Titanium, Zirconium, Hafnium, Vanadium, Niobium, Or Tantalum Containing Patents (Class 420/535)
  • Patent number: 8231741
    Abstract: An internal combustion piston comprises a modified layer produced by a surface treatment including injecting injection powders having a diameter of 20 ?m to 400 ?m and containing a reinforcing element to be collided with a surface of the internal combustion piston obtained by casting and forging by injecting at an injection speed of 80 m/s or more or at an injection pressure of 0.3 MPa or more, the reinforcing element improving a strength of an alloy comprising the piston when being diffused and penetrated in the alloy, wherein by the surface treatment, oxides generated on the surface of the piston by the casting and forging are removed, and surface flaws generated on the surface are repaired, whereby the modified layer is formed to have a uniformly fine-grained metal microstructure which contains the reinforcing element in the injection powders diffused and penetrated in the vicinity of the surface of the piston and an alloy element of the alloy comprising the piston.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: July 31, 2012
    Assignees: Art Metal Mfg Co., Ltd., Fuji Kihan Co., Ltd.
    Inventors: Nobuyuki Fujiwara, Yoshio Miyasaka
  • Publication number: 20120164021
    Abstract: A cold-hardening aluminium casting alloy with good thermal stability for the production of thermally and mechanically stressed cast components, wherein the alloy includes from 11.0 to 12.0 wt % silicon from 0.7 to 2.0 wt % magnesium from 0.1 to 1 wt % manganese less than or equal to 1 wt % iron less than or equal to 2 wt % copper less than or equal to 2 wt % nickel less than or equal to 1 wt % chromium less than or equal to 1 wt % cobalt less than or equal to 2 wt % zinc less than or equal to 0.25 wt % titanium 40 ppm boron optionally from 80 to 300 ppm strontium and aluminium as the remainder with further elements and impurities due to production individually at most 0.05 wt %, in total at most 0.2 wt %. The alloy is suitable in particular for the production of cylinder crank cases by the die-casting method.
    Type: Application
    Filed: May 20, 2008
    Publication date: June 28, 2012
    Applicant: ALUMINIUM RHEINFELDEN GMBH
    Inventors: Dan Dragulin, Rudiger Franke
  • Publication number: 20120121456
    Abstract: The subject of the invention is an extruded product, of the bar or rod or tube type, with very good precision-turning properties, made of a wrought precision-turning aluminium alloy of the following composition: 0.8?Si<1.5%, optionally 1.0<Si?1.5%, 1.0<Fe?1.8%, optionally 1.0<Fe?1.5%; Cu: <0.1%; Mn: <1%, optionally <0.6%; Mg: 0.6-1.2%, optionally 0.6-0.9%; Ni: <3.0%, optionally 1.0-20.%; Cr: <0.25%; Ti: <0.1%; other elements <0.05% each and 0.15% in total; and the balance aluminium. The subject of the invention is also a precision-turning part obtained from the extruded product as defined above.
    Type: Application
    Filed: March 26, 2010
    Publication date: May 17, 2012
    Applicant: ALCAN DECIN EXTRUSIONS SRO
    Inventors: Mary-Anne Kulas, Ivo Kolarik, Josef Kreuter, Annabelle Bigot, Guy-Michel Raynaud
  • Publication number: 20120121825
    Abstract: Provided are a bottom chassis, a method of fabricating the same, and a liquid crystal display (LCD) including the same. The bottom chassis is fabricated using an aluminum alloy plate including, by weight, 0.5 to 1.5% manganese, 0.8 to 1.5% magnesium, 0.01 to 0.03% titanium, less than 0.02% molybdenum, and 96% or more aluminum.
    Type: Application
    Filed: June 29, 2011
    Publication date: May 17, 2012
    Inventor: Sang-Joon PARK
  • Patent number: 8152940
    Abstract: The present invention provides an aluminum alloy forging material having enhanced strength, toughness, and corrosion resistance, and a method of producing the material. An aluminum alloy forging material 1 produced with specified components under specified conditions has an arm portion 2 including a relatively narrow and thick peripheral rib 3 and a thin and relatively wide central web 4 having a thickness of 10 mm or less and having a substantially H-shaped sectional form.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: April 10, 2012
    Assignee: Kobe Steel, Ltd.
    Inventors: Manabu Nakai, Yoshiya Inagaki, Atsumi Fukuda
  • Patent number: 8147624
    Abstract: The present invention relates to an electrode composed of an Al-M-Cu based alloy, to a process for preparing the Al-M-Cu based alloy, to an electrolytic cell comprising the electrode the use of an Al-M-Cu based alloy as an anode and to a method for extracting a reactive metal from a reactive metal-containing source using an Al-M-Cu based alloy as an anode.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: April 3, 2012
    Assignee: University of Leeds
    Inventors: Animesh Jha, Xiaobing Yang
  • Publication number: 20120073711
    Abstract: The invention relates to an aluminium alloy for producing lithographic printing plate supports as well as an aluminium strip produced from the aluminium alloy, and a method for producing the aluminium strip and use thereof to produce lithographic printing plate supports. These objects are achieved in that the aluminium alloy contains the following alloy components in % by weight: Fe<0.4%, 0.41%?Mg?0.7%, 0.05%?Si?0.25%, 0.1%?Mn?0.6%, Cu?0.04%, Ti<0.1%, Zn?0.1%, Cr?0.1%, the rest being Al and unavoidable impurities, each in an amount of 0.05% at most to give a total of 0.15% at most.
