Refractory Metal Containing Patents (Class 420/484)
-
Publication number: 20150132179Abstract: An advantage of the invention is to provide a master alloy used in a casting of a modified copper alloy, grains of which can be refined during a melt-solidification, and also a method of casting a modified copper alloy using the same. In order to achieve the advantage, master alloy for casting a copper alloy in a form of Cu: 40 to 80%, Zr: 0.5 to 35% and the balance of Zn; and Cu: 40 to 80%, Zr: 0.5 to 35%, P: 0.01 to 3% and the balance of Zn are used, and thus grain-refined copper alloy casting products are obtained.Type: ApplicationFiled: November 6, 2014Publication date: May 14, 2015Inventor: Keiichiro OISHI
-
Publication number: 20140369883Abstract: To obtain a copper alloy having a tensile strength of 700 N/mm2 or more and a conductivity of 60% IACS or more, a copper alloy of the present invention comprises from 0.8 mass % to 1.8 mass % of Co, from 0.16 mass % to 0.6 mass % of Si, and the balance of Cu and unavoidable impurities, in which a mass ratio of Co to Si (Co/Si) is between 3.0 and 5.0; a size of inclusions to be precipitated in the copper alloy is 2 ?m or less; and a total volume of the inclusions having a size of between 0.05 ?m and 2 ?m in the copper alloy is 0.5 vol % or less.Type: ApplicationFiled: August 29, 2014Publication date: December 18, 2014Applicants: MITSUBISHI ELECTRIC CORPORATION, MITSUBISHI ELECTRIC METECS CO., LTD.Inventors: Takefumi ITO, Toshikazu KAWAHATA, Yumiko IWASHITA, Toshihiro KURITA, Takayuki NAGAI
-
Publication number: 20140251488Abstract: A hot-forged copper alloy part which has a tubular shape, in which an alloy composition contains 59.0 mass % to 84.0 mass % of Cu and 0.003 mass % to 0.3 mass % of Pb with a remainder of Zn and inevitable impurities, a content of Cu [Cu] mass % and a content of Pb [Pb] mass % have a relationship of 59?([Cu]+0.5×[Pb])?64, a shape of the forged part satisfies a formula of 0.4?(average inner diameter)/(average outer diameter)?0.92, 0.04?(average thickness)/(average outer diameter)?0.3, and 1?(tube axis direction length)/(average thickness))?10, a forging material which is to be hot-forged has a tubular shape and satisfies 0.3?(average inner diameter/average outer diameter)?0.88, 0.06?(average thickness)/(average outer diameter)?0.35, and 0.8?(tube axis direction length)/(average thickness))?12, and 0%?(degree of uneven thickness)?30%, 0?(degree of uneven thickness)?75×1/((tube axis direction length)/(average thickness))1/2 in any location in a tube axis direction.Type: ApplicationFiled: November 2, 2012Publication date: September 11, 2014Applicant: Mitsubishi Shindoh Co., LtdInventors: Keiichiro Oishi, Takayuki Oka, Shin Oikawa
-
Publication number: 20140193655Abstract: Provided is a copper alloy plate that is for an FPC substrate and that has superior heat dissipation, repeated bending workability, shape retaining properties, and heat resistance. The copper alloy plate contains at least 0.01 mass % of the total of at least one element selected from the group consisting of Ag, Cr, Fe, In, Ni, P, Si, Sn, Ti, Zn, and Zr, contains no more than 1.0 mass % of Ag, no more than 0.08 mass % of Ti, no more than 2.0 mass % of Ni, no more than 3.5 mass % of Zn, and no more than 0.5 mass % of Cr, Fe, In, P, Si, Sn, and Zr by the total of the at least one element selected from the group, the remainder comprising Cu and impurities, has a conductivity of at least 60% IACS, has a tensile strength of at least 350 MPa, and has I(311)/IO(311) determined by X-ray diffraction in the thickness direction of the plate surface that satisfies the formula I(311)/IO(311)?0.5.Type: ApplicationFiled: February 28, 2012Publication date: July 10, 2014Applicant: JX NIPPON MINING & METALS CORPORATIONInventor: Ikuya Kurosaki
-
Publication number: 20130294965Abstract: Alloys and methods for forming alloys of copper, including red brass, and yellow brass, having sulfur and antimony.Type: ApplicationFiled: May 3, 2013Publication date: November 7, 2013Applicant: Sloan Valve CompanyInventors: Mahi Sahoo, Michael Murray
-
Publication number: 20130224070Abstract: To provide a copper alloy sheet excellent in the balance of strength and electroconductivity and excellent in the balance of strength and bending workability also. A copper alloy contains predetermined amount of Cr, Ti, and Si so as to satisfy a mass ratio of the Cr to the Ti: 1.0?(Cr/Ti)?30, and a mass ratio of the Cr to the Si: 3.0?(Cr/Si)?30, the remainder including copper and unavoidable impurities, in which 70% or more out of total amount of Cr, Ti and Si contained in the copper alloy is precipitated, a number of piece of precipitates with 300 nm or more circle equivalent diameter observed by a SEM in a region of 25 ?m in the thickness direction from the surface of the copper alloy×40 ?m in the cross-sectional direction in a cross section in the width direction of the copper alloy is 50 pieces or less, and an average circle equivalent diameter of precipitates with less than 300 nm circle equivalent diameter observed by a TEM on the surface of the copper alloy is 15 nm or less.Type: ApplicationFiled: January 29, 2013Publication date: August 29, 2013Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)Inventor: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel, Ltd.)
