Zinc Containing Patents (Class 420/477)
-
Patent number: 12040242Abstract: A three-dimensional device structure includes a first die, a second die disposed on the first die, and a connection circuit. The first die includes a first semiconductor substrate, a first interconnect structure disposed on the first semiconductor substrate, and a first seal ring surrounding the interconnect structure. The second die includes a second semiconductor substrate, a second interconnect structure disposed on the second semiconductor substrate, and a second seal ring surrounding the interconnect structure. The first connection circuit electrically couples the first seal ring to the second seal ring to provide an electrostatic discharge path.Type: GrantFiled: August 26, 2021Date of Patent: July 16, 2024Assignee: Taiwan Semiconductor Manufacturing Company LimitedInventors: Jen-Yuan Chang, Chien-Chang Lee, Chia-Ping Lai
-
Patent number: 11767577Abstract: Copper alloy, the elements of which have the following mass fractions: 46% to 53.5% copper (Cu); 0% to 1.0% aluminum (Al); 0% to 1.40% lead (Pb); 0% to 0.2% iron (Fe); 0% to 0.4% tin (Sn); 0% to 0.0002% boron (B); 0% to 0.2% arsenic (As); and remainder zinc (Zn). In addition, a use of a corresponding copper alloy for an additive manufacturing process, a sanitary fitting (1) with a corresponding copper alloy, and a method for producing a sanitary fitting (1) from a corresponding copper alloy are proposed.Type: GrantFiled: August 13, 2018Date of Patent: September 26, 2023Assignee: LIXIL CorporationInventor: Carsten Romanowski
-
Patent number: 11591682Abstract: Disclosed are a copper-cobalt-silicon-iron-phosphorus (Cu—Co—Si—Fe—P)-based alloy having strength, electrical conductivity, and excellent bending formability, and a method for producing the alloy. The copper alloy contains 1.2 to 2.5% by mass of cobalt (Co); 0.2 to 1.0% by mass of silicon (Si); 0.01 to 0.5% by mass of iron (Fe); 0.001 to 0.2% by mass of phosphorus (P); a balance amount of copper (Cu); unavoidable impurities; and optionally, 0.05% by mass or smaller of each of at least one selected from a group consisting of nickel (Ni), manganese (Mn) and magnesium (Mg), wherein a ratio between cobalt (Co) mass and silicon (Si) mass meets a relationship: 3.5?Co/Si?4.5, wherein a ratio between iron (Fe) mass and phosphorus (P) mass meets a relationship: 1.0<Fe/P. A bimodal structure improves the bending formability while maintaining the electrical conductivity and strength.Type: GrantFiled: January 20, 2020Date of Patent: February 28, 2023Assignee: POONGSAN CORPORATIONInventors: Sidam Lee, Wonshin Kwak, Wonseok Jeong
-
Patent number: 9441289Abstract: Provided is a high-purity copper or high-purity copper alloy sputtering target of which the purity is 6N or higher and in which the content of the respective components of P, S, O and C is 1 ppm or less, wherein the number of nonmetal inclusions having a particle size of 0.5 ?m or more and 20 ?m or less is 30,000 inclusions/g or less. As a result of using high-purity copper or high-purity copper alloy from which harmful inclusions of P, S, C and O system have been reduced as the raw material and controlling the existence form of nonmetal inclusions, the present invention addresses a reduction in the percent defect of wirings of semiconductor device formed by sputtering a high-purity copper target so as to ensure favorable repeatability.Type: GrantFiled: September 24, 2009Date of Patent: September 13, 2016Assignee: JX Nippon Mining & Metals CorporationInventors: Atsushi Fukushima, Yuichiro Shindo, Susumu Shimamoto
-
Patent number: 9076569Abstract: A copper alloy material suitable for materials for electronic and electrical equipments such as movable connectors having excellent bending workability and being able to show high electrical conductivity was achieved by a Cu—Co—Si alloy material containing 1.5 to 2.5 wt % of Co and 0.3 to 0.7 wt % of Si, having a Co/Si element ratio of 3.5 to 5.0, containing 3,000 to 150,000 second phase particles per mm2 having diameters of from 0.20 ?m or more to less than 1.00 ?m, having a grain size of 10 ?m or less, an electrical conductivity of 60% IACS or more, and good bending workability. The above alloy material contains 10 to 1,000 second phase particles per mm2 having diameters of from 1.00 to 5.00 ?m, the 0.2% yield strength may be 600 MPa or more, the temperature of hot heating performed after casting and before solution treatment is a temperature that is 45° C. or more higher than the solution treatment temperature selected below, the cooling rate from the temperature at the start of hot rolling to 600° C.Type: GrantFiled: March 25, 2011Date of Patent: July 7, 2015Assignee: JX Nippon Mining & Metals CorporationInventor: Yasuhiro Okafuji
-
