Iron, Manganese Or Nickel Containing Patents (Class 420/473)
  • Patent number: 10515738
    Abstract: A copper alloy wire, a copper alloy twisted wire, a covered electric wire, and a wiring harness that have high strength and excellent impact resistance. A copper alloy wire for use as a conductor has a ratio of 0.2% proof stress to tensile strength that is 0.87 or less. A copper alloy twisted wire includes a plurality of the twisted copper alloy wires. A covered electric wire includes a conductor including the copper alloy wire and an insulation cover that covers an outer periphery of the conductor. A wiring harness includes the covered electric wire, and a terminal metal fitting that is attached to the conductor of the covered electric wire.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: December 24, 2019
    Assignees: SUMITOMO WIRING SYSTEMS, LTD., AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Ryoma Uegaki, Akiko Inoue, Tetsuya Kuwabara, Hiroyuki Kobayashi, Kinji Taguchi, Yasuyuki Ootsuka
  • Patent number: 9840758
    Abstract: Disclosed is a leadless free-cutting copper alloy that exhibits superior machinability, cold workability and dezincification resistance and a method for producing the same. The leadless free-cutting copper alloy comprises 56 to 77% by weight of copper (Cu), 0.1 to 3.0% by weight of manganese (Mn), 1.5 to 3.5% by weight of silicon (Si), and the balance of zinc (Zn) and other inevitable impurities, thus exhibiting superior eco-friendliness, machinability, cold workability and dezincification resistance.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: December 12, 2017
    Assignee: POONGSAN CORPORATION
    Inventors: Beum Jae Lee, Won Hone Kim, Cheol Min Park, Young Re Cho, Min Jae Jeong
  • Patent number: 9373425
    Abstract: Provided is a copper alloy plate that is for an FPC substrate and that has superior heat dissipation, repeated bending workability, shape retaining properties, and heat resistance. The copper alloy plate contains at least 0.01 mass % of the total of at least one element selected from the group consisting of Ag, Cr, Fe, In, Ni, P, Si, Sn, Ti, Zn, and Zr, contains no more than 1.0 mass % of Ag, no more than 0.08 mass % of Ti, no more than 2.0 mass % of Ni, no more than 3.5 mass % of Zn, and no more than 0.5 mass % of Cr, Fe, In, P, Si, Sn, and Zr by the total of the at least one element selected from the group, the remainder comprising Cu and impurities, has a conductivity of at least 60% IACS, has a tensile strength of at least 350 MPa, and has I(311)/IO(311) determined by X-ray diffraction in the thickness direction of the plate surface that satisfies the formula I(311)/IO(311)?0.5.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 21, 2016
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Ikuya Kurosaki
  • Patent number: 9284628
    Abstract: A copper alloy sheet has a chemical composition containing 0.1 to 5 wt % of nickel, 0.1 to 5 wt % of tin, 0.01 to 0.5 wt % of phosphorus and the balance being copper and unavoidable impurities, and has a crystal orientation satisfying 2.9?(f{220}+f{311)+f{420})/(0.27·f{220}+0.49·f{311}+0.49·f{420}) 4.0, assuming that the degree of orientation of a {hkl} crystal plane measured by the powder X-ray diffraction method on the rolled surface of the copper alloy sheet is f{hkl}.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: March 15, 2016
    Assignee: DOWA METALTECH CO., LTD.
    Inventors: Tomotsugu Aoyama, Akira Sugawara
  • Publication number: 20150110668
    Abstract: A Cu—Ni—Si based copper alloy, comprising 1.2 to 4.5% by mass of Ni, 0.25 to 1.0% by mass of Si and the the balance Cu with inevitable impurities, wherein when an X-ray diffraction intensity of a {111} plane of a rolled surface and that of a {111} plane of a pure copper powder standard specimen is represented by I{111}, I0{111} respectively, I{111}/I0{111} is 0.15 or more, wherein when an X-ray diffraction intensity of a {200} plane of the rolled surface and that of a plane {200} of the pure copper powder standard specimen is represented by I{200}, I0{200} respectively, I{200}/I0{200} is 0.5 or less, when an X-ray diffraction intensity of a {220} plane and a plane {311} of the rolled surface is represented by I{220}, I{311} respectively, I{111}/(I{111}+I{200}+I{220}+I{311}) is 0.2 or more, a bending coefficient is 130 GPa or more, a yield strength YS satisfies: YS=>?22×(Ni mass %)2+215×(Ni mass %)+422, and the electrical conductivity is 30% IACS or more both in a direction transverse to rolling direction.
