance being Fe and incidental impurities. The alloy may further contain one or both of 0.001 to 0.05% Mg and 0.001 to 0.05% Ca. This alloy is suitable for producing a single layered tube which is less expensive and more reliable than the conventional double layered tube.
    Type: Grant
    Filed: January 31, 1995
    Date of Patent: August 6, 1996
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Hiroyuki Senba, Yoshiatsu Sawaragi
  • Patent number: 5425912
    Abstract: A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4.degree. K. The composition is adapted for use with wrought superconducting sheathing.
    Type: Grant
    Filed: July 7, 1994
    Date of Patent: June 20, 1995
    Assignees: Inco Alloys International, Inc., Massachusetts Institute Of Technology
    Inventors: Darrell F. Smith, Larry I. Stein, Il S. Hwang
  • Patent number: 5403547
    Abstract: An oxidation resistant alloy containing iron, cobalt, nickel and at least 4 to 5% by weight aluminum having at least a duplex crystalline structure. One crystalline component of this structure is a gamma (fcc) phase having a gamma prime phase dispersed therein. The second crystalline component is enriched in aluminum compared to the first crystalline component and exhibits characteristics under X-ray diffraction and electron diffraction analysis of a BCC B2 structured phase.
    Type: Grant
    Filed: April 13, 1994
    Date of Patent: April 4, 1995
    Assignee: Inco Alloys International, Inc.
    Inventors: John S. Smith, Darrell F. Smith, Jr., Roneldo L. Fisher, Karl A. Heck
  • Patent number: 5374319
    Abstract: A process is provided for welding a gamma-prime precipitation-strengthened nickel base superalloy by heating the weld area and adjacent region to a ductile temperature, welding while maintaining the entire weld area and adjacent region at the ductile temperature and holding the weldment, weld area and adjacent region at the ductile temperature until the entire weld has solidified. The ductile temperature is above the aging temperature but below the incipient melting temperature of the superalloy.
    Type: Grant
    Filed: November 4, 1991
    Date of Patent: December 20, 1994
    Assignee: Chromalloy Gas Turbine Corporation
    Inventors: Richard J. Stueber, Thomas Milidantri, Moshen Tadayon
  • Patent number: 5364587
    Abstract: Master alloys and methods of producing same are disclosed, wherein an intermetallic compound is first prepared via thermite processing, then size reduced, then mixed with other components in amounts yielding a mixture in the desired proportion for the master alloy. The mixture is compacted, then heated to produce the master alloy, which is used for making Nickel-based alloys used, (for example), in hydrogen battery electrodes.
    Type: Grant
    Filed: July 23, 1992
    Date of Patent: November 15, 1994
    Assignee: Reading Alloys, Inc.
    Inventor: Frederick H. Perfect, deceased
  • Patent number: 5294239
    Abstract: In section bars and shaped bodies made of nickel-base superalloys having a structure consisting of columnar grains, a complete recrystallization cannot be effected unless the heating-up rate is kept below a maximum heating-up rate T.sub.max, which depends on the ratio V of one or more of the metal carbide-forming elements hafnium, niobium, tantalum, titanium and zirconium to one or both of the metal carbide-forming elements tungsten and molybdenum.
    Type: Grant
    Filed: May 6, 1991
    Date of Patent: March 15, 1994
    Assignee: PM Hochtemperatur-Metall GmbH
    Inventors: Klaus Zoltzer, Klaus Lempenauer, Hellmut Fischmeister
  • Patent number: 5122206
    Abstract: A precipitation strengthening type nickel base single crystal alloy, which consists essentially of, on a weight percent basis,10-30% chromium,0.1-5% niobium,0.1-8% titanium,0.1-8% aluminum,optionally one or more components selected from the group consisting of 0.1-3% tantalum, 0.05-0.5% copper, 0.05-3% hafnium, 0.05-3% rhenium, 0.05-3% molybdenum, 0.05-3% tungsten, 0.05-0.5% boron, 0.05-0.5% zirconium, andthe remainder being nickel and incidental impurities, and exhibits a narrow solidification temperature range.
    Type: Grant
    Filed: May 9, 1990
    Date of Patent: June 16, 1992
    Assignee: Mitsubishi Metal Corporation
    Inventors: Saburo Wakita, Junji Hoshi, Toshiyuki Shimamura, Akira Mitsuhashi, Toshio Yonezawa
  • Patent number: 5077004
    Abstract: A single crystal nickel-base superalloy is disclosed having an improved incipient melting temperature and oxidation resistance. The single crystal nickel-base alloy of this invention is characterized by specific addition of chromium, tungsten, aluminum and tantalum to produce an alloy having moderate high temperature strength and improved oxidation resistance and incipient melting temperature. The nominal composition of our new single crystal alloy (in weight percent) is 10-15% Cr, 0-4% Co, 6-8.5% W, 6-7% Al, 0-1% Ti, 2-6% Ta, and the balance nickel.
