Tin Containing Patents (Class 420/470)
  • Patent number: 10507520
    Abstract: Processes are provided that include providing a copper-manganese alloy containing copper and manganese and having an amount of manganese that is at least 32 weight percent and not more than 40 weight percent of a combined total amount of the copper and manganese in the copper-manganese alloy, and casting the copper-manganese alloy by multidirectional solidification to produce a product in the form of a casting. The copper-manganese alloy has a composition sufficiently near the congruent melting point of the Cu—Mn alloy system to sufficiently avoid dendritic growth during the multidirectional solidification of the copper-manganese alloy to avoid the formation of microporosity attributable to dendritic growth. The product has a cast microstructure having a cellular and/or planar solidification structure free of dendritic growth and having multidirectional columnar grains.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: December 17, 2019
    Assignee: Purdue Research Foundation
    Inventor: Kevin Paul Trumble
  • Patent number: 9669461
    Abstract: Seizure resistance and wear resistance of Cu—Bi—In copper-alloy sliding material are enhanced by forming a soft phase of as pure as possible Bi. Mixed powder of Cu—In cuprous alloy powder and Cu—Bi containing Cu-based alloy powder is used. A sintering condition is set such that Bi moves outside particles of said Cu—Bi containing Cu-based powder and forms a Bi grain-boundary phase free of In, and In diffuses from said Cu—In containing Cu-based powder to said Cu—Bi containing Cu-based powder.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: June 6, 2017
    Assignee: TAIHO KOGYO CO., LTD.
    Inventors: Hitoshi Wada, Takashi Tomikawa, Daisuke Yoshitome, Hiromi Yokota
  • Patent number: 9631157
    Abstract: A bearing surface of an oilfield component is treated by applying a surface treatment having a low coefficient of friction to the bearing surface of the oilfield component by weld fusing an overlay of a Cu—Ni—Sn alloy material to the bearing surface. Weld fusing the overlay of the Cu—Ni—Sn alloy material to the bearing surface can involve laser surface cladding the overlay of the Cu—Ni—Sn alloy material to the bearing surface, gas tungsten arc welding the overlay of the Cu—Ni—Sn alloy material to the bearing surface, or plasma tungsten arc welding the overlay of the Cu—Ni—Sn alloy material to the bearing surface.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: April 25, 2017
    Assignee: Weatherford Technology Holdings, LLC
    Inventors: Robert P. Badrak, William R. Howie
  • Patent number: 9514856
    Abstract: Disclosed is a copper alloy containing 1.0% to 3.6% of Ni, 0.2% to 1.0% of Si, 0.05% to 3.0% of Sn, 0.05% to 3.0% of Zn, with the remainder including copper and inevitable impurities. The copper alloy has an average grain size of 25 ?m or less and has a texture having an average area percentage of cube orientation of 20% to 60% and an average total area percentage of brass orientation, S orientation and copper orientation of 20% to 50%. The copper alloy has a KAM value of 0.8 to 3.0 and does not suffer from cracking even when subjected to U-bending. The copper alloy has excellent balance between strengths (particularly yield strength in a direction perpendicular to the rolling direction) and bending workability.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: December 6, 2016
    Assignee: Kobe Steel, Ltd.
    Inventors: Hisao Shishido, Yasuhiro Aruga, Shinya Katsura, Katsushi Matsumoto
  • Patent number: 9512506
    Abstract: A high strength and high conductivity copper rod or wire includes Co of 0.12 to 0.32 mass %, P of 0.042 to 0.095 mass %, Sn of 0.005 to 0.70 mass %, and O of 0.00005 to 0.0050 mass %. A relationship of 3.0?([Co]?0.007)/([P]?0.008)?6.2 is satisfied between a content [Co] mass % of Co and a content [P] mass % of P. The remainder includes Cu and inevitable impurities, and the rod or wire is produced by a process including a continuous casting and rolling process. Strength and conductivity of the high strength and high conductivity copper rod or wire are improved by uniform precipitation of a compound of Co and P and by solid solution of Sn. The high strength and high conductivity copper rod or wire is produced by the continuous casting and rolling process, and thus production costs are reduced.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: December 6, 2016
    Assignees: MITSUBISHI SHINDOH CO., LTD., MITSUBISHI MATERIALS CORPORATION
    Inventors: Keiichiro Oishi, Kazumasa Hori
  • Patent number: 9255311
    Abstract: A copper alloy conductor has a copper alloy material which has a copper parent material with 0.001 to 0.1 wt % (=10 to 1000 wt·ppm) of oxygen and 0.15 to 0.70 wt % (exclusive of 0.15 wt %) of Sn. A crystalline grain to form a crystalline structure of the copper alloy material has an average diameter of 100 ?m or less, and 80% or more of an oxide of the Sn is dispersed in a matrix of the crystalline structure as a fine oxide grain with an average diameter of 1 ?m or less.
    Type: Grant
    Filed: January 10, 2006
    Date of Patent: February 9, 2016
    Assignee: Hitachi Metals, Ltd.