    Type: Application
    Filed: February 15, 2013
    Publication date: April 23, 2015
    Inventor: Hiroshi Kuwagaki
  • Publication number: 20150044089
    Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 12, 2015
    Inventor: Keiichiro Oishi
  • Publication number: 20150004429
    Abstract: A copper metal alloy, for use in making elements for promoting and/or stimulating vital energy comprises between 60% and 70% in weight of copper (Cu), between 16% and 24% in weight of silver (Ag), between 3% and 6% in weight of zinc (Zn), between 3% and 6% in weight of manganese (Mn) and between 0.5%> and 6%> in weight of germanium (Ge). Tin (Sn) in percentage comprised between 3% and 6% can also be provided for. Platinum (Pt) can also be provided for between 0.1% and 5% in weight. The alloy is used for making for example sheets in form of plates or strips which are associated to articles of various types.
    Type: Application
    Filed: March 27, 2012
    Publication date: January 1, 2015
    Applicant: MEDIKA S.r.l.
    Inventors: Massimo Amenduni Gresele, Rodolfo Penna
  • Publication number: 20140377127
    Abstract: The invention relates to a copper alloy that has been subjected to a thermo-mechanical treatment, composed of (in wt %) 15.5 to 36.0% Zn, 0.3 to 3.0% Sn, 0.1 to 1.5% Fe, optionally also 0.001 to 0.4% P, optionally also 0.01 to 0.1% Al, optionally also 0.01 to 0.03% Ag, Mg, Zr, In, Co, Cr, Ti, Mn, optionally also 0.05 to 0.5% Ni, the remainder copper and unavoidable contaminants, wherein the microstructure of the alloy is characterized in that the proportions of the main texture layers are at least 10 vl % copper layer, at least 10 vl % S/R layer, at least 5 vl % brass layer, at least 2 vl % Goss layer, at least 2 vl % 22RD-cube layer, at least 0.5 vl % cube layer, and finely distributed iron-containing particles are contained in the alloy matrix.
    Type: Application
    Filed: June 15, 2012
    Publication date: December 25, 2014
    Inventors: Hans-Achim Kuhn, Andrea Kaeufler, Stefan Gross
  • Patent number: 8906129
    Abstract: A copper alloy having excellent sliding performance is produced without relying on lead or molybdenum. The copper alloy contains a sintered Cu5FeS4 material produced by sintering a raw material powder that comprises Cu, Fe and S and is produced by a gas atomizing method.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: December 9, 2014
    Assignee: Kurimoto, Ltd.
    Inventors: Tomohiro Sato, Yoshimasa Hirai, Toru Maruyama, Takeshi Kobayashi
  • Publication number: 20140356224
    Abstract: Provided is a copper alloy sheet excellent in strengths, electroconductivity, and bending workability. The copper alloy contains Cr of 0.10% to 0.50%, Ti of 0.010% to 0.30%, and Si of 0.01% to 0.10%, where a ratio (in mass) of the Cr content to the Ti content is from 1.0 to 30, a ratio (in mass) of the Cr content to the Si content is from 3.0 to 30, with the remainder including copper and inevitable impurities. The copper alloy includes grains that have an average major axis length of 6.0 ?m or less and an average minor axis length of 1.0 ?m or less as measured on a microstructure of the copper alloy in a plane surface perpendicular to a transverse direction by FESEM-EBSP analysis.
    Type: Application
    Filed: February 21, 2013
    Publication date: December 4, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hisao Shishido, Yuki Tanaka, Yuya Sumino, Akira Fugono
  • Patent number: 8900721
    Abstract: A bronze alloy includes copper, tin, bismuth, nickel and sulfur and a metal structure of the bronze alloy has an eutectoid phase including ?-copper having a lamellar structure including a flaky copper-tin intermetallic compound precipitated and metal particles including the bismuth dispersedly precipitated therein.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: December 2, 2014
    Assignees: Akashi Gohdoh Inc.
    Inventors: Katsuyuki Funaki, Takeshi Kobayashi, Toru Maruyama, Toshimitu Okane, Iwao Akashi
  • Patent number: 8871354
    Abstract: Provided is a copper-based sliding material including a steel back-metal layer and a Cu alloy layer. The Cu alloy layer contains, by mass %, 10 to 30% of Bi, 0.5 to 5% of an inorganic compound, and the balance being Cu and inevitable impurities. The Cu alloy layer may further contain 0.5 to 5% of Sn and/or at least one element selected from the group consisting of Ni, Fe, P and Ag in a total amount of 0.1 to 10%. The inorganic compound has an average particle size of 1 to 5 ?m and a specific gravity of 70 to 130% relative to the specific gravity of Bi. Bi phase is formed in the Cu alloy layer in an average particle size of 2 to 15 ?m, and the Bi phase is dispersed in the Cu alloy layer and isotropic.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Daido Metal Company Ltd.