    Type: Application
    Filed: October 21, 2011
    Publication date: March 29, 2012
    Applicant: HYDRO ALUMINIUM DEUTSCHLAND GMBH
    Inventors: Bernhard Kernig, Jochen Hasenclever, Gerd Steinhoff, Christoph Settele
  • Publication number: 20120045359
    Abstract: A wear-resistant aluminum alloy extruded material that exhibits excellent fatigue strength and machinability is formed using an aluminum alloy that includes 3.0 to 8.0 mass % of Si, 0.1 to 0.5 mass % of Mg, 0.01 to 0.5 mass % of Cu, 0.1 to 0.5 mass % of Zr, 0.4 to 0.9 mass % of Fe, 0.01 to 0.5 mass % of Mn, 0.01 to 0.5 mass % of Cr, and 0.01 to 0.1 mass % of Ti, with the balance being Al and unavoidable impurities.
    Type: Application
    Filed: November 2, 2011
    Publication date: February 23, 2012
    Applicant: AISIN KEIKINZOKU CO., LTD.
    Inventor: Karin SHIBATA
  • Publication number: 20120034128
    Abstract: A Al—Mg—Si-based, casting aluminum alloy comprising by mass 4-6% of Mg, 3.1-4.5% of Si, 0.5-1% of Mn, 0.1-0.3% of Cr, and 0.1-0.4% of Cu, the balance being Al and inevitable impurities.
    Type: Application
    Filed: March 31, 2010
    Publication date: February 9, 2012
    Applicant: HITACHI METALS, LTD.
    Inventors: Hideki Yamaura, Hidetsuna Watanabe
  • Publication number: 20120009081
    Abstract: The invention relates to an aluminum alloy having good electrical conductivity and good thermal conductivity for producing die-cast components, containing: 8.0 to 9.0 wt % silicon, 0.5 to 0.7 wt % iron, max. 0.010 wt % copper, max. 0.010 wt % magnesium, max. 0.010 wt % manganese, max. 0.001 wt % chromium, max. 0.020 wt % titanium, max. 0.020 wt % vanadium, max. 0.05 wt % zinc, 0.010 to 0.030 wt % strontium, and aluminum as the rest, with further elements and manufacturing-caused impurities individually max. 0.05 wt %, in total max. 0.2 wt %. The alloy is suited in particular for producing components having good electrical conductivity and good thermal conductivity in the die casting process.
    Type: Application
    Filed: March 3, 2010
    Publication date: January 12, 2012
    Applicant: RHEINFELDEN ALLOYS GMBH & CO. KG
    Inventor: Peter Kohlmann
  • Patent number: 8088234
    Abstract: An AA2000-series alloy including 2 to 5.5% Cu, 0.5 to 2% Mg, at most 1% Mn, Fe <0.25%, Si >0.10 to 0.35%, and a method of manufacturing these aluminum alloy products. More particularly, disclosed are aluminum wrought products in relatively thick gauges, i.e. about 30 to 300 mm thick. While typically practiced on rolled plate product forms, this method may also find use with manufacturing extrusions or forged product shapes. Representative structural component parts made from the alloy product include integral spar members, and the like, which are machined from thick wrought sections, including rolled plate.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: January 3, 2012
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Sunil Khosla, Andrew Norman, Hugo Van Schoonevelt
  • Publication number: 20110290381
    Abstract: The invention relates to an aluminium alloy for the production of lithographic printing plate supports and also to an aluminium strip produced from the aluminium alloy, a process for the production of the aluminium strip and also its use for the production of lithographic printing plate supports. The object of providing an aluminium alloy as well as an aluminium strip from an aluminium alloy that permits the production of printing plate supports having improved bending-strength fatigue transverse to the rolling direction without adversely affecting the tensile strength values before and after the annealing process and while preserving the roughening properties, is achieved by the fact that the aluminium alloy contains the following alloy components in weight per cent: 0.4%<Fe?1.0%, 0.3%<Mg?1.0%, 0.05%?Si?0.25%, Mn?0.25%, Cu?0.04%, Ti?0.1%, the remainder being Al and unavoidable impurities, individually at most 0.05% and totaling at most 0.05%.
    Type: Application
    Filed: May 20, 2011
    Publication date: December 1, 2011
    Applicant: HYDRO ALUMINIUM DEUTSCHLAND GMBH
    Inventors: Bernhard Kernig, Jochen Hasenclever, Henk-Jan Brinkman, Gerd Steinhoff, Christoph Settele
  • Publication number: 20110278397
    Abstract: The present disclosure relates to an alloy containing aluminum including, as a % by weight, 2.1 to 2.4% of Cu, 1.3 to 1.6% of Li, 0.1 to 0.5% of Ag, 0.2 to 0.6% of Mg, 0.05 to 0.15% of Zr, 0.1 to 0.5% of Mn, 0.01 to 0.12% of Ti, optionally at least one element chosen from among Cr, Sc, and Hf, the quantity of the element, if it is chosen, being from 0.05 to 0.3% for Cr and Sc, 0.05 to 0.5% for Hf, a quantity of Fe and Si each less than or equal to 0.1 and inevitable impurities at a rate of less than or equal to 0.05 each and 0.15 in total. The alloy can be used to produce extruded, rolled and/or forged products particularly suitable for the manufacture of elements for the lower wing skin of aircrafts.