    Type: Grant
    Filed: May 7, 1986
    Date of Patent: December 31, 1991
    Assignee: Allied-Signal Inc.
    Inventors: Frederick A. Schweizer, Xuan Nguyen-Dinh
  • Patent number: 5068084
    Abstract: An article exhibiting superior mechical properties and resistance to oxidation corrosion at elevated temperatures as described. The article has particular utility in gas turbine engines and is comprised of a nickel base superalloy consisting essentially of 3-10% Cr, 12.1-16% Co, 1.0-1.9% Mo, 3-10% W, 0-5% Re, 4-7% Al, 0-1.5% Ti, 0-8% Ta, 0.5-3% Hf, 0-2% Cb, 0-1% V, 0.02-0.12% Zr, 0.03-0.2% C, 0.005-0.25% B, 0-0.15% of an oxygen active element such as yttrium, balance essentially nickel. This composition is melted and directionally solidified in columnar grain form to provide useful articles.
    Type: Grant
    Filed: January 2, 1986
    Date of Patent: November 26, 1991
    Assignee: United Technologies Corporation
    Inventors: Alan D. Cetel, David N. Duhl
  • Patent number: 5019331
    Abstract: A heat-resistant alloy comprising, in % by weight, 0.3-0.8% of C, 0.5-3% of Si, over 0% to not greater than 2% of Mn, at least 23% to less than 30% of Cr, 40-55% of Ni, 0.2-1.8% of Nb, over 0.08% to not greater than 0.2% of N, 0.01-0.5% of Ti and/or 0.01-0.5% of Zr, and the balance Fe and inevitable impurities. The alloy is usable at high temperatures exceeding 1100.degree. C. with high creep rupture strength and excellent resistance to oxidation and to carburization, further exhibiting high creep deformation resistance at high temperatures and high ductility after aging.
    Type: Grant
    Filed: April 3, 1990
    Date of Patent: May 28, 1991
    Assignee: Kubota Corporation
    Inventors: Teruo Yoshimoto, Makoto Takahashi
  • Patent number: 5006163
    Abstract: A novel, nickel-base, high temperature alloy body preferably containing about 20% chromium, 6 to 7% aluminum to provide phase, 1.5 to 2.5% molybdenum, 3 to 4.5% tungsten, additional strengthening elements and oxidic yttrium in finely dispersed form. The alloy body has an elongated crystal structure and is characterized by high strength along with excellent hot corrosion and oxidation resistance.
    Type: Grant
    Filed: May 8, 1989
    Date of Patent: April 9, 1991
    Assignee: Inco Alloys International, Inc.
    Inventors: Raymond C. Benn, Jeffrey M. Davidson, Kenneth R. Andryszak
  • Patent number: 4981644
    Abstract: Alloy compositions for nickel-base superalloys having the qualities of weldability, castability and forge-ability together with improved high temperature strength and rupture properties are disclosed. The weldability is improved by varying the Al, Ti, Nb and Ta content so as to insure that only the favorable .gamma." precipitates are formed in the alloy. The high temperature properties of the alloy compositions are optimized by controlling the content of the major alloying elements Co and Cr. Preferably the alloy is substantially free of Fe.
    Type: Grant
    Filed: September 9, 1988
    Date of Patent: January 1, 1991
    Assignee: General Electric Company
    Inventor: Keh-Minn Chang
  • Patent number: 4981528
    Abstract: A method for the densification of a shaped nickel base single crystal alloy article utilizing a pre-HIP, an improved hot isostatic pressing (HIP) step, and post-HIP solution heat treatment to enhance removal of casting porosity in a finished article.
    Type: Grant
    Filed: September 16, 1987
    Date of Patent: January 1, 1991
    Assignee: Rockwell International Corporation
    Inventors: Leslie G. Fritzemeier, Jon D. Frandsen
  • Patent number: 4882125
    Abstract: Nickel-base, high chromium alloys characterized by good sulfidation and oxidation resistance consisting essentially of about 27 to 35% chromium, about 2.5 to 5% aluminum, about 2.5 to about 6% iron, 0.5 to 2.5% columbium, up to 0.1% carbon, up to 1% each of titanium and zirconium, up to 0.05% cerium, up to 0.05% yttrium, up to 1% silicon, up to 1% manganese, balance nickel.