    Inventors: Takuo Imai, Kouji Zusi, Kentaro Tujimoto
  • Publication number: 20140251488
    Abstract: A hot-forged copper alloy part which has a tubular shape, in which an alloy composition contains 59.0 mass % to 84.0 mass % of Cu and 0.003 mass % to 0.3 mass % of Pb with a remainder of Zn and inevitable impurities, a content of Cu [Cu] mass % and a content of Pb [Pb] mass % have a relationship of 59?([Cu]+0.5×[Pb])?64, a shape of the forged part satisfies a formula of 0.4?(average inner diameter)/(average outer diameter)?0.92, 0.04?(average thickness)/(average outer diameter)?0.3, and 1?(tube axis direction length)/(average thickness))?10, a forging material which is to be hot-forged has a tubular shape and satisfies 0.3?(average inner diameter/average outer diameter)?0.88, 0.06?(average thickness)/(average outer diameter)?0.35, and 0.8?(tube axis direction length)/(average thickness))?12, and 0%?(degree of uneven thickness)?30%, 0?(degree of uneven thickness)?75×1/((tube axis direction length)/(average thickness))1/2 in any location in a tube axis direction.
    Type: Application
    Filed: November 2, 2012
    Publication date: September 11, 2014
    Applicant: Mitsubishi Shindoh Co., Ltd
    Inventors: Keiichiro Oishi, Takayuki Oka, Shin Oikawa
  • Publication number: 20140234156
    Abstract: Disclosed is a brass that possesses high corrosion resistance even without undergoing a heat treatment step contemplated for dezincification corrosion suppression. This brass includes 55% by mass to 75% by mass of Cu (copper), 0.01% by mass to 1.5% by mass of Si (silicon), Sn (tin) and Al (aluminum) in such amounts as to satisfy a prescribed relationship with an apparent Zn content, less than 0.25% by mass of Mn (manganese) as an optional ingredient, less than 0.05% by mass of Ti (titanium) as an optional ingredient, less than 0.3% by mass of Mg (magnesium) as an optional ingredient, less than 0.15% by mass of P (phosphorus) as an optional ingredient, and less than 0.004% by mass of a rare earth metal as an optional ingredient with the balance consisting of Zn (zinc) and unavoidable impurities, the apparent zinc content being 37 to 45.
    Type: Application
    Filed: February 1, 2013
    Publication date: August 21, 2014
    Inventor: Toru Uchida
  • Publication number: 20140227128
    Abstract: This copper alloy with high strength and high electrical conductivity includes: Mg: more than 1.0% by mass to less than 4% by mass; and Sn: more than 0.1% by mass to less than 5% by mass, with a remainder including Cu and inevitable impurities, wherein a mass ratio Mg/Sn of a content of Mg to a content of Sn is in a range of 0.4 or more. This copper alloy with high strength and high electrical conductivity may further include Ni: more than 0.1% by mass to less than 7% by mass.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 14, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Yuki Ito
  • Patent number: 8795446
    Abstract: A copper alloy material, having an alloy composition containing any one or both of Ni and Co in an amount of 0.4 to 5.0 mass % in total, and Si in an amount of 0.1 to 1.5 mass %, with the balance being copper and unavoidable impurities, wherein a ratio of an area of grains in which an angle of orientation deviated from S-orientation {2 3 1}<3 4 6> is within 30° is 60 % or more, according to a crystal orientation analysis in EBSD measurement; an electrical or electronic part formed by working the copper alloy material; and a method of producing the copper alloy material.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: August 5, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Tatsuhiko Eguchi
  • Publication number: 20140193293
    Abstract: Disclosed is a copper alloy containing 1.0% to 3.6% of Ni, 0.2% to 1.0% of Si, 0.05% to 3.0% of Sn, 0.05% to 3.0% of Zn, with the remainder including copper and inevitable impurities. The copper alloy has an average grain size of 25 pm or less and has a texture having an average area percentage of cube orientation of 20% to 60% and an average total area percentage of brass orientation, S orientation and copper orientation of 20% to 50%. The copper alloy has a KAM value of 0.8 to 3.0 and does not suffer from cracking even when subjected to U-bending. The copper alloy has excellent balance between strengths (particularly yield strength in a direction perpendicular to the rolling direction) and bending workability.
    Type: Application
    Filed: August 4, 2011
    Publication date: July 10, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hisao Shishido, Yasuhiro Aruga, Shinya Katsura, Katsushi Matsumoto
  • Publication number: 20140193655
    Abstract: Provided is a copper alloy plate that is for an FPC substrate and that has superior heat dissipation, repeated bending workability, shape retaining properties, and heat resistance. The copper alloy plate contains at least 0.01 mass % of the total of at least one element selected from the group consisting of Ag, Cr, Fe, In, Ni, P, Si, Sn, Ti, Zn, and Zr, contains no more than 1.0 mass % of Ag, no more than 0.08 mass % of Ti, no more than 2.0 mass % of Ni, no more than 3.5 mass % of Zn, and no more than 0.5 mass % of Cr, Fe, In, P, Si, Sn, and Zr by the total of the at least one element selected from the group, the remainder comprising Cu and impurities, has a conductivity of at least 60% IACS, has a tensile strength of at least 350 MPa, and has I(311)/IO(311) determined by X-ray diffraction in the thickness direction of the plate surface that satisfies the formula I(311)/IO(311)?0.5.