    Type: Application
    Filed: May 12, 2011
    Publication date: November 17, 2011
    Applicant: ALCAN RHENALU
    Inventors: Bernard BES, Frank EBERL, Gaelle POUGET
  • Publication number: 20110272175
    Abstract: An aluminum alloy wire material, which has an alloy composition containing: 0.1 to 0.4 mass % of Fe, 0.1 to 0.3 mass % of Cu, 0.02 to 0.2 mass % of Mg, and 0.02 to 0.2 mass % of Si, and further containing 0.001 to 0.01 mass % of Ti and V in total, with the balance being Al and unavoidable impurities, in which a grain size is 5 to 25 ?m in a vertical cross-section in a wire-drawing direction of the wire material, in which, according to JIS Z 2241, a tensile strength (TS) is 80 MPa or more, an elongation (El) is 15% or more, and a 0.2% yield strength (YS; MPa) satisfies, together with the TS, a relationship represented by formula: 1.5?(TS/YS)?3, and in which an electrical conductivity is 55% IACS or more.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 10, 2011
    Inventors: Shigeki SEKIYA, Kuniteru Mihara, Kyota Susai
  • Publication number: 20110266029
    Abstract: An aluminum alloy wire material, which has an alloy composition containing: 0.1 to 0.4 mass % of Fe, 0.1 to 0.3 mass % of Cu, 0.02 to 0.2 mass % of Mg, and 0.02 to 0.2 mass % of Si, and further containing 0.001 to 0.01 mass % of Ti and V in total, with the balance being Al and unavoidable impurities, in which a grain size is 5 to 25 ?m in a vertical cross-section in a wire-drawing direction thereof, and an average creep rate between 1 and 100 hours is 1×10?3 (%/hour) or less by a creep test under a 20% load of a 0.2% yield strength at 150° C.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 3, 2011
    Inventors: Shigeki Sekiya, Kuniteru Mihara, Kyota Susai
  • Publication number: 20110236253
    Abstract: The present disclosure relates to aluminum alloy including about 1.4% by mass to about 1.6% by mass Mn; about 0.75% by mass to about 2.1% by mass Cu; about 0.4% by mass to about 0.7% by mass Fe; about 0.2% by mass to about 0.5% by mass Mg; about 0.1% by mass to about 0.2% by mass Ti; about 0.03% by mass to about 0.07% by mass Si; and the balance aluminum and incidental impurities. In the aluminum alloy, Al—Mg—Cu compounds are dispersed in a matrix.
    Type: Application
    Filed: February 23, 2011
    Publication date: September 29, 2011
    Applicant: MAZDA MOTOR CORPORATION
    Inventors: Takahiro KIMURA, Nobuyuki ODA, Yukihiro SUGIMOTO
  • Publication number: 20110104001
    Abstract: An aluminum alloy sheet for a lithographic printing plate includes 0.03 to 0.15% (mass %, hereinafter the same) of Si, 0.2 to 0.7% of Fe, 0.05 to 0.5% of Mg, 0.003 to 0.05% of 11, and 30 to 300 ppm of Ga, with the balance being aluminum and inevitable impurities, a surface area of the aluminum alloy sheet having an average recrystallized grain size of 50 ?m or less in a direction perpendicular to a rolling direction, an Mg concentration that is higher than the average Mg concentration by a factor of 5 to 50, and a Ga concentration that is higher than the average Ga concentration by a factor of 2 to 20, the surface area being an area up to a depth of 0.2 ?m from the surface of the aluminum alloy sheet.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Inventors: Akio Uesugi, Atsushi Matsuura, Hiroshi Ougi, Atsushi Hibino
  • Publication number: 20110014494
    Abstract: Provided is a multi-layered sheet which has undergone heating corresponding to brazing, such as an aluminum-alloy radiator tube, or a multi-layered sheet such as an aluminum-alloy brazing sheet. The multi-layered sheet can have a reduced thickness and has excellent fatigue properties. The multi-layered sheet of aluminum alloys comprises a core layer (2) which has been clad at least with a sacrificial layer (3). This multi-layered sheet is a multi-layered sheet to be subjected to brazing or welding to produce a heat exchanger or is a multi-layered sheet which has undergone heating corresponding to brazing. The core layer (2) comprises a specific 3000-series composition. In this core layer (2), the average density in number of dispersed particles having a specific size has been regulated. As a result, fatigue properties, which govern cracking, can be highly improved.
    Type: Application
    Filed: February 5, 2009
    Publication date: January 20, 2011
    Inventors: Katsushi Matsumoto, Eiichi Tamura, Masao Kinefuchi, Toshiki Ueda, Fumihiro Koshigoe, Shimpei Kimura
  • Publication number: 20100296964
    Abstract: [Objectives] An aluminum alloy for casting with excellent rigidity and having a low coefficient of linear expansion, and at the same time, does not have a high cost, and has a few restrictions at the time of recycling. [Means for Achieving Objectives] An aluminum alloy for casting with excellent rigidity and having a low coefficient of linear expansion containing 13-25% by mass of silicon, 2-8% by mass of copper, 0.5-3% by mass of iron, 0.3-3% by mass of manganese, 0.001-0.02% by mass of phosphorus, and the remainder comprising aluminum and inevitable impurities, wherein the total amount of iron and manganese is 3.0% by mass or greater. Said alloy may further contain 0.5-6% by mass of nickel, and the total amount of iron, manganese, and nickel may be 3.0% by mass or greater. Further, said alloy may further contain one or more of 0.1-1.0% by mass of chromium, 0.05-1.5% by mass of magnesium, 0.01-1.0% by mass of titanium, 0.0001-1.0% by mass of boron, 0.1-1.0% by mass of zirconium, 0.1-1.
    Type: Application
    Filed: August 2, 2010
    Publication date: November 25, 2010
    Applicant: NIPPON LIGHT METAL COMPANY, LTD.