Patent number: 9039965Abstract: In a copper-based slide member in which needle-shaped Mn—Si based compounds are dispersed in a brass structure, 50% or more of a total number of the needle-shaped Mn—Si based compounds having lengths of 50 ?m or more in a major axis direction are constituted of a plurality of small particles. Thereby, even if the needle-shaped Mn—Si based compounds fall off during sliding, the small particles which constitute the needle-shaped Mn—Si based compounds may fall off. Thus, the frequency of falling off of the coarse needle-shaped Mn—Si based compound which damages a shaft and a bearing is decreased. Therefore, seizure hardly occurs.Type: GrantFiled: October 2, 2012Date of Patent: May 26, 2015Assignee: DAIDO METAL COMPANY LTD.Inventors: Kazuaki Toda, Satoru Kurimoto
-
Patent number: 9023272Abstract: A copper-zinc alloy product of the invention contains zinc in an amount of higher than 35% by weight and 43% by weight or less and has a two-phase structure of an ?-phase and a ?-phase. Further, the ratio of the ?-phase in the copper-zinc alloy is controlled to be higher than 10% and less than 40% and the crystal grains of the ?-phase and the ?-phase are crushed into a flat shape and arranged in a layer shape through cold working. According to the copper-zinc alloy product, it is possible to decrease the copper content and to appropriately secure the strength and cold workability by appropriately controlling the ratio of the ?-phase.Type: GrantFiled: July 5, 2010Date of Patent: May 5, 2015Assignee: YKK CorporationInventors: Yasuharu Yoshimura, Takuya Koizumi, Koichi Mikado, Takahiro Fukuyama, Atsushi Ogihara
-
Patent number: 9017491Abstract: A hot-forged copper alloy part which has a tubular shape, in which an alloy composition contains 59.0 mass % to 84.0 mass % of Cu and 0.003 mass % to 0.3 mass % of Pb with a remainder of Zn and inevitable impurities, a content of Cu [Cu] mass % and a content of Pb [Pb] mass % have a relationship of 59?([Cu]+0.5×[Pb])?64, a shape of the forged part satisfies a formula of 0.4?(average inner diameter)/(average outer diameter)?0.92, 0.04?(average thickness)/(average outer diameter)?0.3, and 1?(tube axis direction length)/(average thickness))?10, a forging material which is to be hot-forged has a tubular shape and satisfies 0.3?(average inner diameter/average outer diameter)?0.88, 0.06?(average thickness)/(average outer diameter)?0.35, and 0.8?(tube axis direction length)/(average thickness))?12, and 0%?(degree of uneven thickness)?30%, 0?(degree of uneven thickness)?75×1/((tube axis direction length)/(average thickness))1/2 in any location in a tube axis direction.Type: GrantFiled: November 2, 2012Date of Patent: April 28, 2015Assignee: Mitsubishi Shindoh Co., Ltd.Inventors: Keiichiro Oishi, Takayuki Oka, Shin Oikawa
-
Patent number: 8991787Abstract: A piping component for controlling the flow of high-temperature fluids that includes a piping body having an inlet end and an outlet end, including methods of operating such components within a piping system. The piping body may be sized for fluids operating at temperatures from approximately 350° F. up to approximately 500° F., and 650° F. The piping body may also be sized for high-temperature fluids (e.g., steam) operating at pressures of up to approximately 400 psi, and 600 psi. In addition, the piping body is made from a silicon-copper alloy consisting essentially of less than 16% zinc, less than 0.25% lead, less than 0.25% bismuth, 2 to 6% silicon and a balance of copper (by weight).Type: GrantFiled: March 12, 2013Date of Patent: March 31, 2015Assignee: NIBCO Inc.Inventors: David A. Bobo, Mark A. Clark, Aaron W. Edds, Benjamin L. Lawrence, Charles M. Stutsman
-
Publication number: 20150044089Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.Type: ApplicationFiled: August 19, 2014Publication date: February 12, 2015Inventor: Keiichiro Oishi
-
Patent number: 8950941Abstract: High-strength brass alloy having superior wear maintains single-structure ? phase and Fe-Cr-Si-based intermetallic compounds dispersed in the ? phase. A high-strength brass alloy for sliding member comprises, Zn from 17% to 28%, Al from 3% to 10%, Fe from 1% to 4%, Cr from 0.1% to 4%, Si from 0.5% to 3%, mass ratio, and the remnant including Cu and inevitable impurities. The high-strength brass alloy has structure in which the matrix shows single-phase structure of ? phase and Fe-Cr-Si-based intermetallic compounds are dispersed in the ? phase. The high-strength brass alloy for sliding member has the structure in which the matrix shows single-structure of ? phase and hard Fe-Cr-Si-based intermetallic compounds are dispersed in the ? phase. Thus the hardness is increased and wear resistance is improved.Type: GrantFiled: May 21, 2010Date of Patent: February 10, 2015Assignee: Oiles CorporationInventors: Maki Hirayama, Taku Watakabe, Kentaro Okubo
-