    Type: Application
    Filed: February 28, 2012
    Publication date: July 10, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventor: Ikuya Kurosaki
  • Publication number: 20140182948
    Abstract: A copper, manganese, nickel, zinc and tin binder metal composition having a melting point of 1500° F. or less that includes zinc and tin at a sum weight of about 26.5% to about 30.5% in which zinc is at least about 12% and Sn is at least about 6.5%. The binder metal having a melting point of 1500° F. or less can be used at an infiltrating temperature of 1800° F. or less in forming drilling tools and tool components.
    Type: Application
    Filed: March 15, 2013
    Publication date: July 3, 2014
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: MINGDONG CAI, GREGORY LOCKWOOD
  • Publication number: 20140161661
    Abstract: The invention relates to a copper alloy that has been subjected to a thermo-mechanical treatment, composed of (in wt %) 15.5 to 36.0% Zn, 0.3 to 3.0% Sn, 0.1 to 1.5% Fe, optionally also 0.001 to 0.4% P, optionally also 0.01 to 0.1% Al, optionally also 0.01 to 0.03% Ag, Mg, Zr, In, Co, Cr, Ti, Mn, optionally also 0.05 to 0.5% Ni, the remainder copper and unavoidable contaminants, wherein the microstructure of the alloy is characterized in that the proportions of the main texture layers are at least 10 vl % copper layer, at least 10 vl % S/R layer, at least 5 vl % brass layer, at least 2 vl % Goss layer, at least 2 vl % 22RD-cube layer, at least 0.5 vl % cube layer, and finely distributed iron-containing particles are contained in the alloy matrix.
    Type: Application
    Filed: June 15, 2012
    Publication date: June 12, 2014
    Inventors: Hans-Achim Kuhn, Andrea Kaeufler, Stefan Gross
  • Publication number: 20140147332
    Abstract: Copper based alloys exhibiting a white/silver hue. The alloys contain copper, nickel, zinc, manganese, sulfur, and antimony.
    Type: Application
    Filed: February 7, 2014
    Publication date: May 29, 2014
    Applicant: Sloan Valve Company
    Inventors: Michael Murray, Mahi Sahoo
  • Patent number: 8580191
    Abstract: The present invention relates to a brass alloy having superior stress corrosion comprising: 59.0-64.0 wt % Cu, 0.6-1.2 wt % Fe, 0.6-1.0 wt % Mn, 0.4-1.0 wt % Bi, 0.6-1.4 wt % Sn, at least one element selected from Al, Cr and B, the balance being Zn and unavoidable impurities, wherein the content of Al is 0.1-0.8 wt %, the content of Cr is 0.01-0.1 wt %, the content of B is 0.001-0.02 wt %. The alloy according to the present invention does not contain toxic elements such as lead and antimony, has superior corrosion resistance and good cuttingability and is suitable for the accessories in the potable water supply systems produced by casting, forging and extruding.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: November 12, 2013
    Assignee: Xiamen Lota International Co., Ltd.
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Publication number: 20130294965
    Abstract: Alloys and methods for forming alloys of copper, including red brass, and yellow brass, having sulfur and antimony.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 7, 2013
    Applicant: Sloan Valve Company
    Inventors: Mahi Sahoo, Michael Murray
  • Publication number: 20130276938
    Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.
    Type: Application
    Filed: March 14, 2013
    Publication date: October 24, 2013
    Inventor: Mitsubishi Shindoh Co., Ltd.
  • Publication number: 20130264040
    Abstract: Alloys comprising copper, iron, tin and, optionally, phosphorus or copper, zinc, tin and, optionally, phosphorus, which can be used in, for example, a copper alloy tube for heat exchangers that provides excellent fracture strength and processability for reducing the weight of the tube and for use in high pressure applications with cooling media such as carbon dioxide.
    Type: Application
    Filed: June 10, 2013
    Publication date: October 10, 2013
    Inventors: M. Parker Finney, Larz Ignberg, Claes Anders Kamf, Timothy L. Goebel, Ying Gong, Edward G. Rottmann
  • Publication number: 20130224070
    Abstract: To provide a copper alloy sheet excellent in the balance of strength and electroconductivity and excellent in the balance of strength and bending workability also. A copper alloy contains predetermined amount of Cr, Ti, and Si so as to satisfy a mass ratio of the Cr to the Ti: 1.0?(Cr/Ti)?30, and a mass ratio of the Cr to the Si: 3.0?(Cr/Si)?30, the remainder including copper and unavoidable impurities, in which 70% or more out of total amount of Cr, Ti and Si contained in the copper alloy is precipitated, a number of piece of precipitates with 300 nm or more circle equivalent diameter observed by a SEM in a region of 25 ?m in the thickness direction from the surface of the copper alloy×40 ?m in the cross-sectional direction in a cross section in the width direction of the copper alloy is 50 pieces or less, and an average circle equivalent diameter of precipitates with less than 300 nm circle equivalent diameter observed by a TEM on the surface of the copper alloy is 15 nm or less.