    Inventors: Kazuhiro ODA, Masahiko Shioda
  • Publication number: 20100279171
    Abstract: This aims to provide a pulse laser welding aluminum alloy material, which can prevent the occurrence of an abnormal portion, when an A1000-series aluminum material is welded with a pulse laser, so that a satisfactory welded portion can be homogeneously formed, and a battery case. The pulse laser welding aluminum alloy material is made of an A1000-series aluminum material, and has a viscosity of 0.0016 Pa·s or less in a liquid phase. Alternatively, the pulse laser welding aluminum alloy material has such a porosity generation rate of 1.5 (?m2/mm) or less in the pulse-laser welded portion as is numerically defined by dividing the porosity total area (?m2), as indicated by the product of the sectional area and the number of porosities, by the length (mm) of an observation section.
    Type: Application
    Filed: December 18, 2008
    Publication date: November 4, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Tsuyoshi Matsumoto, Kazunori Kobayashi, Seiji Sasabe
  • Patent number: 7824607
    Abstract: Disclosed is an aluminum alloy sheet resistant to deterioration through natural aging. The aluminum alloy sheet is an Al—Mg—Si aluminum alloy sheet containing 0.35 to 1.0 percent by mass of magnesium; 0.5 to 1.5 percent by mass of silicon; 0.01 to 1.0 percent by mass of manganese; and 0.001 to 1.0 percent by mass of copper, with the remainder being aluminum and inevitable impurities, in which the amount of dissolved silicon is 0.55 to 0.80 percent by mass, the amount of dissolved magnesium is 0.35 to 0.60 percent by mass, and the ratio of the former to the latter is 1.1 to 2. The aluminum alloy sheet may further contain 0.005 to 0.2 percent by mass of titanium with or without 0.0001 to 0.05 percent by mass of boron.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: November 2, 2010
    Assignee: Kobe Steel, Ltd.
    Inventors: Katsura Kajihara, Takeshi Kudo, Yasuhiro Aruga, Katsushi Matsumoto
  • Publication number: 20100247369
    Abstract: An aluminum material, which is composed of crystal grains having different crystal orientations, in which the crystal grains comprise Cube-oriented crystal grains, Brass-oriented crystal grains and Copper-oriented crystal grains with a balance of crystal grains of other orientations, and in which the proportion of the Cube-oriented crystal grains is from 0.3 to 0.7, the proportion of the Brass-oriented crystal grains is from 0.1 to 0.5, the proportion of the Copper-oriented crystal grains is 0.2 or less, and the total proportion of these orientations is from 0.4 to 1.0; and a car component using the same.
    Type: Application
    Filed: November 29, 2006
    Publication date: September 30, 2010
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventor: Hideo Morimoto
  • Publication number: 20100201155
    Abstract: In a car body or component of a car body with at least one first component of sheet metal of a first aluminium alloy (A) and at least one second component of sheet metal of a second aluminium alloy (B), the first and second aluminium alloy are of type AlMgSi and in the sheet metal of the second aluminium alloy (B) a substantial part of the elements Mg and Si, which are required to achieve artificial ageing in solid solution, is present in the form of separate Mg2Si and/or Si particles in order to avoid artificial ageing. As well as common recycling of process scrap in the production of the various components and simple scrap recycling of the body parts from the end of life car, by reduction of the hardening capacity of the second component during artificial ageing of the body as part of the paint baking cycle, the car body has an improved impact protection for pedestrians in comparison with solutions according to the prior art.
    Type: Application
    Filed: February 10, 2010
    Publication date: August 12, 2010
    Applicant: Novelis, Inc.
    Inventors: Corrado Bassi, Juergen Timm
  • Publication number: 20100192888
    Abstract: A high strength aluminum alloy casting obtained by casting an aluminum alloy comprised of 7.5 to 11.5 wt % of Si, 3.8 to 4.8 wt % of Cu, 0.45 to 0.65 wt % of Mg, 0.4 to 0.7 wt % of Fe, 0.35 to 0.45 wt % of Mn, and the balance of Al and not more than 0.2 wt % of unavoidable impurities, wherein this aluminum alloy has 0.1 to 0.3 wt % of Ag added to it or contains 0.1 to 1.0 wt % of at least one element selected from the group of second additive elements comprised of Rb, K, Ba, Sr, Zr, Nb, Ta, V, and Pd and rare earth elements, and a method of production of a high strength aluminum alloy casting comprising the steps of filling a melt of an aluminum alloy in a mold to obtain a casting, taking out the aluminum alloy casting from the mold, solubilizing the high strength aluminum alloy casting by heating in a temperature range of 495 to 505° C.
    Type: Application
    Filed: April 1, 2010
    Publication date: August 5, 2010
    Applicants: DENSO CORPORATION, Nippon Light Metal Co., Ltd.
    Inventors: Kouji Yamada, Tomoyuki Hatano, Susumu Miyakawa, Hiromi Takagi, Hiroshi Horikawa, Akio Hashimoto
  • Publication number: 20100089502
    Abstract: The invention relates to an age-hardenable aluminium alloy product for structural members having a chemical composition including, in wt. %: Cu about 3.6 to 6.0%, Mg about 0.15 to 1.2%, Ge about 0.15 to 1.1%, Si about 0.1 to 0.8%, Fe<0.25%, balance aluminium and normal and/or inevitable elements and impurities. Zn, Ag and/or Ni may or may not be present. A typical range for Zn is <0.3 or, in a further embodiment about 0.3 to 1.3%. A typical range for Ag is <0.1 or, in a further embodiment about 0.1 to 1.0%. Products made from this aluminium alloy product are very suitable for aerospace applications. The alloy can be processed to various product forms, e.g. sheet, thin plate, thick plate, extruded or forged products. Products made from this alloy can be used also as a cast product, ideally as die-cast product.