-
Patent number: 8506730Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.Type: GrantFiled: March 31, 2005Date of Patent: August 13, 2013Assignee: Mitsubishi Shindoh Co., Ltd.Inventor: Keiichiro Oishi
-
Patent number: 8425697Abstract: A tin-free lead-free free-cutting magnesium brass alloy contains 56.0 to 64.0 wt % Cu, 1.05 to about 2.1 wt % Mg, 0.21 to 0.4 wt % P and other elements 0.002 to 0.9 wt % which contain at least two elements selected from Al, Si, Sb, rare earth elements, Ti and B and the balance being Zn with unavoidable impurities, accordingly a cutting percentage of the alloy is at least 80%. The process for producing such alloy is also proposed. The invented alloy is excellent in cuttability, castability, hot and cold workability, corrosion resistance, mechanical properties and weldability and particularly applicable in spare parts, forging and casting which need cutting and grinding process. The cost of necessary metal materials of the invented alloy is lower than lead-free free-cutting bismuth and antimony brass alloy and is equivalent to lead-contained brass alloy.Type: GrantFiled: December 4, 2009Date of Patent: April 23, 2013Assignee: Xiamen Lota International Co., Ltd.Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
-
Patent number: 8273193Abstract: The present invention supplies a lead-free, bismuth-free free-cutting silicon brass alloy with high zinc which preferably comprises 35.0 to 42.0 wt % Zn, 0.1 to 1.5 wt % Si, 0.03 to 0.3 wt % Al, 0.01 to 0.36 wt % P, 0.01 to 0.1 wt % Ti, 0.001 to 0.05 wt % rare earth metals selected from the group consisting of La and Ce, 0.05 to 0.5 wt % Sn, and/or 0.05 to 0.2 wt % Ni, and the balance being Cu and unavoidable impurities. In yet another embodiment, the alloy may be boron-free. The invented alloy is excellent in castability, weldability, cuttability, electroplating properties, corrosion resistance, mechanical properties. The alloy is especially applicable in castings which need cutting and welding under low pressure die casting, such as castings for faucet bodies in the water supply system. The alloy is also suitable for use in components which are produced from casting ingots by die forging.Type: GrantFiled: January 4, 2010Date of Patent: September 25, 2012Assignee: Xiamen Lota International Co., Ltd.Inventors: Chankai Xu, Zhenqing Hu, Siqi Zhang
-
MELT-SOLIDIFIED SUBSTANCE, COPPER ALLOY FOR MELT-SOLIDIFICATION AND METHOD OF MANUFACTURING THE SAME
Publication number: 20100297464Abstract: A melt-solidified substance includes melt-solidified portions formed by welding, build-up spray welding, metallizing or fusing. The melt-solidified portions have the alloy composition containing Zr: 0.0005 to 0.05 mass %, P: 0.01 to 0.34 mass %, Cu: the remainder and satisfying the relationship between the contents of P and Zr, [P]/[Zr]=0.3 to 20, and the mean grain size in the macrostructure after melt-solidification is 300 ?m or less. If Fe and/or Ni are contained in the melt-solidified portion as inevitable impurities, the content of Fe or Ni is restricted to be 0.3 mass % or less when either Fe or Ni is contained, and the total content of Fe and Ni is restricted to be 0.4 mass % or less when both Fe and Ni are contained.Type: ApplicationFiled: September 30, 2005Publication date: November 25, 2010Applicant: SANBO SHINDO KOGYO KABUSHIKI KAISHAInventor: Keiichiro Oishi -
Patent number: 7736448Abstract: The present invention relates to a nanocrystalline metallic material, particularly to nano-twin copper material with ultrahigh strength and high electrical conductivity and its preparation method. High-purity polycrystalline Cu material with a microstructure of roughly equiaxed submicron-sized grains (300-1000 nm) has been produced by pulsed electrodeposition technique, by which high density of growth-in twins with nano-scale twin spacing were induced in the grains. Inside each grain, there are high densities of growth-in twin lamellae. The twin lamellae with the same orientations are inter-parallel, and the twin spacing ranges from several nanometers to 100 nm with a length of 100-500 nm. This Cu material invented has more excellent performance than existing ones.Type: GrantFiled: October 16, 2003Date of Patent: June 15, 2010Assignee: Institute of Metal Research Chinese Academy of SciencesInventors: Lei Lu, Xiao Si, Yongfeng Shen, Ke Lu