    Type: Application
    Filed: January 29, 2013
    Publication date: August 29, 2013
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventor: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
  • Publication number: 20130189540
    Abstract: Alloys of copper and manganese and copper, manganese and zinc can be used for the production of coins, such as the U.S. five cent piece or “nickel.” With appropriate platings, these alloys can match the electromagnetic signatures or electrical conductivity of currently circulated coins. This is important as modern vending machines include sensors which measure the conductivity of coins to ensure they are genuine.
    Type: Application
    Filed: October 7, 2011
    Publication date: July 25, 2013
    Applicant: JARDEN ZINC PRODUCTS, LLC
    Inventors: Paul McDaniel, Jon Headrick, Randy Beets
  • Patent number: 8449697
    Abstract: A silicon bearing, copper-nickel corrosion resistant and gall resistant alloy with the following weight percentage range is disclosed: Ni=10-40; Fe=1-10; Si=0.5-2.5; Mn=3-15; Sn=0-3; Cu=Balance. Embodiments of the alloy may be used in various sliding applications, such as bearings, bushings, gears and guides. The alloy is particularly suited for use in parts used in food processing equipment.
    Type: Grant
    Filed: February 27, 2011
    Date of Patent: May 28, 2013
    Inventors: Sudhari Sahu, Alpana Pradipkumar Sahu
  • Publication number: 20130129561
    Abstract: By enhancing a stress corrosion cracking resistance in a leadless brass alloy, specifically by suppressing a velocity of propagation of corrosion cracks in the brass alloy, a straight line crack peculiar to the leadless brass alloy is suppressed, a probability of cracks coming into contact with ? phases is heightened and local corrosion on the brass surface is prevented to suppress induction of cracks by the local corrosion, thereby providing a leadless brass alloy contributable to enhancement of the stress corrosion cracking resistance. The present invention is directed to an Sn-containing Bi-based, Sn-containing Bi+Sb-based or Sn-containing Bi+Se+Sb-based leadless brass alloy excellent in stress corrosion cracking resistance, having an ?+? structure or ?+?+? structure and having ? phases distributed uniformly therein at a predetermined proportion to suppress local corrosion and induction of stress corrosion cracks.
    Type: Application
    Filed: December 27, 2012
    Publication date: May 23, 2013
    Applicant: KITZ CORPORATION
    Inventor: KITZ CORPORATION
  • Publication number: 20130051715
    Abstract: The invention relates to an anti-fretting layer (5) for a multi-layer plain bearing (1), the anti-fretting layer being composed of a copper-based alloy, which in addition to copper as the main alloying element contains at least one element from the group comprising germanium, tin, indium, zinc, nickel, cobalt, bismuth, lead, silver and antimony and unavoidable impurities originating from production, wherein the total fraction of said alloying elements is at least 1 wt. % and at most 30 wt. %, and wherein copper mixed-crystal grains comprising copper and the at least one element are present in the copper alloy, wherein the copper mixed-crystal grains are oriented in such a way that an orientation index M{hkl} according to formula (I) M ? { hkl } = I ? { hkl } ? ? I 0 ? { hkl } I 0 ? { hkl } ? ? I ? { hkl } of each of the lattice plane sets {hkl} has a value of less than 3.
    Type: Application
    Filed: April 14, 2011
    Publication date: February 28, 2013
    Applicant: Miba Gleitlager GmbH
    Inventor: Jakob Zidar
  • Publication number: 20130045130
    Abstract: The present invention relates to a copper alloy having high strength, high electrical conductivity, and excellent bendability, the copper alloy containing, in terms of mass %, 0.4 to 4.0% of Ni; 0.05 to 1.0% of Si; and, as an element M, one member selected from 0.005 to 0.5% of P, 0.005 to 1.0% of Cr, and 0.005 to 1.0% of Ti, with the remainder being copper and inevitable impurities, in which an atom number ratio M/Si of elements M and Si contained in a precipitate having a size of 50 to 200 nm in a microstructure of the copper alloy is from 0.01 to 10 on average, the atom number ratio being measured by a field emission transmission electron microscope with a magnification of 30,000 and an energy dispersive analyzer.