Publication number: 20140369883Abstract: To obtain a copper alloy having a tensile strength of 700 N/mm2 or more and a conductivity of 60% IACS or more, a copper alloy of the present invention comprises from 0.8 mass % to 1.8 mass % of Co, from 0.16 mass % to 0.6 mass % of Si, and the balance of Cu and unavoidable impurities, in which a mass ratio of Co to Si (Co/Si) is between 3.0 and 5.0; a size of inclusions to be precipitated in the copper alloy is 2 ?m or less; and a total volume of the inclusions having a size of between 0.05 ?m and 2 ?m in the copper alloy is 0.5 vol % or less.Type: ApplicationFiled: August 29, 2014Publication date: December 18, 2014Applicants: MITSUBISHI ELECTRIC CORPORATION, MITSUBISHI ELECTRIC METECS CO., LTD.Inventors: Takefumi ITO, Toshikazu KAWAHATA, Yumiko IWASHITA, Toshihiro KURITA, Takayuki NAGAI
-
Publication number: 20140356224Abstract: Provided is a copper alloy sheet excellent in strengths, electroconductivity, and bending workability. The copper alloy contains Cr of 0.10% to 0.50%, Ti of 0.010% to 0.30%, and Si of 0.01% to 0.10%, where a ratio (in mass) of the Cr content to the Ti content is from 1.0 to 30, a ratio (in mass) of the Cr content to the Si content is from 3.0 to 30, with the remainder including copper and inevitable impurities. The copper alloy includes grains that have an average major axis length of 6.0 ?m or less and an average minor axis length of 1.0 ?m or less as measured on a microstructure of the copper alloy in a plane surface perpendicular to a transverse direction by FESEM-EBSP analysis.Type: ApplicationFiled: February 21, 2013Publication date: December 4, 2014Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Hisao Shishido, Yuki Tanaka, Yuya Sumino, Akira Fugono
-
Publication number: 20140326849Abstract: A mechanical structure is provided with a crystalline superelastic alloy that is characterized by an average grain size and that exhibits a martensitic phase transformation resulting from a mechanical stress input greater than a characteristic first critical stress. A configuration of the superelastic alloy is provided with a geometric structural feature of the alloy that has an extent that is no greater than about 200 micrometers and that is no larger than the average grain size of the alloy. This geometric feature undergoes the martensitic transformation without intergranular fracture of the geometric feature.Type: ApplicationFiled: September 13, 2012Publication date: November 6, 2014Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGYInventors: Christopher A. Schuh, Jose M. San Juan, Ying Chen
-
Publication number: 20140308155Abstract: An efficient polishing method for polishing an alloy material to have an excellent mirror surface is provided. The alloy material contains a main component and 0.1% by mass or more of an element that has a Vickers hardness (HV) different from the Vickers hardness of the main component by 5 or more. A polishing composition used in the polishing method contains abrasive grains and an oxidant. The alloy material is preferably an aluminum alloy, a titanium alloy, a stainless steel, a nickel alloy, or a copper alloy. It is also preferable that the alloy material is subjected to preliminary polishing before being subjected to polishing in which the polishing composition is used.Type: ApplicationFiled: November 19, 2012Publication date: October 16, 2014Inventors: Hitoshi Morinaga, Hiroshi Asano, Maiko Asai, Shogo Tsubota, Kazusei Tamai
-
Publication number: 20140271339Abstract: One aspect of this copper alloy for an electronic device is composed of a binary alloy of Cu and Mg which includes Mg at a content of 3.3 to 6.9 atomic %, with a remainder being Cu and inevitable impurities, and a conductivity ? (% IACS) is within the following range when the content of Mg is given as A atomic %, ??{1.7241/(?0.0347×A2+0.6569×A+1.7)}×100. Another aspect of this copper alloy is composed of a ternary alloy of Cu, Mg, and Zn which includes Mg at a content of 3.3 to 6.9 atomic % and Zn at a content of 0.1 to 10 atomic %, with a remainder being Cu and inevitable impurities, and a conductivity ? (% IACS) is within the following range when the content of Mg is given as A atomic % and the content of Zn is given as B atomic %, ??{1.7241/(X+Y+1.7)}×100, X=?0.0347×A2+0.6569×A and Y=?0.0041×B2+0.2503×B.Type: ApplicationFiled: May 30, 2014Publication date: September 18, 2014Applicant: MITSUBISHI MATERIALS CORPORATIONInventors: Yuki Ito, Kazunari Maki
-
Publication number: 20140251488Abstract: A hot-forged copper alloy part which has a tubular shape, in which an alloy composition contains 59.0 mass % to 84.0 mass % of Cu and 0.003 mass % to 0.3 mass % of Pb with a remainder of Zn and inevitable impurities, a content of Cu [Cu] mass % and a content of Pb [Pb] mass % have a relationship of 59?([Cu]+0.5×[Pb])?64, a shape of the forged part satisfies a formula of 0.4?(average inner diameter)/(average outer diameter)?0.92, 0.04?(average thickness)/(average outer diameter)?0.3, and 1?(tube axis direction length)/(average thickness))?10, a forging material which is to be hot-forged has a tubular shape and satisfies 0.3?(average inner diameter/average outer diameter)?0.88, 0.06?(average thickness)/(average outer diameter)?0.35, and 0.8?(tube axis direction length)/(average thickness))?12, and 0%?(degree of uneven thickness)?30%, 0?(degree of uneven thickness)?75×1/((tube axis direction length)/(average thickness))1/2 in any location in a tube axis direction.Type: ApplicationFiled: November 2, 2012Publication date: September 11, 2014Applicant: Mitsubishi Shindoh Co., LtdInventors: Keiichiro Oishi, Takayuki Oka, Shin Oikawa