    Inventors: Hiromitsu Kuroda, Kazuma Kuroki, Seigi Aoyama, Hiroyoshi Hiruta
  • Patent number: 9162424
    Abstract: A coated article system includes a substrate and a surface coating on the substrate. The surface coating is formed by depositing individual particles of a composite metal powder with sufficient energy to cause the composite metal powder to bond with the substrate and form the surface coating. The composite metal powder includes a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form the individual particles of the composite metal powder.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: October 20, 2015
    Assignee: Climax Engineered Materials, LLC
    Inventors: Carl V. Cox, Matthew C. Shaw, Yakov Epshteyn
  • Publication number: 20150017058
    Abstract: To provide a metal wire and an electric wire of high mechanical strength and high ductibility that have sufficiently increased ductibility as well as sufficiently increased mechanical strength. A metal wire manufactured at least by being subjected to an extension in which a metal wire is extended in an axial direction, and having a hardness distribution in which hardness decreases toward a specific peripheral portion from a central portion in a cross-section orthogonal to axis, whereby a softened peripheral portion becomes to show a good malleability as well as a high resistance to cracking, so as to attain an improvement of mechanical strength and ductibility.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 15, 2015
    Inventors: Junichiro Tokutomi, Kenichi Hanazaki, Jun Yanagimoto
  • Publication number: 20140376347
    Abstract: Disclosed herein are near field transducers (NFTs) that include either silver, copper, or aluminum and one or more secondary elements.
    Type: Application
    Filed: June 24, 2014
    Publication date: December 25, 2014
    Inventors: Justin Glen Brons, Tong Zhao, Sethuraman Jayashankar, Steve C. Riemer, Michael C. Kautzky
  • Publication number: 20140356224
    Abstract: Provided is a copper alloy sheet excellent in strengths, electroconductivity, and bending workability. The copper alloy contains Cr of 0.10% to 0.50%, Ti of 0.010% to 0.30%, and Si of 0.01% to 0.10%, where a ratio (in mass) of the Cr content to the Ti content is from 1.0 to 30, a ratio (in mass) of the Cr content to the Si content is from 3.0 to 30, with the remainder including copper and inevitable impurities. The copper alloy includes grains that have an average major axis length of 6.0 ?m or less and an average minor axis length of 1.0 ?m or less as measured on a microstructure of the copper alloy in a plane surface perpendicular to a transverse direction by FESEM-EBSP analysis.
    Type: Application
    Filed: February 21, 2013
    Publication date: December 4, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hisao Shishido, Yuki Tanaka, Yuya Sumino, Akira Fugono
  • Patent number: 8900721
    Abstract: A bronze alloy includes copper, tin, bismuth, nickel and sulfur and a metal structure of the bronze alloy has an eutectoid phase including ?-copper having a lamellar structure including a flaky copper-tin intermetallic compound precipitated and metal particles including the bismuth dispersedly precipitated therein.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: December 2, 2014
    Assignees: Akashi Gohdoh Inc.
    Inventors: Katsuyuki Funaki, Takeshi Kobayashi, Toru Maruyama, Toshimitu Okane, Iwao Akashi
  • Patent number: 8871354
    Abstract: Provided is a copper-based sliding material including a steel back-metal layer and a Cu alloy layer. The Cu alloy layer contains, by mass %, 10 to 30% of Bi, 0.5 to 5% of an inorganic compound, and the balance being Cu and inevitable impurities. The Cu alloy layer may further contain 0.5 to 5% of Sn and/or at least one element selected from the group consisting of Ni, Fe, P and Ag in a total amount of 0.1 to 10%. The inorganic compound has an average particle size of 1 to 5 ?m and a specific gravity of 70 to 130% relative to the specific gravity of Bi. Bi phase is formed in the Cu alloy layer in an average particle size of 2 to 15 ?m, and the Bi phase is dispersed in the Cu alloy layer and isotropic.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: October 28, 2014
    Assignee: Daido Metal Company Ltd.
    Inventors: Takuo Imai, Kouji Zusi, Kentaro Tujimoto
  • Publication number: 20140305679
    Abstract: [Technical Problem] The invention is to provide a method for manufacture of an ultrafine conductor having sufficient electrical conductivity, and enhanced strength and stretch properties while suppressing manufacture cost, the same ultrafine conductor, as well as a material suited for the same ultrafine conductor. [Solution to Problem] To solve the above problem, there is provided a material for an ultrafine conductor, which includes a matrix formed of copper, chromium particles contained in the matrix, and tin contained in the matrix. The tin is present as a solid solution in the matrix.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventor: Tsuyoshi Watanabe
  • Publication number: 20140227128
    Abstract: This copper alloy with high strength and high electrical conductivity includes: Mg: more than 1.0% by mass to less than 4% by mass; and Sn: more than 0.1% by mass to less than 5% by mass, with a remainder including Cu and inevitable impurities, wherein a mass ratio Mg/Sn of a content of Mg to a content of Sn is in a range of 0.4 or more. This copper alloy with high strength and high electrical conductivity may further include Ni: more than 0.1% by mass to less than 7% by mass.