    Type: Application
    Filed: June 8, 2012
    Publication date: February 21, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yasuhiro ARUGA, Akira FUGONO, Takeshi KUDO, Katsura KAJIHARA
  • Publication number: 20130036865
    Abstract: A copper alloy having excellent sliding performance is produced without relying on lead or molybdenum. The copper alloy contains a sintered Cu5FeS4 material produced by sintering a raw material powder that comprises Cu, Fe and S and is produced by a gas atomizing method.
    Type: Application
    Filed: April 20, 2011
    Publication date: February 14, 2013
    Inventors: Tomohiro Sato, Yoshimasa Hirai, Toru Maruyama, Takeshi Kobayashi
  • Publication number: 20130028784
    Abstract: A copper alloy wrought material, containing 1.5 to 7.0 mass % of Ni, 0.3 to 2.3 mass % of Si, 0.02 to 1.0 mass % of S, and optionally at least one selected from the group consisting of Sn, Mn, Co, Zr, Ti, Fe, Cr, Al, P, and Zn in a total amount of 0.05 to 2.0 mass %, with the balance being Cu and unavoidable impurities, wherein sulfide particles, which contribute to machinability, are dispersed therein, in which an average diameter of the sulfide particles is 0.1 to 10 ?m, and in which an area ratio of the sulfide particles is 0.1 to 10%, and wherein the copper alloy wrought material has a tensile strength of 500 MPa or greater and an electrical conductivity of 25% IACS or higher.
    Type: Application
    Filed: October 5, 2012
    Publication date: January 31, 2013
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventor: FURUKAWA ELECTRIC CO., LTD.
  • Publication number: 20130022492
    Abstract: A Cu—Ni—Si—Co system alloy having an improved spring bending elastic limit is provided. The alloy is a copper alloy for electronic materials, which contains 1.0% to 2.5% by mass of Ni, 0.5% to 2.5% by mass of Co, and 0.3% to 1.2% by mass of Si, with the balance being Cu and unavoidable impurities, wherein from the results obtainable by an X-ray diffraction pole figure analysis using a rolled surface as a base, among the diffraction peak intensities of the {111}Cu plane with respect to the {200}Cu plane obtained by ? scanning at ?=35°, the peak height at a ? angle of 90° of the copper alloy is at least 2.5 times the peak height of a standard copper powder.
    Type: Application
    Filed: March 25, 2011
    Publication date: January 24, 2013
    Inventor: Hiroshi Kuwagaki
  • Publication number: 20120294754
    Abstract: This copper alloy with high strength and high electrical conductivity includes: Mg: more than 1.0% by mass to less than 4% by mass; and Sn: more than 0.1% by mass to less than 5% by mass, with a remainder including Cu and inevitable impurities, wherein a mass ratio Mg/Sn of a content of Mg to a content of Sn is in a range of 0.4 or more. This copper alloy with high strength and high electrical conductivity may further include Ni: more than 0.1% by mass to less than 7% by mass.
    Type: Application
    Filed: January 6, 2011
    Publication date: November 22, 2012
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Yuki Ito
  • Publication number: 20120237393
    Abstract: A composition for a low lead ingot comprising primarily copper and including tin, zinc, sulfur, phosphorus, nickel. The composition may contain carbon. The low lead ingot, when solidified, includes sulfur or sulfur containing compounds such as sulfides distributed through the ingot. The presence and a substantially uniform distribution of these sulfur compounds imparts improved machinability and better mechanical properties.
    Type: Application
    Filed: May 4, 2012
    Publication date: September 20, 2012
    Inventors: Michael Murray, Mahi Sahoo
  • Publication number: 20120237394
    Abstract: The present invention relates to a low lead brass alloy which ensures reduction of harmful to human health effects of lead that is useful for increasing machinability of brass raw material used in tapwares, valves and water meters, in the event of it's contact with water and which comprises less than 0.25% lead. The inventive brass alloy is an alloy which has machinability, is cost-efficient and environmentally friendly by means of its bismuth content.
    Type: Application
    Filed: January 29, 2010
    Publication date: September 20, 2012
    Inventors: Omer Ozgen, Ahmet Taner Ozkalan
  • Publication number: 20120207642
    Abstract: The invention relates to a brass alloy substantially consisting of copper and zinc. The alloy has at least one additional alloy component. A lead content is at most 0.1 weight percent. The zinc fraction is 40.5 to 46 weight percent. The alloy comprises a mixed crystal having fractions of an alpha micro structure and of a beta microstructure. The weight proportion of the beta microstructure is at least 30% and at most 70%.