    Type: Grant
    Filed: April 22, 1988
    Date of Patent: November 21, 1989
    Assignee: INCO Alloys International, Inc.
    Inventors: Gaylord D. Smith, Curtis S. Tassen
  • Patent number: 4854980
    Abstract: A nickel-based glassy alloy composition including Mo and one or more of Nb, Ta, and Zr, exhibiting high hardness and high crystallization temperatures.
    Type: Grant
    Filed: December 17, 1987
    Date of Patent: August 8, 1989
    Assignee: GTE Laboratories Incorporated
    Inventors: Ramaswamy V. Raman, Shih C. Hsu
  • Patent number: 4853044
    Abstract: An alloy suitable for making single crystal castings consists essentially of the following constituents by weight percent:______________________________________ Chromium 8-15% Aluminum 5-7% Titanium 2-5% Niobium 0.1-2% Molybdenum 0-7% Tantalum 1-8% Tungsten 0-7% Cobalt 5-15% Vanadium 0.5-2% Carbon 0-0.05% Balance Nickel plus impurities. ______________________________________The combined weight of Tungsten, Molybdenum and Tantalum is from 2.5 to 8.0 percent by weight of the total alloy weight and the combinations of Aluminium, Titanium, Niobium, Tantalum and Vanadium are balanced such as to give an alloy volume fraction of between 60 and 75% of gamma prime (Ni.sub.3 (M)) where M is Aluminium, Titanium, Niobium, Tantalum, Vanadium and also minimum gamma/gamma prime lattice mismatch. The alloy has good high strength characteristics, impact resistance, corrosion and oxidation resistance and has a wide heat treatment window.
    Type: Grant
    Filed: January 13, 1988
    Date of Patent: August 1, 1989
    Assignee: Rolls-Royce plc
    Inventors: David A. Ford, Anthony D. Hill, Ian R. Pashby
  • Patent number: 4844864
    Abstract: A precipitation hardenable, nickel-base alloy having improved intergranular stress corrosion cracking resistance in water environments at temperatures up to about 700.degree. F. is disclosed containing in weight percent about:______________________________________ w/o ______________________________________ Carbon up to 0.25 Manganese up to 1.0 Silicon up to 0.80 Phosphorus up to 0.025 Sulfur up to 0.010 Chromium 10-25 Molybdenum up to 1 Aluminum 0.2-1.5 Titanium 1.5-3 Niobium 0.10-3 Iron 0.1-20 Boron 0.0005-0.004 Copper up to 2.0 Cobalt up to 25 Zirconium up to 0.07 ______________________________________the balance being essentially nickel. The unique properties of the alloy are provided within the stated ranges when: (a) at least about 0.30% molybdenum is present when the allow contains more than about 0.003% boron and more than about 0.001% zirconium; (b) no more than about 0.002% boron is present when the alloy contains more than about 0.05% zirconium; and (c) not more than about 0.
    Type: Grant
    Filed: April 27, 1988
    Date of Patent: July 4, 1989
    Assignee: Carpenter Technology Corporation
    Inventor: Richard B. Frank
  • Patent number: 4810467
    Abstract: A high temperature-resistant nickel-base alloy adapted for use in turbine nozzle components contains carefully balanced amounts of aluminum and titanium to render the alloy repair weldable. The levels of carbon and zirconium are also carefully controlled to improve the castability of the alloy so that large turbine components may be cast without hot tearing or microshrinkage.
    Type: Grant
    Filed: August 6, 1987
    Date of Patent: March 7, 1989
    Assignee: General Electric Company
    Inventors: John H. Wood, John S. Haydon
  • Patent number: 4793970
    Abstract: The present disclosure relates to heat-resistant, corrosion-resistant alloys to be used as materials for the exhaust valve of an internal combustion engine which contain specified amounts of C, Cr, Co, Fe, Ti, Al, Nb, and Ta.
    Type: Grant
    Filed: May 17, 1979
    Date of Patent: December 27, 1988
    Inventors: Itaru Niimi, Kametaro Hashimoto, Masamitsu Noguchi, Tadaoki Arakawa, Taizo Suzuki, Kunio Imada
  • Patent number: 4784830
    Abstract: An oxidation resistant nickel-chromium based alloy possessing good stress rupture characteristics at elevated temperature and, in addition to nickel and chromium, containing correlated percentages of aluminum, titanium, nitrogen, carbon, etc.