-
Publication number: 20140234156Abstract: Disclosed is a brass that possesses high corrosion resistance even without undergoing a heat treatment step contemplated for dezincification corrosion suppression. This brass includes 55% by mass to 75% by mass of Cu (copper), 0.01% by mass to 1.5% by mass of Si (silicon), Sn (tin) and Al (aluminum) in such amounts as to satisfy a prescribed relationship with an apparent Zn content, less than 0.25% by mass of Mn (manganese) as an optional ingredient, less than 0.05% by mass of Ti (titanium) as an optional ingredient, less than 0.3% by mass of Mg (magnesium) as an optional ingredient, less than 0.15% by mass of P (phosphorus) as an optional ingredient, and less than 0.004% by mass of a rare earth metal as an optional ingredient with the balance consisting of Zn (zinc) and unavoidable impurities, the apparent zinc content being 37 to 45.Type: ApplicationFiled: February 1, 2013Publication date: August 21, 2014Inventor: Toru Uchida
-
Publication number: 20140212324Abstract: Provided by the present invention are a fine crystallite high-function metal alloy member, a method for manufacturing the same, and a business development method thereof, in which a crystallite of a metal alloy including a high-purity metal alloy whose crystal lattice is a face-centered cubic lattice, a body-centered cubic lattice, or a close-packed hexagonal lattice is made fine with the size in the level of nanometers (10?9 m to 10?6 m) and micrometers (10?6 m to 10?3 m), and the form thereof is adjusted, thereby remedying drawbacks thereof and enhancing various characteristics without losing superior characteristics owned by the alloy.Type: ApplicationFiled: April 10, 2012Publication date: July 31, 2014Applicant: THREE-O CO., LTD.Inventor: Kazuo Ogasa
-
Publication number: 20140048587Abstract: Disclosed is a brazing alloy composition. The composition comprises, by weight, about 94% copper, about 4% zinc, and about 2% iron. Further disclosed is a brazing process utilizing the brazing alloy, a method for the brazing alloy's preparation and a work piece having members joined by the brazing alloy providing stronger bonding as demonstrated by braze joints having increased shear strength.Type: ApplicationFiled: February 7, 2013Publication date: February 20, 2014Inventors: Paul Rivest, Robert Biersteker, Joseph Sarazin
-
Publication number: 20140014240Abstract: A Cu—Si—Co-based alloy having an enhanced spring limit is provided. The copper alloy comprises 0.5-2.5 mass % of Co, 0.1-0.7 mass % of Si, the balance Cu and inevitable impurities, wherein, from a result obtained from measurement of an X ray diffraction pole figure, using a rolled surface as a reference plane, a peak height at ? angle of 90° among diffraction peaks in {111} Cu plane with respect to {200} Cu plane by ? scanning at ?=35° is at least 2.5 times that of a standard copper powder.Type: ApplicationFiled: March 2, 2012Publication date: January 16, 2014Applicant: JX NIPPON MINING & METALS CORPORATIONInventors: Yasuhiro Okafuji, Hiroshi Kuwagaki
-
Publication number: 20140014241Abstract: Cu—Co—Si-based alloy strip, which has not only an excellent balance between strength and electrical conductivity but also suppressed hanging curl, is provided. The copper alloy strip for electronic materials comprises 0.5-2.5 mass % of Co, 0.1-0.7 mass % of Si, the balance Cu and inevitable impurities, wherein, from a result obtained from measurement of an X ray diffraction pole figure, using a rolled surface as a reference plane, the following (a) is satisfied. (a) A diffraction peak height at ? angle 120° among diffraction peak intensities by ? scanning at ?=25° in a {200} pole figure is at least 10 times that of standard copper powder.Type: ApplicationFiled: March 15, 2012Publication date: January 16, 2014Applicant: JX NIPPON MINING & METALS CORPORATIONInventors: Hiroshi Kuwagaki, Yasuhiro Okafuji
-
Publication number: 20130294965Abstract: Alloys and methods for forming alloys of copper, including red brass, and yellow brass, having sulfur and antimony.Type: ApplicationFiled: May 3, 2013Publication date: November 7, 2013Applicant: Sloan Valve CompanyInventors: Mahi Sahoo, Michael Murray
-
Publication number: 20130276938Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.Type: ApplicationFiled: March 14, 2013Publication date: October 24, 2013Inventor: Mitsubishi Shindoh Co., Ltd.