    Type: Application
    Filed: April 22, 2014
    Publication date: August 14, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Yuki Ito
  • Patent number: 8795446
    Abstract: A copper alloy material, having an alloy composition containing any one or both of Ni and Co in an amount of 0.4 to 5.0 mass % in total, and Si in an amount of 0.1 to 1.5 mass %, with the balance being copper and unavoidable impurities, wherein a ratio of an area of grains in which an angle of orientation deviated from S-orientation {2 3 1}<3 4 6> is within 30° is 60 % or more, according to a crystal orientation analysis in EBSD measurement; an electrical or electronic part formed by working the copper alloy material; and a method of producing the copper alloy material.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: August 5, 2014
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Hiroshi Kaneko, Kiyoshige Hirose, Tatsuhiko Eguchi
  • Publication number: 20140193655
    Abstract: Provided is a copper alloy plate that is for an FPC substrate and that has superior heat dissipation, repeated bending workability, shape retaining properties, and heat resistance. The copper alloy plate contains at least 0.01 mass % of the total of at least one element selected from the group consisting of Ag, Cr, Fe, In, Ni, P, Si, Sn, Ti, Zn, and Zr, contains no more than 1.0 mass % of Ag, no more than 0.08 mass % of Ti, no more than 2.0 mass % of Ni, no more than 3.5 mass % of Zn, and no more than 0.5 mass % of Cr, Fe, In, P, Si, Sn, and Zr by the total of the at least one element selected from the group, the remainder comprising Cu and impurities, has a conductivity of at least 60% IACS, has a tensile strength of at least 350 MPa, and has I(311)/IO(311) determined by X-ray diffraction in the thickness direction of the plate surface that satisfies the formula I(311)/IO(311)?0.5.
    Type: Application
    Filed: February 28, 2012
    Publication date: July 10, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventor: Ikuya Kurosaki
  • Patent number: 8652274
    Abstract: A copper alloy includes Si to facilitate deoxidation, and can be easily manufactured even when including elements such as Cr or Sn. The copper alloy has high conductivity and high workability without negatively affecting the tensile strength. The copper alloy contains 0.2 to 0.4 wt % of Cr, 0.05 to 0.15 wt % of Sn, 0.05 to 0.15 wt % of Zn, 0.01 to 0.30 wt % of Mg, 0.03 to 0.07 wt % of Si, with the remainder being Cu and inevitable impurities. A method for manufacturing the copper alloy includes obtaining a molten metal having the described composition; obtaining an ingot; heating the ingot at a temperature of 900-1000° C. to perform a hot rolling process; cold rolling; performing a first aging process at a temperature of 400-500° C. for 2 to 8 hours; cold rolling; and performing a second aging process at a temperature of 370-450° C. for 2 to 8 hours.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 18, 2014
    Assignee: Poonsgan Corporation
    Inventors: Dae Hyun Kim, Dong Woo Lee, In Dal Kim, Sang Young Choi, Ji Hoon Lee, Bo Min Jeon
  • Publication number: 20140014241
    Abstract: Cu—Co—Si-based alloy strip, which has not only an excellent balance between strength and electrical conductivity but also suppressed hanging curl, is provided. The copper alloy strip for electronic materials comprises 0.5-2.5 mass % of Co, 0.1-0.7 mass % of Si, the balance Cu and inevitable impurities, wherein, from a result obtained from measurement of an X ray diffraction pole figure, using a rolled surface as a reference plane, the following (a) is satisfied. (a) A diffraction peak height at ? angle 120° among diffraction peak intensities by ? scanning at ?=25° in a {200} pole figure is at least 10 times that of standard copper powder.
    Type: Application
    Filed: March 15, 2012
    Publication date: January 16, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Hiroshi Kuwagaki, Yasuhiro Okafuji
  • Publication number: 20140014240
    Abstract: A Cu—Si—Co-based alloy having an enhanced spring limit is provided. The copper alloy comprises 0.5-2.5 mass % of Co, 0.1-0.7 mass % of Si, the balance Cu and inevitable impurities, wherein, from a result obtained from measurement of an X ray diffraction pole figure, using a rolled surface as a reference plane, a peak height at ? angle of 90° among diffraction peaks in {111} Cu plane with respect to {200} Cu plane by ? scanning at ?=35° is at least 2.5 times that of a standard copper powder.
    Type: Application
    Filed: March 2, 2012
    Publication date: January 16, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Yasuhiro Okafuji, Hiroshi Kuwagaki
  • Publication number: 20130315660
    Abstract: A pressure resistant and corrosion resistant copper alloy contains 73.0 mass % to 79.5 mass % of Cu and 2.5 mass % to 4.0 mass % of Si with a remainder composed of Zn and inevitable impurities, in which the content of Cu [Cu] mass % and the content of Si [Si] mass % have a relationship of 62.0?[Cu]?3.6×[Si]?67.5. In addition, the area fraction of the ? phase “?”%, the area fraction of a ? phase “?”%, the area fraction of a ? phase “?”%, the area fraction of the ? phase “?”%, and the area fraction of a ? phase “?”% satisfy 30?“?”?84, 15?“?”?68, “?”+“?”?92, 0.2?“?”/“?”?2, “?”?3, “?”?5, “?”+“?”?6, 0?“?”?7, and 0?“?”+“?”+“?”?8. Also disclosed is a method of manufacturing a brazed structure made of the above pressure resistant and corrosion resistant copper alloy.