    Type: Grant
    Filed: June 8, 1987
    Date of Patent: November 15, 1988
    Assignee: Inco Alloys International, Inc.
    Inventors: Pasupathy Ganesan, Gaylord D. Smith, Curtis S. Tassen, Jack M. Wheeler
  • Patent number: 4785142
    Abstract: A superconducting cable comprising an in-situ-formed type II superconductor, e.g. Nb.sub.3 Sn, in association with a stabilizing conductor both in heat transfer relationship with at least one passage adapted to carry liquified gaseous refrigerant. The conductor and said at least one passage are enclosed by a sheath comprising an alloy consisting essentially of about 49% nickel, about 4% chromium, about 3% niobium, about 1.4% titanium, about 1% aluminum, balance essentially iron.
    Type: Grant
    Filed: April 10, 1987
    Date of Patent: November 15, 1988
    Assignee: Inco Alloys International, Inc.
    Inventors: Darrell F. Smith, Jr., Bill L. Lake, Ronald G. Ballinger
  • Patent number: 4765956
    Abstract: Nickel-chromium alloys consisting essentially of from 30-75 nickel, 12-30% chromium, up to 10% molybdenum, up to 8% tungsten, up to 15% cobalt, up to 5% of niobium and/or tantalum, titanium plus aluminum up to 5%, and carbon nitrogen and silicon in correlated percentages to thereby improve low cycle and thermal fatigue strength, the balance being from 0 to 50% iron.
    Type: Grant
    Filed: August 18, 1986
    Date of Patent: August 23, 1988
    Assignee: Inco Alloys International, Inc.
    Inventors: Gaylord D. Smith, Jack M. Wheeler, Stephen C. Tassen
  • Patent number: 4731221
    Abstract: Nickel aluminides and nickel-iron aluminides treated with hafnium or zirconium, boron and cerium to which have been added chromium to significantly improve high temperature ductility, creep resistance and oxidation properties in oxidizing environments.
    Type: Grant
    Filed: October 11, 1985
    Date of Patent: March 15, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Chain T. Liu
  • Patent number: 4727740
    Abstract: This invention relates to the thermal and wear resistant, tough alloy at elevated temperatures. The alloy consists essentially of carbon, chromium, iron, titanium, aluminum, tungsten, molybdenum, silicon, manganese, cobalt and balance nickel, further the alloy includes optionally at least one selected from the group consisting of nitrogen, niobium and tantalum, further the alloy includes optionally at least one selected from the group consisting of nitrogen, niobium and tantalum, further the alloy includes optionally at least one selected from the group consisting of boron and zirconium. The alloy according to this invention are widely utilized to serve as the alloy for build-up weld and for guide shoe used in the hot rolling apparatus for fabricating seamless steel pipe.
    Type: Grant
    Filed: April 24, 1986
    Date of Patent: March 1, 1988
    Assignee: Mitsubishi Kinzoku Kabushiki Kaisha
    Inventors: Ritsue Yabuki, Junya Ohe, Takumi Kawamura
  • Patent number: 4678635
    Abstract: A metallic joining material which is provided particularly for the joining of parts of oxide-dispersion-hardened alloys. The metallic joining material in particular is a solder which contains chromium, cobalt, boron, silicon, tungsten, molybdenum, tantalum, aluminum, titanium zirconium with the remainder nickel.
    Type: Grant
    Filed: December 17, 1985
    Date of Patent: July 7, 1987
    Assignee: BBC Aktiengesellschaft Brown, Boveri & Cie
    Inventor: Bernd Jahnke
  • Patent number: 4671931
    Abstract: A yttrium-free, nickel-chromium-iron-aluminum alloy characterized by excellent oxidation resistance at very high temperatures. The alloy consists essentially of, by weight, from 14 to 18% chromium, from 4 to 6% aluminum, from 1.5 to 8% iron, up to 12% cobalt, up to 1% manganese, up to 1% molybdenum, up to 1% silicon, up to 0.25% carbon, up to 0.03% boron, up to 1% tungsten, up to 0.5% tantalum, up to 0.2% titanium, up to 0.5% hafnium, up to 0.2% zirconium, up to 0.2% rhenium, balance essentially nickel. The nickel plus the cobalt content is at least 66%.