-
Publication number: 20100008817Abstract: A seamless pipe copper alloy includes Zr and at least one of Al, Sn, and Zn, with the balance being Cu and unavoidable impurities, the Al content, the Sn content, the Zn content, and the Zr content of the copper alloy satisfying the expressions 0.05?A+B+C, 0.01?D?0.5, and 0.25?A+B+C+D?0.8 (wherein A represents the Al content (mass %), B represents the Sn content (mass %), C represents the Zn content (mass %), and D represents the Zr content (mass %)). The seamless pipe copper alloy exhibits excellent workability, high strength, and high thermal conductivity. The seamless pipe copper alloy also shows only a small decrease in strength due to brazing.Type: ApplicationFiled: October 2, 2007Publication date: January 14, 2010Inventor: Tetsuya Ando
-
Patent number: 7628872Abstract: A lead-free free-cutting copper-antimony alloy comprises in percentage by weight: 55 to 65% Cu, 0.3 to 2.0% Sb, 0.2 to 1.0% Mn, at least two elements selected from the group of Ti, Ni, B, Fe, Se, Mg, Si, Sn, P and rare-earth metal in amount of 0.1-1.0%, as well as balance Zn and unavoidable impurities. The brass alloys according to the present invention possess superior cutting property, weldability, corrosion resistance, dezincification resistance and high-temperature-oxidation resistance, and are suitable for use in drinking-water installations, domestic appliances, toy for children, fastener, etc. The process for producing such alloys is also proposed.Type: GrantFiled: June 11, 2004Date of Patent: December 8, 2009Assignee: Ningbo Powerway Alloy Material Co., Ltd.Inventors: Ming Zhang, Siqi Zhang, Jihua Cai, Haorong Lou, Xiao Xie
-
Publication number: 20090280026Abstract: A Cu—Zn—Si alloy includes, in % by weight, 70 to 80% of copper, 1 to 5% of silicon, to 0.5% of boron, up to 0.2% of phosphorus and/or up to 0.2% of arsenic, a remainder of zinc, plus inevitable impurities. Products using the alloy and processes for producing the alloy are also provided. The alloy is distinguished by an improved resistance to oxidation and by uniform mechanical properties.Type: ApplicationFiled: June 3, 2009Publication date: November 12, 2009Applicant: DIEHL METALL STIFTUNG & CO. KGInventors: HEINZ STROBL, KLAUS SCHWARM, HERMANN MAYER, NORBERT GAAG, ULRICH REXER, KLAUS MARSTALLER
-
Publication number: 20090239094Abstract: A Cu—Zn alloy strip and Sn plating strip thereof having improved thermal peel resistance of Sn Plating is provided. In a Cu—Zn alloy strip comprising 15 to 40% by mass of Zn and a balance of Cu and unavoidable impurities, the total concentration of P, As, Sb and Bi is regulated to 100 ppm by mass or less, the total concentration of Ca and Mg is regulated to 100 ppm by mass or less, and the concentrations of O and S are each regulated to 30 ppm by mass or less.Type: ApplicationFiled: May 28, 2007Publication date: September 24, 2009Applicant: Nippon Mining & Metals Co., Ltd.Inventor: Takaaki Hatano
-
Publication number: 20090016927Abstract: A brass alloy as raw materials for Semi Solid Metal casting has a component composition containing Zn of 8 to 40 mass %, Zr of 0.0005 to 0.04 mass %, P of 0.01 to 0.25 mass %, and a balance of Cu and inevitable impurities, further containing one or more kinds of Si of 2 to 5 mass %, Sn of 0.05 to 6 mass %, and Al of 0.05 to 3.5 mass % as needed, and further containing one or more kinds of Pb of 0.005 to 0.45 mass %, Bi of 0.005 to 0.45 mass %, Se of 0.03 to 0.45 mass %, and Te of 0.01 to 0.45 mass %.Type: ApplicationFiled: February 9, 2007Publication date: January 15, 2009Applicants: Mitsubishi Shindoh Co., Ltd., Mitsubishi Materials CorporationInventor: Keiichiro Oishi