    Type: Application
    Filed: April 22, 2013
    Publication date: November 28, 2013
    Applicant: Mitsubishi Shindoh Co., Ltd.
    Inventor: Keiichiro Oishi
  • Patent number: 8557396
    Abstract: In the copper-alloy-based sliding material, alloy steel particles containing fine carbides are dispersed in a range of 1 to 20 wt % of the total weight into a Cu-based matrix containing 5 to 15 wt % of Sn, and the copper-alloy-based sliding material has a Vickers hardness in a range of 44 to 148 as a macro hardness.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: October 15, 2013
    Assignee: Komatsu Ltd.
    Inventor: Masanori Ueyama
  • Publication number: 20130224070
    Abstract: To provide a copper alloy sheet excellent in the balance of strength and electroconductivity and excellent in the balance of strength and bending workability also. A copper alloy contains predetermined amount of Cr, Ti, and Si so as to satisfy a mass ratio of the Cr to the Ti: 1.0?(Cr/Ti)?30, and a mass ratio of the Cr to the Si: 3.0?(Cr/Si)?30, the remainder including copper and unavoidable impurities, in which 70% or more out of total amount of Cr, Ti and Si contained in the copper alloy is precipitated, a number of piece of precipitates with 300 nm or more circle equivalent diameter observed by a SEM in a region of 25 ?m in the thickness direction from the surface of the copper alloy×40 ?m in the cross-sectional direction in a cross section in the width direction of the copper alloy is 50 pieces or less, and an average circle equivalent diameter of precipitates with less than 300 nm circle equivalent diameter observed by a TEM on the surface of the copper alloy is 15 nm or less.
    Type: Application
    Filed: January 29, 2013
    Publication date: August 29, 2013
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
    Inventor: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
  • Publication number: 20130209825
    Abstract: Disclosed is a copper-cobalt-silicon (Cu—Co—Si) alloy for electronic material with an improved balance among electro-conductivity, strength and bend formability, which includes 0.5 to 3.0% by mass of Co, 0.1 to 1.0% by mass of Si, and the balance of Cu and inevitable impurities, having a ratio of mass percentages of Co and Si (Co/Si) given as 3.5?Co/Si?5.0, having an average particle size of second phase particles, within the range of the particle size of 1 to 50 m seen in a cross-section taken in parallel with the direction of rolling, of 2 to 10 nm, and having an average distance between the adjacent second phase particles of 10 to 50 nm.
    Type: Application
    Filed: August 24, 2011
    Publication date: August 15, 2013
    Applicant: JX Nippon Mining & Metals Corporation
    Inventor: Yasuhiro Okafuji
  • Publication number: 20120321506
    Abstract: An ingot includes at least two metals selected from copper, tin, zinc and bismuth, wherein: (a) the ingot is a mechanical ingot, the at least two metals are 40-95 wt. % copper, 3-80 wt. % tin, 1-40 wt. % bismuth and/or 1-80 wt. % zinc, and other metals are present in a collective amount of 0-2 wt. %; or (b) the ingot is a cast ingot, the at least two metals are 40-80 wt. % copper, 3-80 wt. % tin, 1-40 wt. % bismuth and/or 1-80 wt. % zinc, and other metals are present in a collective amount of 0-2 wt. %, provided that when copper is present in the cast ingot in an amount greater than 69 wt. %, zinc is present in an amount less than 30 wt. %. Methods for preparing and casting the ingot are also disclosed, as is a system for casting a copper-bismuth alloy.
    Type: Application
    Filed: June 14, 2011
    Publication date: December 20, 2012
    Applicant: INGOT METAL COMPANY LIMITED
    Inventor: David SHORE
  • Publication number: 20120294754
    Abstract: This copper alloy with high strength and high electrical conductivity includes: Mg: more than 1.0% by mass to less than 4% by mass; and Sn: more than 0.1% by mass to less than 5% by mass, with a remainder including Cu and inevitable impurities, wherein a mass ratio Mg/Sn of a content of Mg to a content of Sn is in a range of 0.4 or more. This copper alloy with high strength and high electrical conductivity may further include Ni: more than 0.1% by mass to less than 7% by mass.