    Type: Application
    Filed: August 17, 2010
    Publication date: August 16, 2012
    Applicant: AURUBIS STOLBERG GMBH & CO. KG
    Inventors: Karl Zeiger, Ulrich Lorenz, Michael Hoppe
  • Publication number: 20120148439
    Abstract: A copper alloy containing Ni: 1.5%-3.6% and Si: 0.3%-1.0% in terms of mass percent with the remainder consisting of copper and unavoidable impurities, wherein: the average crystal grain size of the crystal grains in the copper alloy is 5 to 30 ?m; the area ratio of the crystal grains having crystal grain sizes not less than twice the average crystal grain size is not less than 3%; and the ratio of the area of cube orientation grains to the area of the crystal grains having crystal grain sizes not less than twice the average crystal grain size is not less than 50%.
    Type: Application
    Filed: November 18, 2011
    Publication date: June 14, 2012
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hisao SHISHIDO, Shinya Katsura, Yasuhiro Aruga, Katsushi Matsumoto
  • Publication number: 20120121455
    Abstract: A composition for a low lead ingot comprising primarily copper and including tin, zinc, sulfur, phosphorus, nickel. The composition may contain manganese. The low lead ingot, when solidified, includes sulfur or sulfur containing compounds such as sulfides distributed through the ingot. The presence and a substantially uniform distribution of these sulfur compounds imparts improved machinability and better mechanical properties.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 17, 2012
    Inventors: Michael Murray, Mahi Sahoo
  • Publication number: 20120073712
    Abstract: Alloy containing between 1% and 20% by weight of Ni, between 1% and 20% by weight of Sn, between 0.5%, 3% by weight of Pb in Cu which represents at least 50% by weight of the alloy; characterized in that the alloy further contains between 0.01% and 5% by weight of P or B alone or in combination. The invention also pertains to a metallic product having enhanced mechanical resistance at intermediate temperatures (300° C. to 700° C.) and excellent machinability. The metallic product of the invention can be advantageously used for the fabrication of connectors, electromechanical, or micromechanical pieces.
    Type: Application
    Filed: October 7, 2011
    Publication date: March 29, 2012
    Applicant: SWISSMETAL- UMS USINES METALLURGIQUES SUISSES SA
    Inventors: Natanael Dewobroto, Doris Empl, Laurent Felberbaum, Vincent Laporte, Andreas Mortensen, Andreas Rossoll, Emmanuel Vincent
  • Publication number: 20110286875
    Abstract: A bearing material and a method for the manufacture of a bearing having a lining of the bearing material is described, the bearing material comprising: in wt %: 4-12 tin; 0.1-2 nickel; 1-6 bismuth; 0.01-less than 0.10 alumina; balance copper apart from incidental impurities.
    Type: Application
    Filed: November 25, 2009
    Publication date: November 24, 2011
    Applicants: MAHLE INTERNATIONAL GMBH
    Inventors: Raymond Brigdeman, Janette Johnston
  • Publication number: 20110226138
    Abstract: A silicon bearing, copper-nickel corrosion resistant and gall resistant alloy with the following weight percentage range is disclosed: Ni=10-40; Fe=1-10; Si=0.5-2.5; Mn=3-15; Sn=0-3; Cu=Balance. Embodiments of the alloy may be used in various sliding applications, such as bearings, bushings, gears and guides. The alloy is particularly suited for use in parts used in food processing equipment.
    Type: Application
    Filed: February 27, 2011
    Publication date: September 22, 2011
    Inventors: Sudhari Sahu, Alpana Pradipkumar Sahu
  • Publication number: 20110224112
    Abstract: Sliding parts are made of Pb-free Cu-Bi based sintered material. The side in contact with a shaft is machined to a predetermined roughness. A number of Bi phases are present on the finished surface. Stable performance of Bi is to be exhibited. Machined sintered material covers a portion of the Bi phases. The ratio of the exposed surface area of the Bi phases is 0.5% or more relative to the area of the finished surface.
    Type: Application
    Filed: September 9, 2009
    Publication date: September 15, 2011
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Ryo Mukai, Hiromi Yokota, Kao Mouri
  • Publication number: 20110132569
    Abstract: The present invention relates to a brass alloy having superior stress corrosion comprising: 59.0-64.0 wt % Cu, 0.6-1.2 wt % Fe, 0.6-1.0 wt % Mn, 0.4-1.0 wt % Bi, 0.6-1.4 wt % Sn, at least one element selected from Al, Cr and B, the balance being Zn and unavoidable impurities, wherein the content of Al is 0.1-0.8 wt %, the content of Cr is 0.01-0.1 wt %, the content of B is 0.001-0.02 wt %. The alloy according to the present invention does not contain toxic elements such as lead and antimony, has superior corrosion resistance and good cuttingability and is suitable for the accessories in the potable water supply systems produced by casting, forging and extruding.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 9, 2011
    Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
  • Publication number: 20110129173
    Abstract: [Task] In the provided Cu-based sliding material, the properties equivalent to those of a Pb-containing material is attained even free of Pb, and material has stable friction coefficient. [Solution Means] A Pb-free copper-alloy sliding material contains 1.0 to 15.0% of Sn, 0.5 to 15.0% of Bi and 0.05 to 5.0% of Ag, and Ag and Bi from an Ag—Bi eutectic. If necessary, at least one of 0.1 to 5.0% of Ni, 0.02 to 0.2% P, and 0.5 to 30.0% of Zn is contained. Further, if necessary, 1.0 to 10.0 mass % of at least one of a group consisting of Fe3P, Fe2P, FeB, NiB and AlN, having an average particle diameter of 1.5 to 70 ?m is contained.
