Silicon Containing Patents (Class 420/537)
  • Patent number: 5478418
    Abstract: An aluminum alloy powder for sliding members includes Fe in an amount of from 0.5 to 5.0% by weight, Cu in an amount of from 0.6 to 5.0% by weight, B in an amount of from 0.1 to 2.0% by weight and the balance of Al. An aluminum alloy includes a matrix made from the aluminum alloy powder and at least one member dispersed, with respect to whole of the matrix taken 100% by weight, in the matrix, and selected from the group consisting of B in an amount of from 0.1 to 5.0% by weight, boride in an amount of from 1.0 to 15% by weight and iron compound in an amount of from 1.0 to 15% by weight, and thereby it exhibits the tensile strength of 400 MPa or more. The aluminum alloy powder and the aluminum alloy are suitable for making sliding members like valve lifters for automobiles.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: December 26, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminum Kabushiki Kaisha
    Inventors: Hirohisa Miura, Yasuhiro Yamada, Hirohumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5472920
    Abstract: The invention relates to the thermal barriers, to a process and material for their production, and to their application. Thermal barriers consist of a material comprising at least one refractory oxide with low thermal diffusivity and at least one quasicrystalline aluminum alloy, the proportion of which represents from 2-30% by volume. They can be produced by deposition of a mixture of refractory oxide and of quasicrystalline alloy in vapor phase, or from a mixture of refractory oxide and quasicrystalline aluminum alloy in the molten state, or else by deposition onto the support to be protected with the aid of an oxygen-gas torch fed with material using a flexible cord which contains the refractory oxide and the quasicrystalline alloy. The applications include the protection of components of aircraft or motor vehicle engines, of aeronautical or aerospace components, of chemical reactors or of electrical households appliances.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: December 5, 1995
    Assignee: Societe Nouvelle de Metallisation Industries
    Inventors: Jean-Marie Dubois, Philippe Cathonnet
  • Patent number: 5466312
    Abstract: A method for making aluminum foil comprises providing an aluminum-based alloy composition consisting essentially of about 0.05 to 0.20 weight percent silicon, about 0.02 to 0.50 weight percent iron, about 0.05 to 0.30 weight percent copper and balance aluminum and inevitable impurities and grain refining elements, wherein the ratio of iron to silicon ranges between about 2:1 and 4:1. The aluminum-alloy composition is continuously cast using a unitary and chilled casting wheel to form a cast strip product of desired width and gauge. The cast strip product is then homogenized, cold rolled and recrystallized annealed into an aluminum foil product. The aluminum-based alloy composition produces a single roll cast product having minimum microshrinkage porosity on the air surface thereof. Reducing or eliminating the microshrinkage porosity in the cast product results in an aluminum foil product having a minimum of pinholes in the final foil product.
    Type: Grant
    Filed: July 15, 1994
    Date of Patent: November 14, 1995
    Assignee: Reynolds Metals Company
    Inventors: Bennie R. Ward, Jr., Sander A. Levy, George A. Sloan
  • Patent number: 5466277
    Abstract: A sintered Al-alloy, which has a composition of 0.2 to 2.0% of Mg, 10.0 to 35.0% of Si, from 0.2 to 4.0% of Cu, and Al and unavoidable impurities in balance, is produced by using a mixture of the main powder (10.0-35.0% of Si, 0.2-2.0% of Cu, and Al and unavoidable impurities in balance) and at least one metal or mother-alloy powder selected from (a)-(i): (a) Mg powder; (b) Al--Mg powder; (c) Al--Cu powder; (d) Al--Mg--Si powder; (e) Al--Cu--Si powder; (f) Al--Mg--Cu powder; (g) Al--Mg--Cu--Si powder; (h) Mg--Cu powder; and, (i) Mg--Cu--Si powder.
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: November 14, 1995
    Assignee: Showa Denko K.K.
    Inventors: Shin Miura, Youichi Hirose, Mitsuaki Sato
  • Patent number: 5453244
    Abstract: There is disclosed a novel aluminum alloy bearing which exhibits a more excellent fatigue resistance than conventional bearings even under such conditions of use as at a high temperature and under a high load. The aluminum alloy bearing has an aluminum bearing alloy layer containing, by weight, 1 to 10% Zn, 0.1 to 5% Cu, 0.05 to 3% Mg, 0.1 to 2% Mn, 0.1 to 5% Pb, 0.1 to 2% V, and 0.03 to 0.5% in total of Ti--B, and further may optionally contain not more than 8% Si, 0.05 to 0.5% Sr, and Ni, Co and Cr. The alloy may be bonded to a steel metal back sheet, and a surface layer may be formed on the surface of the bearing. By use of the composition of the alloy of the invention, the fatigue resistance of the aluminum alloy bearings has been improved, and such an improved bearing can fully achieve a bearing performance even under severe conditions of use as at high temperature and under a high load.