    Type: Application
    Filed: February 28, 2008
    Publication date: April 15, 2010
    Applicant: ALERIS ALUMINUM KOBLENZ GMBH
    Inventors: Linzhong Zhuang, Shangping Chen, Andrew Norman
  • Patent number: 7695577
    Abstract: The present invention discloses an aluminum alloy being excellent in wear resistance, containing, in mass %, 12.0 to 13.7% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities; and an aluminum alloy sliding member excellent in wear resistance, which has in mass %, 12.0 to 14.0% of Si, 2.0 to 5.0% of Cu, 0.1 to 1.0% of Mg, 0.8 to 1.3% of Mn, 0.10 to 0.5% of Cr, 0.05 to 0.20% of Ti, 0.5 to 1.3% of Fe, 0.003 to 0.02% of P, and has a Ca content controlled to less than 0.005 mass %, the balance being Al and inevitable impurities, and contains primary crystals of Si having a grain diameter of 20 ?m or more in an amount of 20 pieces/mm2 or less. The alloy may contain one or two of 0.0001 to 0.01 mass % of B, and 0.3 to 3.0 mass % of Ni.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 13, 2010
    Assignee: Nippon Light Metal Company, Ltd.
    Inventors: Masahiko Shioda, Sanji Kitaoka, Yukio Kuramasu
  • Patent number: 7691489
    Abstract: An aluminum alloy, a clad or unclad material for a brazed product containing the alloy as a core, and a method for producing the material, wherein the material is used for manufacturing the brazed product from the alloy.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: April 6, 2010
    Assignee: Sapa Heat Transfer AB
    Inventors: Hans-Erik Ekström, Stefan Wass, Richard Westergård, Anders Oscarsson, Annika Moberg
  • Publication number: 20100074796
    Abstract: In an aluminium alloy of type AlMgSi with good creep strength at elevated temperatures for the production of castings subject to high thermal and mechanical stresses the contents of the alloying elements magnesium and silicon in % w/w in a Cartesian coordinate system are limited by a polygon A with the coordinates [Mg; Si] [8.5; 2.7] [8.5; 4.7] [6.3; 2.7] [6.3; 3.4] and that the alloy also contains 0.1 to 1% w/w manganese max. 1% w/w iron max. 3% w/w copper max. 2% w/w nickel max. 0.5% w/w chromium max. 0.6% w/w cobalt max. 0.2% w/w zinc max. 0.2% w/w titanium max. 0.5% w/w zirconium max. 0.008% w/w beryllium max. 0.5% w/w vanadium as well as aluminium remainder rest with further elements and manufacturing-related impurities of individually max. 0.05% w/w and max. 0.2% w/w in total. The alloy is suitable in particular for the production of cylinder crankcases by the pressure die casting method.
    Type: Application
    Filed: August 18, 2006
    Publication date: March 25, 2010
    Applicant: ALUMINIUM RHEINFELDEN GmbH
    Inventor: Rudiger Franke
  • Patent number: 7682469
    Abstract: A piston made of aluminum cast alloy having a main body section in an approximately cylindrical shape, atop face section provided and arranged so as to occlude one end of the main body section, and a pin boss section in which a pin hole is provided so as to penetrate through the main body section in a radial direction. The piston comprises an aluminum cast alloy containing Mg (Magnesium): equal to or less than 0.2 mass %, Ti (Titanium) 0.05-0.3 mass %, Si (Silicon): 10-21 mass %, Cu (Copper): 2-3.5 mass %, Fe (Iron): 0.1-0.7 mass %, Ni (Nickel): 1-3 mass %, P (Phosphorus): 0.001-0.02 mass %, Al (Aluminum): the remaining portions, and impurities.
    Type: Grant
    Filed: July 17, 2003
    Date of Patent: March 23, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Hajime Ikuno, Yoshihiko Sugimoto, Hiroshi Hohjo
  • Publication number: 20100047113
    Abstract: The present invention provides an aluminum casting alloy with a composition including 4%-9% Si; 0.1%-0.7% Mg; less than or equal to 5% Zn; less than 0.15% Fe; less than 4% Cu; less than 0.3% Mn; less than 0.05% B; less than 0.15% Ti; and the remainder consisting essentially of aluminum. The inventive AlSiMg composition provides increased mechanical properties (Tensile Yield Strength and Ultimate Tensile Strength) in comparison to similiarly prepared E357 alloy at room temperature and high temperature. The present invention also includes a shaped casting formed from the inventive composition and a method of forming a shaped casting from the inventive composition.
    Type: Application
    Filed: November 3, 2009
    Publication date: February 25, 2010
    Applicant: Alcoa Inc.
    Inventors: Jen C. Lin, Xinyan Yan, Cagatay Yanar, Larry D. Zellman, Xavier Dumant, Robert Tombari
  • Publication number: 20100047114
    Abstract: An aluminum alloy extruded product includes 0.3 to 0.8 mass % of Mg, 0.5 to 1.2 mass % of Si, 0.3 mass % or more of excess Si with respect to the Mg2Si stoichiometric composition, 0.05 to 0.4 mass % of Cu, 0.2 to 0.4 mass % of Mn, 0.1 to 0.3 mass % of Cr, 0.2 mass % or less of Fe, 0.2 mass % or less of Zr, and 0.005 to 0.1 mass % of Ti, with the balance being aluminum and unavoidable impurities, the aluminum alloy extruded product having a fatigue strength of 140 MPa or more, a fatigue ratio of 0.45 or more, and an interval between striations on a fatigue fracture surface of 5.0 ?m or less.