    Type: Application
    Filed: January 6, 2011
    Publication date: November 22, 2012
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazunari Maki, Yuki Ito
  • Patent number: 8246764
    Abstract: A first copper alloy sputtering target comprising 0.5 to 4.0 wt % of Al and 0.5 wtppm or less of Si and a second copper alloy sputtering target comprising 0.5 to 4.0 wt % of Sn and 0.5 wtppm or less of Mn are disclosed. The first and/or the second alloy sputtering target can further comprise one or more elements selected from among Sb, Zr, Ti, Cr, Ag, Au, Cd, In and As in a total amount of 1.0 wtppm or less. A semiconductor element wiring formed by the use of the above targets is also disclosed. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: August 21, 2012
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Takeo Okabe, Hirohito Miyashita
  • Publication number: 20120121984
    Abstract: An alkaline battery includes a cathode, an alkaline electrolyte, and a copper-based anode which reduces hydrogen gassing without a protective coating or plating to less than 50% of the gas production observed using tin-plated 260 brass. An alloy for an anode which reduces hydrogen gassing without a protective coating or plating to less than 50% of the gas production observed using tin-plated 260 brass includes 0.01% to 9.0% tin, no more than 1% of phosphorus, no more than 1% of incidental elements and impurities, and the balance copper, in wt %. Another alloy for an anode which reduces hydrogen gassing without a protective coating or plating to less than 50% of the gas production observed using tin-plated 260 brass includes 1.0% to 40% zinc, about 0.01% to 5.0% tin, no more than 1% of phosphorus, no more than 1% of incidental elements and impurities, and the balance copper, in wt %.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 17, 2012
    Inventors: Carl Mickalewski, John Mccord, Joseph Sarazin, Rob Biersteker
  • Publication number: 20110224112
    Abstract: Sliding parts are made of Pb-free Cu-Bi based sintered material. The side in contact with a shaft is machined to a predetermined roughness. A number of Bi phases are present on the finished surface. Stable performance of Bi is to be exhibited. Machined sintered material covers a portion of the Bi phases. The ratio of the exposed surface area of the Bi phases is 0.5% or more relative to the area of the finished surface.
    Type: Application
    Filed: September 9, 2009
    Publication date: September 15, 2011
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Ryo Mukai, Hiromi Yokota, Kao Mouri
  • Publication number: 20110200479
    Abstract: A copper alloy material for electric/electronic parts, containing Co and Si as additive elements, wherein, a compound A is dispersed, which is composed of Co and Si and has an average particle diameter of 5 nm or more but less than 50 nm, and at least one compound is dispersed, which is selected from: a compound B which does not contain one or any of Co and Si and has an average particle diameter from 50 to 500 nm, a compound C which contains both of Co and Si and another element and has an average particle diameter from 50 to 500 nm, and a compound D which is composed of Co and Si and has an average particle diameter from 50 to 500 nm; a grain size of the copper alloy matrix is 3 to 35 ?m; and an electrical conductivity is 50% IACS or more.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 18, 2011
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kuniteru MIHARA, Ryosuke MATSUO, Tatsuhiko EGUCHI
  • Publication number: 20110200480
    Abstract: A copper alloy material for electric/electronic parts, containing Co in an amount of 0.7 to 2.5 mass % and Si in an amount that gives a mass ratio of Co and Si (Co/Si ratio) within the range from 3.5 to 4.0, with the balance being Cu and unavoidable impurities, wherein the grain size is 3 to 15 ?m.
    Type: Application
    Filed: February 4, 2011
    Publication date: August 18, 2011
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Ryosuke MATSUO, Kuniteru MIHARA, Tatsuhiko EGUCHI
  • Publication number: 20110129173
    Abstract: [Task] In the provided Cu-based sliding material, the properties equivalent to those of a Pb-containing material is attained even free of Pb, and material has stable friction coefficient. [Solution Means] A Pb-free copper-alloy sliding material contains 1.0 to 15.0% of Sn, 0.5 to 15.0% of Bi and 0.05 to 5.0% of Ag, and Ag and Bi from an Ag—Bi eutectic. If necessary, at least one of 0.1 to 5.0% of Ni, 0.02 to 0.2% P, and 0.5 to 30.0% of Zn is contained. Further, if necessary, 1.0 to 10.0 mass % of at least one of a group consisting of Fe3P, Fe2P, FeB, NiB and AlN, having an average particle diameter of 1.5 to 70 ?m is contained.
    Type: Application
    Filed: May 14, 2008
    Publication date: June 2, 2011
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Hiromi Yokota, Ryo Mukai, Shinichi Kato, Nahomi Hamaguchi
  • Publication number: 20110123643
    Abstract: An antifouling barrier comprising a silicon bronze alloy, the silicon bronze alloy comprising about 0.5% to about 3.8% silicon (wt/wt alloy) and greater than about 90% copper (wt/wt alloy). In some embodiments, the silicon bronze alloy additionally comprises from about 0.05% to about 1.3% manganese (wt/wt alloy). The antifouling barrier may be a welded wire mesh, screen, chain-link, chain-mail, grid, weave, perforated sheet, or chicken wire. Methods of reducing the growth of an organism on an animal enclosure, comprising contacting at least a portion of the animal enclosure with an antifouling barrier comprising a silicon bronze alloy comprising about 0.5% to about 3.8% silicon (wt/wt alloy) and greater than about 90% copper (wt/wt alloy).