    Type: Grant
    Filed: May 11, 1984
    Date of Patent: June 9, 1987
    Inventors: Robert B. Herchenroeder, Krishna V. Rao
  • Patent number: 4631169
    Abstract: An alloy for use in exhaust valves is disclosed, which consists by weight percentage of 0.01.about.0.15% of C, not more than 2.0% of Si, not more than 2.5% of Mn, 53.about.65% of Ni, 15.about.25% of Cr, 0.3.about.3.0% of Nb, 2.0.about.3.5% of Ti, 0.2.about.1.5% of Al, 0.0010.about.0.020% of B, and the remainder being substantially Fe. If necessary, the alloy further contains at least one element selected from 0.001.about.0.030% of Mg, 0.001.about.0.030% of Ca and 0.001.about.0.050% of REM.
    Type: Grant
    Filed: April 2, 1985
    Date of Patent: December 23, 1986
    Assignees: Daido Tokushuko Kabushiki Kaisha, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Susumu Isobe, Kenkichi Matsunaga, Yoshiaki Takagi, Norikatsu Sato
  • Patent number: 4626408
    Abstract: An alloy prepared by reducing the sulfur content of ASTM UNS N06600 (Trademark Inconel Alloy 600) to an extremely small value and adding specified amounts of Nb and N, and an alloy prepared by reducing the oxygen content of Inconel Alloy 600 and adding specified amounts of Nb, N, B and Mg show a mechanical strength equivalent or superior to that of Inconel Alloy 600 and excellent hot workability, and further has intergranular corrosion resistance and integranular stress corrosion cracking resistance which are far more excellent than those of Inconel Alloy 600.
    Type: Grant
    Filed: September 20, 1984
    Date of Patent: December 2, 1986
    Assignees: Nippon Yakin Kogyo Kabushiki Kaisha, Babock-Hitachi Kabushiki Kaisha
    Inventors: Koichiro Osozawa, Rikio Nemoto, Yoshito Fujiwara, Tomoaki Okazaki, Yasuhiro Miura, Kiyoshi Yamauchi
  • Patent number: 4624832
    Abstract: New nickel alloys are described which are useful for eyeglass frames, which alloys in addition to good resistance to corrosion also have good workability properties. They contain 5 to 20 percent copper and 5 to 30 percent zinc. Optionally, they can also be alloyed in small amounts other metals such as manganese, silicon, beryllium, cobalt, aluminum, niobium, tantalum, or titanium.
    Type: Grant
    Filed: November 2, 1984
    Date of Patent: November 25, 1986
    Assignee: Degussa Aktiengesellschaft
    Inventors: Horst Heidsiek, Gernot Jackel, Horst Becker
  • Patent number: 4569824
    Abstract: Nickel base superalloys intended for use at low to moderate temperatures are provided with improved corrosion resistance by the addition of from 0.2 to 0.6% manganese. The manganese addition also improves the creep properties of the alloys. The manganese modified alloys are suited for use as elements in gas turbine engines for marine environments.
    Type: Grant
    Filed: January 22, 1982
    Date of Patent: February 11, 1986
    Assignee: United Technologies Corporation
    Inventors: David N. Duhl, Xuan Nguyen-Dinh
  • Patent number: 4530885
    Abstract: An alloy having the nominal composition Ni--30/40 wt % Cr--1/5 wt % Ti--2/8 wt % Al is used for coating gas turbine components to give protection against oxidation--and sulphidation--corrosion. A specific alloy having the composition Ni--37 Cr--3 Ti--2Al is applied to a blade fabricated from a nickel superalloy by sputter ion plating to give an overlay coating up to 100 .mu.m thick. Preferably a platinum intermediate layer is flashed on to the substrate before coating. The coating alloy can additionally include rare earths, hafnium or silicon.
    Type: Grant
    Filed: April 12, 1982
    Date of Patent: July 23, 1985
    Assignee: The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventor: James E. Restall
  • Patent number: 4459161
    Abstract: A method and apparatus for manufacturing bars made of an alloy by unidirectional solidification.The mold is moved relative to a hot source and a cold source disposed below the hot source. The relative positions of the two sources as well as their efficiency and the displacement speed of the mold are set so that there is established within the alloy contained in the mold a planar solidification front with a high thermal gradient at the level of the front, and so that there is produced an orientation of the structure of the alloy which is perpendicular to the solidification front. During the whole duration of the solidification, the mold is fed with alloy powder having the required nominal composition at the rate corresponding to the quantity of alloy solidified per unit of time.
    Type: Grant
    Filed: September 30, 1981
    Date of Patent: July 10, 1984
    Assignee: Office National d'Etudes et de Recherches Aerospatiales
    Inventors: Jean-Michel Hauser, Fernand Pautonnier, Maurice Rabinovitch