-
Publication number: 20130248586Abstract: A brazing alloy is provided in the form of a wire, rod or preform, and is made of, in weight percent: 3-7.5% P, 0.1-1.9% Zn, 0-74.7% Ag, 0-80% Au, 0-10% Sn, 0-5% Ni, 0-3% each of Si, Mn, Li, and Ge, and the balance copper in an amount of at least 21.7%. In additional embodiments, Zn may be present in an amount of 0.6-1.9%. A method of torch brazing is also provided. The method includes forming the alloy into a wire or rod, placing the tip of the wire or rod in contact with a surface of a joint, heating the joint surface using a torch flame, and contacting the tip of the wire or rod to the heated joint surface to melt and flow the alloy onto the joint surface and into the joint under capillary action.Type: ApplicationFiled: March 15, 2013Publication date: September 26, 2013Inventor: Joseph W. Harris
-
Patent number: 8506730Abstract: The free-cutting copper alloy according to the present invention contains a greatly reduced amount of lead in comparison with conventional free-cutting copper alloys, but provides industrially satisfactory machinability. The free-cutting alloys comprise 69 to 79 percent, by weight, of copper, 2.0 to 4.0 percent, by weight, of silicon, 0.02 to 0.4 percent, by weight, of lead, and the remaining percent, by weight, of zinc.Type: GrantFiled: March 31, 2005Date of Patent: August 13, 2013Assignee: Mitsubishi Shindoh Co., Ltd.Inventor: Keiichiro Oishi
-
Publication number: 20130192709Abstract: Copper alloys exhibiting enhanced oxidation resistance are provided by adding an amount of sulfur that is effective to enhance oxidative resistance. Such sulfur addition can be achieved by combining elemental forms of copper and sulfur and heating the mixture to form a molten alloy, or by forming a sulfur-rich pre-mix that is added to a base alloy composition. Forming a pre-mix provides improved homogeneity and distribution of the sulfur predominantly in the form of a metal sulfide.Type: ApplicationFiled: March 14, 2013Publication date: August 1, 2013Applicant: NIBCO INC.Inventor: NIBCO INC.
-
Publication number: 20130177472Abstract: An improved brass alloy providing improved ability for machining is detailed that is free of lead and is at the same time environmental friendly. The alloy comprises added alloying elements in an amount that is identified through an iterative process during manufacturing of the alloy.Type: ApplicationFiled: September 9, 2011Publication date: July 11, 2013Applicant: RAUFOSS WATER & GAS ASInventors: Sverre Gulbrandsen Dahl, Jon Ivar Moe
-
Patent number: 8465003Abstract: A plumbing fixture includes a plumbing fixture body having a composition of, by weight percentage, 58-63 of copper, 0.8-1.5 of bismuth, 0.05-0.15 of phosphorous, and a remainder of zinc and any impurities. The plumbing fixture body includes a first opening and a second opening that are arranged to communicate a fluid there through. The first opening defines a first inner diameter D1 and the second opening defines a second inner diameter D2 such that a ratio of D1/D2 is 1.05-2.3.Type: GrantFiled: August 26, 2011Date of Patent: June 18, 2013Assignee: Brasscraft Manufacturing CompanyInventors: Mahesh K. Cheerla, Robert O. Learmont
-
Publication number: 20130149189Abstract: The present invention is a Cu—Fe—P system copper alloy plate comprising Fe: 0.02-0.5% and P: 0.01-0.25% in mass % with the balance consisting of copper and unavoidable impurities and having the ratio Fe/P of Fe to P in mass % being 2.0 to 5.0, wherein: a ratio of the area of fine crystal grains less than 0.5 ?m in equivalent circle diameter to an observation area when a surface is observed by EBSD analysis is 0.90 or less; and the ratio C1s/Cu2p of a peak area of C1s to a peak area of Cu2p on the surface by XPS analysis is 0.35 or less.Type: ApplicationFiled: November 20, 2012Publication date: June 13, 2013Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventor: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
-
Publication number: 20130115128Abstract: Copper-zinc alloys exhibiting enhanced oxidation resistance are provided by adding an amount of sulfur that is effective to enhance oxidative resistance. Such sulfur addition can be achieved by forming a sulfur-rich pre-mix that is added to a base alloy composition. This technique provides improved homogeneity and distribution of the sulfur predominantly in the form of a metal sulfide.Type: ApplicationFiled: November 7, 2012Publication date: May 9, 2013Applicant: NIBCO INC.Inventor: NIBCO INC.