    Type: Application
    Filed: August 19, 2009
    Publication date: February 25, 2010
    Applicants: AISIN KEIKINZOKU CO., LTD., SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Karin SHIBATA, Tomoo YOSHIDA, Hiroshi TABUCHI, Hidetoshi TAKAGI
  • Patent number: 7648594
    Abstract: Extruded aluminum alloy which excels in machinability, caulking properties, and wear resistance, the extruded aluminum alloy including 3.0 to 6.0 mass % of Si, 0.1 to 0.45 mass % of Mg, 0.01 to 0.5 mass % of Cu, 0.01 to 0.5 mass % of Mn, and 0.40 to 0.90 mass % of Fe, with the balance being Al and unavoidable impurities.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: January 19, 2010
    Assignee: Aisin Keikinzoku Co., Ltd.
    Inventors: Nobuyuki Higashi, Kinji Hashimoto
  • Publication number: 20090266452
    Abstract: An extrudable aluminum alloy composition includes, in weight percent, between 0.60 and 0.90 manganese, between 0.45 and 0.75 copper, between 0.05 and 0.24 magnesium, less than 0.30 iron, less than 0.30 silicon, less than 0.05 titanium, less than 0.05 vanadium, and a Cu/Mg ratio higher or equal to 3. It also relates to aluminum alloy heat exchanger extruded or drawn tube and extruded or drawn aluminum alloy tubing having the above-described aluminum alloy composition. It also relates to a heat exchanger comprising a plurality of extruded or drawn tube sections having the above-described aluminum alloy composition and a process for manufacturing same.
    Type: Application
    Filed: April 24, 2008
    Publication date: October 29, 2009
    Inventor: Nicholas Charles Parson
  • Publication number: 20090226343
    Abstract: An aluminium alloy product having high strength, excellent corrosion resistance and weldability, having the following composition in wt. %: Mg 3.5 to 6.0, Mn 0.4 to 1.2, Fe<0.5, Si<0.5, Cu<0.15, Zr<0.5, Cr<0.3, Ti 0.03 to 0.2, Sc<0.5, Zn<1.7, Li<0.5, Ag<0.4, optionally one or more of the following dispersoid forming elements selected from the group consisting of erbium, yttrium, hafnium, vanadium, each <0.5 wt. %, and impurities or incidental elements each <0.05, total <0.15, and the balance being aluminium.
    Type: Application
    Filed: August 14, 2006
    Publication date: September 10, 2009
    Applicant: CORUS ALUMINIUM WALZPRODUKTE GMBH
    Inventors: Nadia TELIOUI, Steven Dirk MEIJERS, Andrew NORMAN
  • Publication number: 20090220376
    Abstract: An aluminum alloy for producing an aluminum strip for lithographic print plate carriers, a method for producing an aluminum alloy for lithographic print plate carriers, in which, during the production of the aluminum alloy, after the electrolysis of the aluminum oxide, the liquid aluminum, up to the casting of the aluminum alloy, is supplied to a plurality of purification steps, as well as an aluminum strip for lithographic print plate carriers and a corresponding use of the aluminum strip for lithographic print plate carriers include a carbide content of less than 10 ppm, and preferably less than 1 ppm. As a result, the aluminum alloy, the method for producing the aluminum alloy, the aluminum strip, and corresponding use of the aluminum strip for lithographic print plate carriers described herein allow for the use of virtually gas-tight coatings.
    Type: Application
    Filed: February 13, 2007
    Publication date: September 3, 2009
    Applicant: Hydro Aluminium Deutschland GmbH
    Inventors: Bernhard Kernig, Werner Droste
  • Publication number: 20090196762
    Abstract: A casting aluminum alloy which contains, in terms of mass %, 3.2-5.0% Cu, 0.8-3.0% Ni, 1.0-3.0% Mg, 0.05-0.20% Ti, and up to 1.0% Si, the remainder being aluminum and incidental impurities. This casting aluminum alloy is used to produce a cast compressor impeller comprising a hub part, a hub-disk part extending from the hub part in the radial directions and having a hub surface and a disk surface, and blade parts disposed on the hub surface. Compared to conventional aluminum alloys, the casting aluminum alloy has a moderate elongation and a high strength at ordinary temperature and has high strength even at high temperatures.
    Type: Application
    Filed: June 26, 2007
    Publication date: August 6, 2009
    Applicants: HITACHI METALS PRECISION , LTD., HITACHI METALS , LTD.
    Inventor: Masaaki Koga
  • Publication number: 20090180890
    Abstract: The invention relates to rotors or stators of a turbomolecular pump with rotor blades made of a specific aluminum alloy.
    Type: Application
    Filed: April 27, 2007
    Publication date: July 16, 2009
    Applicant: OERLIKON LEYBOLD VACUUM GMBH
    Inventors: Rainer Hölzer, Michael Froitzheim, Lars Etschenberg, Ishan Roth, Gernot Fischer, Dieter Sauer, Gregor Terlinde
  • Publication number: 20090116999
    Abstract: An Al—Mg—Si alloy with improved ductility and crush properties, in particular useful for structural components in crash exposed areas in vehicles. The alloy contains in wt %: Mg 0.25-1.2; Si 0.3-1.4; Ti 0.03-0.4, where Ti is present in solid solution and where the alloy contains in addition one or more of the following alloy components: Mn max 0.6; Cr max 0.3; Zr max 0.25, and incidental impurities, including Ee and Zn up to 0.5 with balance Al.