    Type: Application
    Filed: May 14, 2008
    Publication date: June 2, 2011
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Hiromi Yokota, Ryo Mukai, Shinichi Kato, Nahomi Hamaguchi
  • Publication number: 20110123643
    Abstract: An antifouling barrier comprising a silicon bronze alloy, the silicon bronze alloy comprising about 0.5% to about 3.8% silicon (wt/wt alloy) and greater than about 90% copper (wt/wt alloy). In some embodiments, the silicon bronze alloy additionally comprises from about 0.05% to about 1.3% manganese (wt/wt alloy). The antifouling barrier may be a welded wire mesh, screen, chain-link, chain-mail, grid, weave, perforated sheet, or chicken wire. Methods of reducing the growth of an organism on an animal enclosure, comprising contacting at least a portion of the animal enclosure with an antifouling barrier comprising a silicon bronze alloy comprising about 0.5% to about 3.8% silicon (wt/wt alloy) and greater than about 90% copper (wt/wt alloy).
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Inventors: Robert A. Biersteker, John J. Stevens, Carl J. Michalewski, Robert F. Cyra
  • Publication number: 20110038753
    Abstract: A copper alloy sheet material which has a tensile strength of 730-820 MPa and contains at least nickel (Ni) and silicon (Si), with the remainder being copper (Cu) and inevitable impurities. When the sheet material has a shape capable of 180° tight bending and the width and thickness of this sheet material are expressed by W (unit: mm) and T (unit: mm) respectively, then the product of W and T is 0.16 or less. Preferably, the sheet material is constituted of an alloy containing nickel at 1.8-3.3 mass %, silicon at 0.4 mass %, and chromium (Cr) at 0.01-0.5 mass %, with the remainder being copper and inevitable impurities. The sheet material may further contain one or more of: at least one member selected among tin (Sn), magnesium (Mg), silver (Ag), manganese (Mn), titanium (Ti), iron (Fe), and phosphorus (P) in a total amount of 0.01-1 mass %; zinc (Zn) at 0.01-10 mass %, cobalt (Co) at and 0.01-1.5 mass %.
    Type: Application
    Filed: November 5, 2008
    Publication date: February 17, 2011
    Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Kuniteru Mihara, Tatsuhiko Eguchi
  • Publication number: 20110027122
    Abstract: The problem to be solved by the present invention is to provide a significant improvement in the properties in Cu—Ni—Co—Si alloy by adding Cr, i.e., to provide Corson alloys having high strength and high electrical conductivity. There is provided a copper alloy for electronic materials comprising 1.0 to 4.5 mass % of Ni, 0.50 to 1.2 mass % of Si, 0.1 to 2.5 mass % of Co, 0.003 to 0.3 mass % of Cr, with the balance being Cu and unavoidable impurities, the mass concentration ratio of the total mass of Ni and Co to Si ([Ni+Co]/Si ratio) satisfies the formula: 4?[Ni+Co]/Si?5, and with regard to Cr—Si compound whose size is 0.1 to 5 ?m dispersed in the material, atomic concentration ratio of Cr to Si in the dispersed particle is 1-5, and area dispersion density thereof is more than 1×104/mm2, and not more than 1×106/mm2.
    Type: Application
    Filed: March 30, 2009
    Publication date: February 3, 2011
    Applicant: JX Nippon Mining & Metals Corporation
    Inventors: Naohiko Era, Hiroshi Kuwagaki
  • Publication number: 20110017358
    Abstract: A copper alloy material for an electrical/electronic equipment, containing Ni not less than 2.0 mass % and less than 3.3 mass %, having a content of Si within the range of 2.8 to 3.8 in terms of a mass ratio of Ni and Si (Ni/Si), and containing Mg 0.01 to 0.2 mass %, Sn 0.05 to 1.5 mass %, and Zn 0.2 to 1.5 mass %, with the balance of Cu and inevitable impurities, wherein when a test piece with thickness t of 0.20 mm and width w of 2.0 mm is subjected to 180°-bending with bending radius R (mm), a value of the minimum bending radius R causing no cracks is 0 mm to 0.1 mm; and, an electrical/electronic part obtained by working the same.
    Type: Application
    Filed: September 29, 2010
    Publication date: January 27, 2011
    Inventors: Koji Sato, Kiyoshige Hirose, Hiroshi Kaneko