-
Publication number: 20130104349Abstract: A copper-zinc alloy product of the invention contains zinc in an amount of higher than 35% by weight and 43% by weight or less and has a two-phase structure of an ?-phase and a ?-phase. Further, the ratio of the ?-phase in the copper-zinc alloy is controlled to be higher than 10% and less than 40% and the crystal grains of the ?-phase and the ?-phase are crushed into a flat shape and arranged in a layer shape through cold working. According to the copper-zinc alloy product, it is possible to decrease the copper content and to appropriately secure the strength and cold workability by appropriately controlling the ratio of the ?-phase.Type: ApplicationFiled: July 5, 2010Publication date: May 2, 2013Inventors: Yasuharu Yoshimura, Takuya Koizumi, Koichi Mikado, Takahiro Fukuyama, Atsushi Ogihara
-
Patent number: 8425697Abstract: A tin-free lead-free free-cutting magnesium brass alloy contains 56.0 to 64.0 wt % Cu, 1.05 to about 2.1 wt % Mg, 0.21 to 0.4 wt % P and other elements 0.002 to 0.9 wt % which contain at least two elements selected from Al, Si, Sb, rare earth elements, Ti and B and the balance being Zn with unavoidable impurities, accordingly a cutting percentage of the alloy is at least 80%. The process for producing such alloy is also proposed. The invented alloy is excellent in cuttability, castability, hot and cold workability, corrosion resistance, mechanical properties and weldability and particularly applicable in spare parts, forging and casting which need cutting and grinding process. The cost of necessary metal materials of the invented alloy is lower than lead-free free-cutting bismuth and antimony brass alloy and is equivalent to lead-contained brass alloy.Type: GrantFiled: December 4, 2009Date of Patent: April 23, 2013Assignee: Xiamen Lota International Co., Ltd.Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
-
Patent number: 8349097Abstract: A dezincification-resistant copper alloy and a method for producing a product containing the same are proposed by the present invention. The dezincification-resistant alloy of the present invention contains 59.5 to 64 wt % of copper (Cu); 0.1 to 0.5 wt % of bismuth (Bi); 0.08 to 0.16 wt % of arsenic (As); 5 to 15 ppm of boron (B); 0.3 to 1.5 wt % of tin (Sn); 0.1 to 0.7 wt % of zirconium (Zr); less than 0.05 wt % of lead (Pb); and zinc (Zn) in balance. The dezincification-resistant copper alloy of the present invention has excellent casting properties, good toughness and machinability, and can be corrosion-resistant. Thus, the alloy can reduce dezincification on the surfaces.Type: GrantFiled: September 17, 2009Date of Patent: January 8, 2013Assignee: Modern Islands Co., Ltd.Inventors: Wen Lin Lo, Xiao Rong Fang
-
Publication number: 20120321506Abstract: An ingot includes at least two metals selected from copper, tin, zinc and bismuth, wherein: (a) the ingot is a mechanical ingot, the at least two metals are 40-95 wt. % copper, 3-80 wt. % tin, 1-40 wt. % bismuth and/or 1-80 wt. % zinc, and other metals are present in a collective amount of 0-2 wt. %; or (b) the ingot is a cast ingot, the at least two metals are 40-80 wt. % copper, 3-80 wt. % tin, 1-40 wt. % bismuth and/or 1-80 wt. % zinc, and other metals are present in a collective amount of 0-2 wt. %, provided that when copper is present in the cast ingot in an amount greater than 69 wt. %, zinc is present in an amount less than 30 wt. %. Methods for preparing and casting the ingot are also disclosed, as is a system for casting a copper-bismuth alloy.Type: ApplicationFiled: June 14, 2011Publication date: December 20, 2012Applicant: INGOT METAL COMPANY LIMITEDInventor: David SHORE
-
Patent number: 8273192Abstract: The present invention relates to a lead-free, bismuth-free free-cutting phosphorous brass alloy and its method of manufacture. The alloy comprises: Cu; Zn; 0.59 to 1.6 wt % P; and other elements in the amount of 0.005 to 0.6 wt %, which comprise at least two elements selected from the group consisting of Al, Si, Sb, Sn, Rare earth element (RE), Ti and B, and the balance being unavoidable impurities. The phosphorous brass alloy contains a combined wt % of Cu and Zn of between 97.0 wt % and 99.5 wt %, within which the content of Zn is above 40 wt %. Considering the solid solubility of P in the matrix of copper will be decreased rapidly with the temperature decrease and form the brittle intermetallic compounds Cu3P with Cu, the present invention relies upon P to ensure excellent cuttability of the invented alloy. The invented alloy is reasonably priced, and has excellent cuttability, castability, hot and cold workability, dezincification corrosion resistance, mechanical properties and weldability.Type: GrantFiled: December 22, 2009Date of Patent: September 25, 2012Assignee: Xiamen Lota International Co., Ltd.Inventors: Chuankai Xu, Zhenqing Hu, Siqi Zhang