-
Publication number: 20080298998Abstract: A copper alloy for electric and electronic equipments, containing from 0.5 to 4.0 mass % of Ni, from 0.5 to 2.0 mass % of Co, and from 0.3 to 1.5 mass % of Si, with the balance of copper and inevitable impurities, wherein R{200} is 0.3 or more, in which the R{200} is a proportion of a diffraction intensity from a {200} plane of the following diffraction intensities and is represented by R{200}=I{200}/(I{111}+I{200}+I{220}+I{311}), I{111} is a diffraction intensity from a {111} plane, I{200} is a diffraction intensity from a {200} plane, I{220} is a diffraction intensity from a {220} plane, and I{311} is a diffraction intensity from a {311} plane, each at the material surface.Type: ApplicationFiled: May 30, 2008Publication date: December 4, 2008Applicant: THE FURUKAWA ELECTRIC CO., LTD.Inventors: Hiroshi KANEKO, Tatsuhiko EGUCHI, Kuniteru MIHARA, Kiyoshige HIROSE
-
Patent number: 7056396Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4, by weight, of lead, and the remaining percent, by weight, of zinc.Type: GrantFiled: October 22, 2001Date of Patent: June 6, 2006Assignee: Sambo Copper Alloy Co., Ltd.Inventor: Keiichiro Oishi
-
Patent number: 6881281Abstract: The present invention provides a Cu—Cr—Zr alloy material excellent in fatigue and intermediate temperature characteristics, which comprises 0.05 to 1.0% by mass of Cr and 0.05 to 0.25% by mass of Zr with a balance of Cu and inevitable impurities. The alloy comprises inclusion particles based on any one of Zr and a Cu—Zr alloy having a diameter of 0.1 ?m or more, and the proportion of the inclusion particles containing 10% or more of sulfur as one of the inevitable impurities is one particle/mm2.Type: GrantFiled: January 20, 2004Date of Patent: April 19, 2005Assignee: Nikko Metal Manufacturing Co., Ltd.Inventors: Kazuki Kanmuri, Kazuhiko Fukamachi
-
Publication number: 20040208778Abstract: The present invention provides a Cu—Cr—Zr alloy material excellent in fatigue and intermediate temperature characteristics, which comprises 0.05 to 1.0% by mass of Cr and 0.05 to 0.25% by mass of Zr with a balance of Cu and inevitable impurities. The alloy comprises inclusion particles based on any one of Zr and a Cu—Zr alloy having a diameter of 0.1 &mgr;m or more, and the proportion of the inclusion particles containing 10% or more of sulfur as one of the inevitable impurities is one particle/mm2.Type: ApplicationFiled: January 20, 2004Publication date: October 21, 2004Inventors: Kazuki Kanmuri, Kazuhiko Fukamachi
-
Patent number: 6632300Abstract: A copper alloy having improved stress relaxation resistance is formed from a copper base alloy that consists, by weight, essentially of 1.8%-3.0% iron, 0.01%-1.0% zinc, 0.001 %-0.25% phosphorus, 0.1 %-0.35% magnesium and the balance is copper and unavoidable impurities. When compared to other copper base alloys that include iron, zinc and phosphorous, the disclosed alloy has improved resistance to stress relaxation. In addition, directionality of stress relaxation resistance (where stress relaxation resistance is typically poorer in a transverse strip direction relative to a longitudinal strip direction for a copper alloy that is strengthened by cold rolling) is reduced to being nearly equivalent, regardless of strip direction. The alloy is particularly useful for electronic applications, such as being formed into an electrical connectors.Type: GrantFiled: June 12, 2001Date of Patent: October 14, 2003Assignee: Olin CorporationInventors: John F. Breedis, Dennis R. Brauer, Peter W. Robinson
-