    Type: Application
    Filed: February 16, 2007
    Publication date: May 7, 2009
    Inventors: Trond Furu, Ulf Tundal, Jostein Royset, Oddvin Reiso
  • Publication number: 20090081072
    Abstract: An aluminum alloy sheet is manufactured by preparing a slab having a thickness of 5 to 15 mm with a continuous casting machine by a continuous casting process using molten alloy containing following components: 0.40% to 0.65% of Mg, 0.50% to 0.75% of Si, 0.05% to 0.20% of Cr, and 0.10% to 0.40% of Fe, remainder being Al, the components being essential elements, and optionally up to 0.15% Cu, 0.10% Ti; winding the slab into a coil; hot-rolling or directly coiling up the slab; cold-rolling the slab into a sheet; subjecting the sheet to solution heat treatment with a continuous annealing furnace; and then pre-aging the sheet. The aluminum alloy sheet has the same composition as the molten alloy, has a grain size of 10 to 25 ?m, is superior in bake hardenability, bendability, and surface quality (orange peel), and can be manufactured with low cost.
    Type: Application
    Filed: May 25, 2005
    Publication date: March 26, 2009
    Applicants: NIPPON LIGHT METAL CO., LTD, HONDA MOTOR., LTD., NOVELIS INC.
    Inventors: Pizhi Zhao, Toshiya Anami, Ichiro Okamoto, Hitoshi Kazama, Kunihiro Yasunaga, Noboru Hayashi, Kevin Gatenby, Simon Barker, Edward Luce
  • Publication number: 20090053099
    Abstract: An aluminum alloy sheet for bottle cans superior in high-temperature properties and capable of preventing thermal deformation thereof in coating and heat treatment and securing can strength after the heat treatment. The aluminum alloy sheet has the following composition: Mn 0.7-1.5%, Mg 0.8-1.7%, Fe 0.1-0.7%, Si 0.05-0.5%, Cu 0.1-0.6%, with the remainder being Al and inevitable impurities, and has a crystal structure elongated in a rolling direction and with an aspect ratio of crystal grains of 3 or more as determined through an examination from above of a part located at the center in the through-thickness direction. In the sheet, the amount of solute Cu is 0.05-0.3%, which means the amount of Cu in a solution separated from a precipitate exceeding 0.2 m in particle size by the extracted residue method using hot phenol, and the amount of solute Mg is 0.75-1.6%, which means the amount of solute Mg separated from a precipitate exceeding 0.2 m in particle size by the extracted residue method using hot phenol.
    Type: Application
    Filed: March 7, 2006
    Publication date: February 26, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD)
    Inventors: Katsura Kajihara, Kiyohito Tsuruda, Yasuhiro Aruga
  • Publication number: 20090047171
    Abstract: This invention relates to a 6000-series aluminum extruded material containing magnesium (0.3% to 0.7% by mass), silicon (0.7% to 1.5% by mass), copper (0.35% or less by mass), iron (0.35% or less by mass), titanium (0.005% to 0.1% by mass), manganese (0.05% to 0.30% by mass), chrome (0.10% or less by mass), and zirconium (0.10% or less by mass) (provided that at least one transition element selected from the group consisting of manganese, chromium, and zirconium is contained in a total amount representing 0.05% to 0.40% by mass), with the balance comprising aluminum with inevitable impurities, such aluminium extruded material having a predetermined yield strength of 180 MPa or more with an increase of 60 MPa as a result of a thermal history corresponding to paint baking.
    Type: Application
    Filed: March 30, 2007
    Publication date: February 19, 2009
    Inventors: Masamichi Aono, Toshitaka Miyaki, Tomoo Yoshida
  • Publication number: 20090041616
    Abstract: Disclosed is a lightweight aluminum based alloy that is high in strength and elongation properties at high temperatures of around 200° C. to 300° C. and has excellent workability in hot working. Disclosed also is a heat-resistant aluminum based alloy excellent in wear resistance and rigidity. Specifically, an aluminum based alloy contains, in terms of percent by mass, 5% to 10% of Mn; 0.5% to 5% of V; 0.5% to 5% of Cr; 0.5% to 5% of Fe; 1% to 8% of Si; 0.5% to 5% of Ni, with the balance being aluminum and inevitable impurities. The aluminum based alloy has a structure including 35 to 80 percent by volume of an intermetallic compound phase with the balance being an aluminum metal matrix.
    Type: Application
    Filed: March 7, 2006
    Publication date: February 12, 2009
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Toshiaki Takagi, Katsura Kajihara, Hideo Hata
  • Publication number: 20090016928
    Abstract: An aluminum strip for lithographic printing plate supports, from which printing plate supports can be produced with an improved roughenability and at the same time improved mechanical properties, particularly after a burn-in process, is formed of an aluminum alloy which has the following proportions of alloy constituents in wt. %: 0.05%?Mg?0.3%, 0.008%?Mn?0.3%, 0.4%?Fe?1%, 0.05%?Si?0.5%, Cu?0.04%, Ti?0.04%, inevitable impurities individually max. 0.01%, in total max. 0.05% and remainder Al.