-
Patent number: 8273193Abstract: The present invention supplies a lead-free, bismuth-free free-cutting silicon brass alloy with high zinc which preferably comprises 35.0 to 42.0 wt % Zn, 0.1 to 1.5 wt % Si, 0.03 to 0.3 wt % Al, 0.01 to 0.36 wt % P, 0.01 to 0.1 wt % Ti, 0.001 to 0.05 wt % rare earth metals selected from the group consisting of La and Ce, 0.05 to 0.5 wt % Sn, and/or 0.05 to 0.2 wt % Ni, and the balance being Cu and unavoidable impurities. In yet another embodiment, the alloy may be boron-free. The invented alloy is excellent in castability, weldability, cuttability, electroplating properties, corrosion resistance, mechanical properties. The alloy is especially applicable in castings which need cutting and welding under low pressure die casting, such as castings for faucet bodies in the water supply system. The alloy is also suitable for use in components which are produced from casting ingots by die forging.Type: GrantFiled: January 4, 2010Date of Patent: September 25, 2012Assignee: Xiamen Lota International Co., Ltd.Inventors: Chankai Xu, Zhenqing Hu, Siqi Zhang
-
Publication number: 20120237393Abstract: A composition for a low lead ingot comprising primarily copper and including tin, zinc, sulfur, phosphorus, nickel. The composition may contain carbon. The low lead ingot, when solidified, includes sulfur or sulfur containing compounds such as sulfides distributed through the ingot. The presence and a substantially uniform distribution of these sulfur compounds imparts improved machinability and better mechanical properties.Type: ApplicationFiled: May 4, 2012Publication date: September 20, 2012Inventors: Michael Murray, Mahi Sahoo
-
Publication number: 20120207642Abstract: The invention relates to a brass alloy substantially consisting of copper and zinc. The alloy has at least one additional alloy component. A lead content is at most 0.1 weight percent. The zinc fraction is 40.5 to 46 weight percent. The alloy comprises a mixed crystal having fractions of an alpha micro structure and of a beta microstructure. The weight proportion of the beta microstructure is at least 30% and at most 70%.Type: ApplicationFiled: August 17, 2010Publication date: August 16, 2012Applicant: AURUBIS STOLBERG GMBH & CO. KGInventors: Karl Zeiger, Ulrich Lorenz, Michael Hoppe
-
Patent number: 8211250Abstract: A method of processing a bismuth brass article includes the steps of machining an extruded brass rod to form an article of a desired shape and annealing the article at an annealing temperature that is no greater than 575° F./302° C. to relieve stress caused by the machining. The extruded brass rod includes a composition, by weight percentage, that includes 58-63 of copper, 0.8-1.5 of bismuth, 0.05-0.15 of phosphorous and a remainder of zinc and any impurities.Type: GrantFiled: August 26, 2011Date of Patent: July 3, 2012Assignee: BrassCraft Manufacturing CompanyInventors: Mahesh K. Cheerla, Robert O. Learmont
-
Publication number: 20120039742Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.Type: ApplicationFiled: October 27, 2011Publication date: February 16, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
-
Publication number: 20120039743Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.Type: ApplicationFiled: October 27, 2011Publication date: February 16, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Yasuhiro ARUGA, Ryoichi Ozaki, Yosuke Miwa
-
Publication number: 20120039741Abstract: A Cu—Fe—P alloy sheet that is provided with the high strength and with the improved resistance of peel off of oxidation film, in order to deal with problems such as package cracks and peeling, is provided. A copper alloy sheet for electric and electronic parts according to the present invention is a copper alloy sheet containing Fe: 0.01 to 0.50 mass % and P: 0.01 to 0.15 mass %, respectively, with the remainder of Cu and inevitable impurities. A centerline average roughness Ra is 0.2 ?m or less and a maximum height Rmax is 1.5 ?m or less, and Kurtosis (degree peakedness) Rku of roughness curve is 5.0 or less, in measurement of the surface roughness of the copper alloy sheet in accordance with JIS B0601.Type: ApplicationFiled: October 27, 2011Publication date: February 16, 2012Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)Inventors: Yasuhiro ARUGA, Ryoichi OZAKI, Yosuke MIWA
-