Publication number: 20030091461Abstract: An Ni-free white copper alloy of formula CuaZnbTic or CuaZnbTicXd wherein X is at least one element selected from the group consisting of Al, Sn, Ag and Mn, b, c and d are, in mass %, 0.5≦b≦30, 1≦c≦7 and 0.1≦d≦4, and a is the balance, with unavoidable elements, and also a producing method therefor, comprising: preparing a material alloy for the above white copper alloy; heating the alloy to 700 to 885° C.; and cooling the alloy. The Ni-free white copper alloy has a strength and excellent hardness comparable to those of nickel silver, as well as excellent workability, corrosion resistance and whiteness in addition to ductility, and is free from an Ni allergy problem because of containing no nickel, and moreover tends not to cause needle detectors to malfunction.Type: ApplicationFiled: October 24, 2002Publication date: May 15, 2003Applicant: YKK CORPORATIONInventors: Yasuharu Yoshimura, Kazuhiko kita, Takuya Koizumi
-
Patent number: 6093499Abstract: Copper alloy foils are provided having far greater strength and heat resistance than conventional copper foils, and having better productivity, are characterized by a composition comprising, all by weight, from 0.01 to 0.4% Cr, from 0.01 to 0.25% Zr, from 0.02 to 2.0% Zn; and when necessary from 0.05 to 1.8% Fe and from 0.05 to 0.8% Ti; and when further necessary one or more elements selected from the group consisting of Ni, Sn, In, Mn, P, Mg, Al, B, As, Cd, Co, Te, Ag, and Hf in a total amount of from 0.005 to 1.5%; the balance being copper and unavoidable impurities. Inclusions in the copper foil not larger than 10 .mu.m in size, and the inclusions between 0.5 and 10 .mu.m in size number less than 100 pieces/mm.sup.2.Type: GrantFiled: April 2, 1999Date of Patent: July 25, 2000Assignee: Nippon Mining & Metals Co., Ltd.Inventor: Yasuo Tomioka
-
Patent number: 5800914Abstract: A thermal image transfer recording medium includes a heat resistant substrate; an intermediate layer with a voidage of 20% or less, which includes a granular thermofusible material and a thermoplastic resin, formed on the heat resistant substrate; and a thermal image transfer ink layer containing a coloring agent, formed on the intermediate layer.Type: GrantFiled: June 4, 1996Date of Patent: September 1, 1998Assignee: Ricoh Company, Ltd.Inventors: Keiichi Shiokawa, Yasumitsu Kuga, Naoshi Yamamoto
-
Patent number: 5766377Abstract: A drinking water installation is made up of a source of drinking water and equipment for delivering the drinking water. In the equipment for delivering drinking water, a copper-zinc alloy which does not contain lead or bismuth is used. This alloy has a copper to zinc ratio of from 1.3 to 2.0 and contains at least one additive for improving the properties of the alloy. This alloy possesses superior machinability properties and yet does not pose the potential toxic hazard that lead- or bismuth-containing alloys do.Type: GrantFiled: September 16, 1996Date of Patent: June 16, 1998Assignee: Wieland-Werke AGInventors: Gert Mueller, Harald Siegele, Michael Bohsmann
-
Patent number: 5759563Abstract: Improved biocompatible liquid delivery compositions, which are useful for the formation of sustained release delivery systems for active agents, are provided. The compositions include liquid formulations of a biocompatible polymer or prepolymer in combination with a controlled release component. The controlled release component includes an active agent. These compositions may be introduced into the body of a subject in liquid form which then solidify or cure in situ to form a controlled release implant or a film dressing. The liquid delivery compositions may also be employed ex situ to produce a controlled release implant. Methods of forming a controlled release implant and employing the liquid formulations in the treatment of a subject are also provided.Type: GrantFiled: June 7, 1995Date of Patent: June 2, 1998Assignee: Atrix Laboratories, Inc.Inventors: Gerald L. Yewey, Nancy L. Krinick, Richard L. Dunn, Michael L. Radomsky, Gerbrand Brouwer, Arthur J. Tipton