    Type: Application
    Filed: October 19, 2006
    Publication date: January 15, 2009
    Applicant: Hydro Aluminium Deutschland GmbH
    Inventors: Bernhard Kernig, Henk-Jan Brinkman, Arve Sund, Gerd Steinhoff
  • Publication number: 20090010799
    Abstract: Disclosed are: a casting aluminum alloy that is excellent in elongation as alternative properties of a high cycle fatigue strength and a thermal fatigue strength and is suitably usable for a casting for which both of the excellent high cycle fatigue strength and the excellent thermal fatigue strength are required, for example, an internal combustion engine cylinder head; a casting made of the aluminum alloy; a manufacturing method of the casting; and further, an internal combustion engine cylinder head composed of the aluminum alloy casting and manufactured by the manufacturing method of the casting. The casting aluminum alloy contains, in terms of mass ratios, 4.0 to 7.0% of Si, 0.5 to 2.0% of Cu, 0.25 to 0.5% of Mg, no more than 0.5% of Fe, no more than 0.5% of Mn, and at least one component selected from the group consisting of Na, Ca and Sr, each mass ratio of which is 0.002 to 0.02%.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Inventors: Hiroshi SOUDA, Kouichi AKIYAMA, Hiroshi HORIKAWA, Masahiko SHIODA
  • Publication number: 20080318081
    Abstract: The invention relates to a malleable, high mechanical strength aluminum alloy of the AlMgSi type which can be anodized in a decorative manner, to a semifinished product produced from said alloy, in the shape of strips, sheets or extruded profiles, and to a structural component produced from the above semifinished products, especially a reshaped component that has been anodized in a decorative manner. The invention also relates to a method for producing an aluminum alloy component of the above type. Said aluminum alloy has good malleability, achieved by weight percentages of strontium in the alloy and defined weight ratios of silicon to magnesium and iron to strontium.
    Type: Application
    Filed: April 30, 2005
    Publication date: December 25, 2008
    Inventor: Reiner Steins
  • Publication number: 20080299001
    Abstract: The present invention relates to modified alloy compositions for reduced hot tear susceptibility, the aluminum alloy comprising from 0.01 to 0.025% by weight of Sr; and TiB2, measured by its boron content, from 0.001 to 0.005% by weight of B. The invention also relates to a method of preventing or eliminating hot tears in an aluminum alloy comprising the step of combining with aluminum: from 0.01 to 0.025% by weight of Sr; and TiB2, measured by its boron content, from 0.001 to 0.005% by weight of B.
    Type: Application
    Filed: May 27, 2008
    Publication date: December 4, 2008
    Applicant: Alcan International Limited
    Inventors: Joseph Langlais, Alain Lemieux, Neivi Andrade
  • Patent number: 7438772
    Abstract: An aluminum-copper-magnesium alloy having ancillary additions of lithium. The alloy composition includes from about 3 to about 5 weight percent Cu, from about 0.5 to about 2 weight percent Mg, and from about 0.01 to about 0.9 weight percent Li. The combined amount of Cu and Mg is maintained below a solubility limit of the aluminum alloy. The alloys possess improved combinations of fracture toughness and strength, and also exhibit good fatigue crack growth resistance.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: October 21, 2008
    Assignee: Alcoa Inc.
    Inventors: Roberto J. Rioja, Gary H. Bray, Paul E. Magnusen
  • Patent number: 7407714
    Abstract: Disclosed is a process for producing an Al—Mn alloy sheet with improved liquid film migration resistance when used as core alloy in brazing sheet, including the steps of: casting an ingot having a composition comprising (in weight percent): 0.5<Mn?1.7, 0.06<Cu?1.5, Si?1.3, Mg?0.25, Ti<0.2, Zn?2.0, Fe?0.5, at least one element of the group of elements of 0.05<Zr?0.25 and 0.05<Cr?0.25; other elements <0.05 each and total <0.20, balance Al; homogenisation and preheat; hot rolling; cold rolling (including intermediate anneals whenever required), and wherein the homogenisation temperature is at least 450° C. for a duration of at least 1 hour followed by an air cooling at a rate of at least 20° C./h and wherein the pre-heat temperature is at least 400° C. for at least 0.5 hour.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: August 5, 2008
    Assignees: Aleris Aluminum Koblenz GmbH, Aleris Aluminum Canada S.E.C.
    Inventors: Scott W. Haller, Job Anthonius Van Der Hoeven, Klaus Vieregge, Achim Bürger, Sampath Desikan
  • Publication number: 20080175747
    Abstract: Disclosed is an aluminum alloy sheet resistant to deterioration through natural aging. The aluminum alloy sheet is an Al—Mg—Si aluminum alloy sheet containing 0.35 to 1.0 percent by mass of magnesium; 0.5 to 1.5 percent by mass of silicon; 0.01 to 1.0 percent by mass of manganese; and 0.001 to 1.0 percent by mass of copper, with the remainder being aluminum and inevitable impurities, in which the amount of dissolved silicon is 0.55 to 0.80 percent by mass, the amount of dissolved magnesium is 0.35 to 0.60 percent by mass, and the ratio of the former to the latter is 1.1 to 2. The aluminum alloy sheet may further contain 0.005 to 0.2 percent by mass of titanium with or without 0.0001 to 0.05 percent by mass of boron.
    Type: Application
    Filed: December 17, 2007
    Publication date: July 24, 2008
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Katsura Kajihara, Takeshi Kudo, Yasuhiro Aruga, Katsushi Matsumoto
  • Publication number: 20080060723
    Abstract: A castable aluminum alloy includes, in weight %, about 0.4% to about 2.5% Si, up to about 5% Cu, up to about 1% Mg, up to about 1% Fe, up to about 2% Mn, up to about 0.3% Ti, up to about 2.5% Ni, up to about 3% Zn, and the balance aluminum and provides reduced casting porosity and improved tensile strength and ductility in the cast and the heat treated condition.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 13, 2008
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Herbert W. Doty