Publication number: 20110200479Abstract: A copper alloy material for electric/electronic parts, containing Co and Si as additive elements, wherein, a compound A is dispersed, which is composed of Co and Si and has an average particle diameter of 5 nm or more but less than 50 nm, and at least one compound is dispersed, which is selected from: a compound B which does not contain one or any of Co and Si and has an average particle diameter from 50 to 500 nm, a compound C which contains both of Co and Si and another element and has an average particle diameter from 50 to 500 nm, and a compound D which is composed of Co and Si and has an average particle diameter from 50 to 500 nm; a grain size of the copper alloy matrix is 3 to 35 ?m; and an electrical conductivity is 50% IACS or more.Type: ApplicationFiled: February 4, 2011Publication date: August 18, 2011Applicant: THE FURUKAWA ELECTRIC CO., LTD.Inventors: Kuniteru MIHARA, Ryosuke MATSUO, Tatsuhiko EGUCHI
-
Publication number: 20110200480Abstract: A copper alloy material for electric/electronic parts, containing Co in an amount of 0.7 to 2.5 mass % and Si in an amount that gives a mass ratio of Co and Si (Co/Si ratio) within the range from 3.5 to 4.0, with the balance being Cu and unavoidable impurities, wherein the grain size is 3 to 15 ?m.Type: ApplicationFiled: February 4, 2011Publication date: August 18, 2011Applicant: THE FURUKAWA ELECTRIC CO., LTD.Inventors: Ryosuke MATSUO, Kuniteru MIHARA, Tatsuhiko EGUCHI
-
Publication number: 20110176956Abstract: A gold alloy that is usable for jewelry and other applications. The gold alloy is made by combining Y % gold with Z % of a master alloy, wherein Y+Z=100. The master alloy includes 16% silver, 71.771% copper, 12% zinc and 0.229% X, wherein X being selected from the group consisting of silicon, germanium, or mixtures thereof. The gold alloy may be made by first forming the master alloy and then mixing the gold with the master alloy. The gold alloy may also be made by mixing gold with the elements of the master alloy without first forming the master alloy.Type: ApplicationFiled: March 28, 2011Publication date: July 21, 2011Inventor: Annette T. Gertge
-
Patent number: 7910512Abstract: To provide a production process of an electrode catalyst for fuel cell whose initial voltage is high and whose endurance characteristics, especially, whose voltage drop being caused by high-potential application is less. A production process according to the present invention of an electrode catalyst for fuel cell is characterized in that: it includes: a dispersing step of dispersing a conductive support in a solution; a loading step of dropping a platinum-salt solution, a base-metal-salt solution and an iridium-salt solution to the resulting dispersion liquid, thereby loading respective metallic salts on the conductive support as hydroxides under an alkaline condition; and an alloying step of heating the conductive support with metallic hydroxides loaded in a reducing atmosphere to reduce them, thereby alloying them.Type: GrantFiled: September 26, 2008Date of Patent: March 22, 2011Assignee: Cataler CorporationInventors: Hiroaki Takahashi, Sozaburo Ohashi, Tetsuo Kawamura, Yousuke Horiuchi, Toshiharu Tabata, Tomoaki Terada, Takahiro Nagata, Susumu Enomoto
-
Publication number: 20110056591Abstract: Brass alloy powder has a brass composition formed by a mixed phase of ?-phase and ?-phase, and contains 0.5 to 5.0 mass % of chromium. The chromium includes a component that is solid-solved in a mother phase of brass, and a component that is precipitated at crystal grain boundaries.Type: ApplicationFiled: April 24, 2009Publication date: March 10, 2011Applicants: Japan Science and Technology Agency, Osaka UniversityInventors: Katsuyoshi Kondoh, Gen Katano, Hisashi Imai, Yoshiharu Kosaka, Akimichi Kojima
-
Publication number: 20100303667Abstract: The invention relates to brass alloys that are substantially lead-free. In the alloys of the invention, lead is replaced with tellurium sulfur or blends of tellurium and sulfur resulting in alloys that exhibit excellent machinability and conductivity.Type: ApplicationFiled: April 13, 2010Publication date: December 2, 2010Inventor: Norman M. Lazarus
-
Publication number: 20100284852Abstract: Equestrian bits are manufactured with the mouthpiece component comprising a copper alloy with composition; 65-80% by weight copper, 0-2% tin and the remainder being zinc including other elements. In a further embodiment, the copper alloy comprises 70-73% copper, 0.9-1.2% tin, 28% zinc the remainder being other elements at a %, by weight, of less than 1%. The alloy of the invention provides a horse bit mouthpiece which rapidly achieves thermal equilibration when placed in, or moved within, the mouth and has characteristic strength sufficient for the intended use.Type: ApplicationFiled: September 10, 2008Publication date: November 11, 2010Inventor: Graham Hugh Cross