    Type: Application
    Filed: November 24, 2009
    Publication date: May 26, 2011
    Inventors: Robert A. Biersteker, John J. Stevens, Carl J. Michalewski, Robert F. Cyra
  • Publication number: 20110020171
    Abstract: Seizure resistance and wear resistance of Cu—Bi—In copper-alloy sliding material are enhanced by forming a soft phase of as pure as possible Bi. Mixed powder of Cu—In cuprous alloy powder and Cu—Bi containing Cu-based alloy powder is used. A sintering condition is set such that Bi moves outside particles of said Cu—Bi containing Cu-based powder and forms a Bi grain-boundary phase free of In, and In diffuses from said Cu—In containing Cu-based powder to said Cu—Bi containing Cu-based powder.
    Type: Application
    Filed: January 22, 2009
    Publication date: January 27, 2011
    Inventors: Hitoshi Wada, Takashi Tomikawa, Daisuke Yoshitome, Hiromi Yokota
  • Publication number: 20100284852
    Abstract: Equestrian bits are manufactured with the mouthpiece component comprising a copper alloy with composition; 65-80% by weight copper, 0-2% tin and the remainder being zinc including other elements. In a further embodiment, the copper alloy comprises 70-73% copper, 0.9-1.2% tin, 28% zinc the remainder being other elements at a %, by weight, of less than 1%. The alloy of the invention provides a horse bit mouthpiece which rapidly achieves thermal equilibration when placed in, or moved within, the mouth and has characteristic strength sufficient for the intended use.
    Type: Application
    Filed: September 10, 2008
    Publication date: November 11, 2010
    Inventor: Graham Hugh Cross
  • Publication number: 20100266444
    Abstract: When a Cu—Sn—Bi had-particle based sliding material is used for sliding, Cu of Cu matrix flows and covers up Bi phase. Seizure resistance lowers as time passes. A Pb-free sliding material preventing the reduction of seizure resistance is provided. (1) Composition: from 1 to 15% of Sn, from 1 to 15% of Bi, from 0.02 to 0.2% of P, and from 1 to 10% of hard particles having an average diameter of from 50 to 70 ?m, with the balance being Cu and unavoidable impurities. (2) Structure: Bi phase and the hard particles are dispersed in the copper matrix, and all of said hard particles are bonded to the copper matrix.
    Type: Application
    Filed: August 2, 2007
    Publication date: October 21, 2010
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Hiromi Yokota, Daisuke Yoshitome
  • Patent number: 7806996
    Abstract: A copper-based alloy essentially includes 5.0 to 10.0 wt % of Zn, 2.8 to 5.0 wt % of Sn, 0.4 to 3.0 wt % of Bi, 0<Se?0.35 wt %, 0<P?0.5, one of 0<Sb?2.2 wt % and 0<Ni?4.8 wt %, and a balance of Cu and unavoidable impurities. It may essentially includes 5.0 to 10.0 wt % of Zn, 2.8 to 5.0 wt % of Sn, 0.4 to 3.0 wt % of Bi, 0?Se?0.35 wt %, 0<P<0.5 wt %, one of 0<Sb?2.2 wt % and 0<Ni?4.8 wt %, 1.20 to 4.90 Vol. % of at least one selected from the group consisting of a non-solid solution substance secured with Bi and a non-solid solution secured with Bi and Se, and a balance of Cu and unavoidable impurities.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: October 5, 2010
    Assignee: Kitz Corporation
    Inventors: Kazuhito Kurose, Yukihiro Hirata, Tomoyuki Ozasa, Hisanori Terui
  • Patent number: 7740721
    Abstract: Provided is a copper alloy sputtering target containing 0.01 to (less than) 0.5 wt % of at least 1 element selected from Al or Sn, and containing Mn or Si in a total amount of 0.25 wtppm or less. The above copper alloy sputtering target allows the formation of a wiring material for a semiconductor element, in particular, a seed layer being stable, uniform and free from the occurrence of coagulation during electrolytic copper plating and exhibits excellent sputtering film formation characteristics. A semiconductor element wiring formed with this target is also provided.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: June 22, 2010
    Assignee: Nippon Mining & Metals Co., Ltd
    Inventor: Takeo Okabe
  • Patent number: 7736448
    Abstract: The present invention relates to a nanocrystalline metallic material, particularly to nano-twin copper material with ultrahigh strength and high electrical conductivity and its preparation method. High-purity polycrystalline Cu material with a microstructure of roughly equiaxed submicron-sized grains (300-1000 nm) has been produced by pulsed electrodeposition technique, by which high density of growth-in twins with nano-scale twin spacing were induced in the grains. Inside each grain, there are high densities of growth-in twin lamellae. The twin lamellae with the same orientations are inter-parallel, and the twin spacing ranges from several nanometers to 100 nm with a length of 100-500 nm. This Cu material invented has more excellent performance than existing ones.