-
Patent number: 5288683Abstract: A wear-resistant copper alloy which consists essentially of 56 to 65 wt. % of Cu, 28 to 32 wt. % of Zn, 3.5 to 5.5 wt. % of Al, 0.5 to 2.0 wt. % of Fe, 1.0 to 3.0 wt. % of Ni, 0.1 to 1.0 wt. % of Nb, and 0.4 to 1.5 wt. % of Ti, provided that Ti+Nb is equal to or greater than 0.7 wt. %. The alloy includes two discrete intermetallic compounds comprising Ti-Ni-Fe-Al and Nb-Fe-Al uniformly dispersed in a microstructure preferably including at least 50 volume % beta phase and limited alpha and gamma phases. A synchronizer ring made of the copper alloy is also provided.Type: GrantFiled: November 3, 1992Date of Patent: February 22, 1994Assignee: Chuetsu Metal Works Co., Ltd.Inventors: Kunio Nakashima, Masao Hosoda, Kazuyuki Inagaki
-
Patent number: 4965045Abstract: A new copper-based metallic alloy is described containing principally Zn and Al in quantities such as to render it capable, after solution heat treatment at high temperature, and tempering, of assuming a crystalline structure of Beta type; its principal characteristics lies in the fact that it simultaneously contains, as grain size reducing additives, Nb and Ti in an overall quantity lying between 0.01 and 0.2% by weight.Type: GrantFiled: December 21, 1988Date of Patent: October 23, 1990Assignee: Europe Metalli - LMI S.p.A.Inventors: Andrea Giarda, Sergio Ceresara
-
Patent number: 4886641Abstract: A novel electrical contact spring material made of a copper base alloy is disclosed. This spring material has high strength and toughness, as well as good adhesion of solder. It also has reduced anisotropy in its characteristics in two directions, i.e., the working direction and the direction perpendicular to it. A very thin-walled member can be produced from this spring material since its anisotropy in characteristics is small and will not increase even if the amount of working is increased.The copper base alloy of which this spring material is made consists essentially of 2.2-5% Ti, 0.1-0.8% Co, 0.02-0.5% Cr, 0-0.6% of Ni and/or Fe, 0-0.5% of at least one of Ca, Mg, Zn, Cd, Li, Zr, Si, Mn, Sn and Al, and the balance being Cu and incidental impurities.Type: GrantFiled: April 20, 1988Date of Patent: December 12, 1989Assignee: Mitsubishi Kinzoku Kabushiki KaishaInventors: Takuro Iwamura, Masao Kobayashi
-
Patent number: 4612167Abstract: A copper-base alloy for leadframes comprising 0.8-4.0 weight % of Ni, 0.2-4.0 weight % of Ti, and balance Cu and inevitable impurities, the ratio of Ni to Ti being 1-4. It may also comprise 0.1-2.0 weight % of Zn. It may further comprise 0.01-2.0 weight % of at least one of Fe and Co and 0.005-0.5 weight % of at least one element selected from the group consisting of Al, Si, Mn and Mg. The copper-base alloy has good electric conductivity and high mechanical strength. It further has good solderability and solder durability.Type: GrantFiled: March 1, 1985Date of Patent: September 16, 1986Assignee: Hitachi Metals, Ltd.Inventors: Rikizo Watanabe, Daizi Sakamoto
-
Patent number: 4559200Abstract: A copper alloy excellent in general properties such as heat resistance, electric and heat conductivity and mechanical strength and suitable for use as materials for lead frames of electronic parts, heat exchanger fins, or the like can be obtained by optimizing the Fe and Ti contents and proportions of a Cu-Fe-Ti ternary alloy and adding thereto a suitable amount of one or more members selected from the group consisting of Mg, Sb, V Misch metal, Zr, In, Zn, Sn, Ni, Al, and P.Type: GrantFiled: August 7, 1984Date of Patent: December 17, 1985Assignee: Mitsui Mining and Smelting Company, Ltd.Inventors: Syuichi Yamasaki, Hiroshi Yamaguchi, Yousuke Taniguchi