    Type: Grant
    Filed: October 16, 2003
    Date of Patent: June 15, 2010
    Assignee: Institute of Metal Research Chinese Academy of Sciences
    Inventors: Lei Lu, Xiao Si, Yongfeng Shen, Ke Lu
  • Publication number: 20100111753
    Abstract: [Task] The adhesion resistance of Cu—Bi based or Cu—Sn—Bi based alloy is lower than that of Cu—Sn—Pb based alloy, and also since conformability of the former alloy is low. Therefore, when Bi of the former alloy adheres onto an opposite shaft, seizure of the former alloy is likely to occur as compared with the case of the latter Cu—Sn—Pb based alloy. In is alloyed in the Bi phase of the Cu—Sn—Bi—In based copper alloy. The In-alloyed Bi phase has a considerably low melting point and therefore the sliding properties deteriorate. [Means for Solving] A Pb-free copper-based sintered sliding material has a composition that 0.5 to 15.0 mass % Bi and 0.3 to 15.0 mass % In, with the balance being Cu and inevitable impurities. With regard to the existence of Cu, Bi, and In, the material consists of a Cu matrix containing In, a Bi phase, and an In concentrated region in said Cu matrix at a boundary of said Bi phase.
    Type: Application
    Filed: February 13, 2008
    Publication date: May 6, 2010
    Applicant: TAIHO KOGYO CO., LTD.
    Inventors: Daisuke Yoshitome, Takashi Tomikawa, Hitoshi Wada
  • Patent number: 7695578
    Abstract: A copper-based alloy that has the soundness of alloy enhanced by restraining the concentrated occurrence of microporosities while suppressing the lead content and an ingot and a liquid-contacting part using the alloy are provided. The copper-based alloy has the soundness of alloy improved during the course of solidification of the copper-based alloy by crystallizing an intermetallic compound capable of solidifying at a temperature exceeding a solidus line in dendritic gaps of the alloy, suppressing migration of a solute, thereby allowing dispersion of microporosities, utilizing crystallization of the intermetallic compound as well for effecting dispersed crystallization of a low melting metal or a low melting intermetallic compound capable of solidifying at a temperature falling short of a liquidus line, and relying on the low melting metal or low melting intermetallic compound to enter the microporosities and suppress occurrence of microporosities.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: April 13, 2010
    Assignee: Kitz Corporation
    Inventors: Teruhiko Horigome, Kazuhito Kurose
  • Publication number: 20100047112
    Abstract: Disclosed is a Cu—Ni—Si copper alloy sheet that excels in strength and formability and is used in electrical and electronic components. The copper alloy sheet contains, by mass, 1.5% to 4.5% Ni and 0.3% to 1.0% of Si and optionally contains at least one member selected from 0.01% to 1.3% of Sn, 0.005% to 0.2% of Mg, 0.01% to 5% of Zn, 0.01% to 0.5% of Mn, and 0.001% to 0.3% of Cr, with the remainder being copper and inevitable impurities. The average size of crystal grains is 10 ?m or less, the standard deviation of crystal grain size satisfies the condition: 2?<10 ?m, and the number of dispersed precipitates lying on grain boundaries and having a grain size of from 30 to 300 nm is 500 or more per millimeter.
    Type: Application
    Filed: February 14, 2008
    Publication date: February 25, 2010
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Akira Fugono, Hiroshi Sakamoto
  • Patent number: 7617964
    Abstract: A low temperature solder including indium in the range of 62-65 weight percent and tin in the range of 31-33 weight percent uses the heat generated during thermal treatment of one or more glass sheets to melt the solder. In one non-limiting embodiment, a lead providing external access to an electrical conductive arrangement, e.g. a conductive member between and connected to spaced bus bars between laminated sheets has an end portion of a connector, e.g. a lead soldered to each of the bus bars during thermal processing of the sheets, e.g. during the lamination of the sheets during a windshield manufacturing process. In another nonlimiting embodiment, the connector is soldered to the electrically conductive arrangement during the annealing of glass blanks following the heating and shaping of the glass blanks.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: November 17, 2009
    Assignee: PPG Industries Ohio, Inc.
    Inventors: John A. Winter, Charles S. Voeltzel, Cheryl E. Belli, James P. Thiel
  • Patent number: 7556189
    Abstract: Nano-structured interconnect formation and a reworkable bonding process using solder films. Large area fabrication of nano-structured interconnects is demonstrated at a very fine pitch. This technology can be used for pushing the limits of current flip chip bonding in terms of pitch, number of I/Os, superior combination of electrical and mechanical properties as well as reworkability. Sol-gel and electroless processes were developed to demonstrate film bonding interfaces between metallic pads and nano interconnects. Solution-derived nano-solder technology is an attractive low-cost method for several applications such as MEMS hermetic packaging, compliant interconnect bonding and bump-less nano-interconnects.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: July 7, 2009
    Assignee: Georgia Tech Research Corporation
    Inventors: Ankur Aggarwal, Isaac Robin Abothu, Pulugurtha Markondeya Raj, Rao R. Tummala
  • Patent number: 7472927
    Abstract: A tubular member 12 having an internal and/or external metal thread 18, 20 at one end thereof, at least part of the thread 18, 20 being coated with an alloy of copper and tin, said alloy containing 5 wt % to 95 wt % copper. The tubular member 10 can be combined with another tubular member 14, 16 to provide a threaded connection 10 having improved galling resistance.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 6, 2009
    Assignees: Hunting Oilfield Services (UK) Ltd., M.P. Eastern Limited
    Inventors: Richard J. Guise, Michael G. Edwards
  • Publication number: 20080193324
    Abstract: A conventional Bi-containing sliding material sometimes underwent seizing in a sliding part operating at a high rotational speed. The present invention provides a sliding material which does not undergo seizing in a sliding part operating at a high rotational speed and a method for its manufacture. A low melting point alloy containing at least 20 mass % of Bi and having a liquidus temperature of at most 200° C. is made to penetrate into a porous portion comprising a Cu—Sn based alloy. A Bi—Sn based alloy or a Bi—In based alloy is suitable as the low melting point alloy. After a low melting point alloy paste is applied to a porous portion, the low melting point alloy is melted and made to penetrate into the porous portion.
    Type: Application
    Filed: November 12, 2004
    Publication date: August 14, 2008
    Inventors: Issaku Sato, Sinzo Nakamura, Naoki Sato, Toshio Hakuto
  • Patent number: 7297215
    Abstract: By exactly comprehending the true properties of the rare elements (such as Bi and Se) which are alternative components for Pb, the alloy is enabled to secure machinability equal to the bronze alloy (CAC406) generally used hitherto and acquire mechanical properties at least equal to the CAC406 as well in spite of a decrease in the content of the rare elements (such as Bi and Se) in the alloy. Further, it is possible to suppress the occurrence of casting defects by elucidating the unresolved influence of the decrease of the alternative components (such as Bi and Se) for Pb on the wholesomeness of a casting. Moreover, it is possible, by decreasing the rare elements, to produce a copper-based alloy containing rare elements at a low cost and to provide a cast ingot and a liquid-contacting part each using the alloy. The copper-based alloy, and the cast ingot and liquid-contacting part each using the alloy individually contain at least 2.8 to 5.0 wt % of Sn, 0.4 to 3.0 wt % of Bi and satisfying 0<Se?0.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: November 20, 2007
    Assignee: Kitz Corporation
    Inventors: Kazuhito Kurose, Yukihiro Hirata, Tomoyuki Ozasa, Hisanori Terui
  • Patent number: 6858102
    Abstract: The invention includes a sputtering target containing copper of a purity of at least about 99.999 wt. %, and at least one component selected from the group consisting of Ag, Sn, Te, In, B, Bi, Sb, and P dispersed within the copper. The total of Ag, Sn, Te, In, B, Bi, Sb, and P within the copper is from at least 0.3 ppm to about 10 ppm. The sputtering target has a substantially uniform grain size of less than or equal to about 50 micrometers throughout the copper and the at least one component.
    Type: Grant
    Filed: November 15, 2000
    Date of Patent: February 22, 2005
    Assignee: Honeywell International Inc.
    Inventors: Janine K. Kardokus, Chi tse Wu, Christopher L. Parfeniuk, Jane E. Buehler
  • Patent number: 6716541
    Abstract: The material for a metal strip for manufacturing electrical contact component parts has, expressed in percent by weight, the following composition: nickel (Ni) 0.5-3.5% silicon (Si) 0.08-1.0%  tin (Sn) 0.1-1.0% zinc (Zn) 0.1-1.0% zirconium (Zr) 0.005-0.2%  silver (Ag) 0.02- 0.5%  The remainder is copper and includes impurities caused by smelting.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: April 6, 2004
    Assignee: Stolberger Metallwerke GmbH & Co. KG
    Inventors: Udo Adler, Jürgen Gebhardt, Heinz Klenen, Robert Leffers, Thomas Helmenkamp
  • Patent number: 6687324
    Abstract: A metallic uranium article having a protective coating of a copper-tin alloy containing from 45 to 50% by weight of copper and from 55 to 50% by weight of tin, said alloy being firmly bonded to the metallic uranium.
    Type: Grant
    Filed: July 19, 1951
    Date of Patent: February 3, 2004
    Inventors: Ernest R. Boller, Lowell D. Eubank
  • Publication number: 20030196736
    Abstract: The present invention provides a copper alloy, that includes an Sn content of 3 wt % to less than 4 wt %; a Ni content of 0.5 wt % to less than or equal to 1.0 wt %; a Zn content of 0.05 wt % to less than or equal to 5.0 wt %; and Cu and unavoidable impurities combined as the balance; wherein a total content of insolubles is less than or equal to 0.02 wt %. The present invention also relates to a method for producing the above-described copper alloy, which includes holding a copper alloy at a temperature ranging from 550 to 700° C. for a time period ranging from 5 sec to less than or equal to 5 min in the course of cold working; subsequently heat treating the copper alloy to cool the copper alloy to room temperature at a cooling speed of 5° C./sec or higher; subsequently cold working the copper alloy to a target dimension; and stabilizing annealing the copper alloy at a temperature ranging from 325 to 450° C. and a time period ranging from 5 sec to less than or equal to 180 min.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 23, 2003
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Motohisa Miyafuji