    Type: Grant
    Filed: November 10, 1994
    Date of Patent: September 26, 1995
    Assignee: Daido Metal Company Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Tohru Kato, Yoshiaki Sato
  • Patent number: 5409661
    Abstract: An aluminum alloy consists essentially of 90 to 99.5% by weight of matrix and 0.5 to 10% by weight of a dispersant dispersed within the matrix. The matrix comprises 10 to 25% by weight of Si, 5 to 20% by weight of Ni, 1 to 5% by weight of Cu and the rest of Al and impurity elements. The dispersant is at least one selected from the group consisting of 0.5 to 10% of nitride, boride, carbide and oxide. The aluminum alloy shows excellent tensile strength and wear resistance.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: April 25, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Imahashi, Hirohisa Miura, Yasuhiro Yamada, Hirohumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5407124
    Abstract: A low melting aluminum brazing alloy of about 15-25 wt. percent silver, about 15-25 wt. percent copper, about 1-5 wt. percent silicon, about 0-3 wt. percent zinc, about 0-2 wt. percent magnesium, about 0-2 wt. percent iron and the balance essentially aluminum and incidental impurities. Also, a brazing product of this alloy and a method of joining aluminum components using the brazing product.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: April 18, 1995
    Assignee: Handy & Harman
    Inventor: Debasis Bose
  • Patent number: 5405576
    Abstract: A hypereutectic aluminum-silicon alloy produced by a powder metallurgy technique disclosed herein comprises 12 to 50% by weight of silicon, 1.0 to 5.0% by weight of copper and 0.01 to 0.05% by weight of phosphorus, the content of Ca as an impurity being controlled to be 0.03% by weight or less. The hyereutectic aluminum-silicon alloy of the present invention is excellent in machinability and mechanical strength.
    Type: Grant
    Filed: July 16, 1992
    Date of Patent: April 11, 1995
    Assignees: Toyo Aluminum Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
    Inventors: Jun Kusui, Akiei Tanaka, Kohei Kubo, Takashi Watsuji, Takamasa Yokote
  • Patent number: 5374295
    Abstract: Disclosed are heat resistant aluminum alloy powders and alloys including Ni, Si, either at least one of Fe and Zr or at least one of Zr and Ti. For instance, the alloy powders or alloys consist essentially of Ni in an amount of from 5.7 to 20% by weight, Si in an amount of from 0.2 to 25% by weight, at least one of Fe in an amount of from 0.6 to 8.0% by weight and Cu in an amount of from 0.6 to 5.0% by weight, and the balance of Al. The alloy powders or alloys are optimum for a matrix of heat and wear resistant aluminum alloy-based composite materials including at least one of nitride particles and boride particles in an amount of 0. 5 to 10% by weight with respect to the whole composite material taken as 100% by weight. The alloy powders, alloys and composite materials are satisfactory applicable to the component parts of the recent automobile engines which should produce a high output.
    Type: Grant
    Filed: March 3, 1993
    Date of Patent: December 20, 1994
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminum Kabushiki Kaisha
    Inventors: Hirohisa Miura, Kunihiko Imahashi, Yasuhiro Yamada, Hirohumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5286316
    Abstract: An aluminum-based alloy composition having improved corrosion resistance and high extrudability consists essentially of about 0.1-0.5% by weight of manganese, about 0.05-0.12% by weight of silicon, about 0.10-0.20% by weight of titanium, about 0.15-0.25% by weight of iron and the balance aluminum, wherein the aluminum alloy is essentially copper free. The inventive alloy is useful in automotive applications, in particular, heat exchanger tubing and finstock, and foil packaging. The process provided by the invention uses a high extrusion ratio and produces a product having high corrosion resistance.
    Type: Grant
    Filed: April 3, 1992
    Date of Patent: February 15, 1994
    Assignee: Reynolds Metals Company
    Inventor: Kenneth D. Wade
  • Patent number: 5162100
    Abstract: An aluminum-based bearing alloy of the invention comprises 3-40% Sn, 0.1-10% Pb, 0.1-5% Cu, 0.1-3% Sb, total 0.05-1% of Ti and B which satisfy the equation: B/Ti+B=0.1 to 0.35, and the balance being essentially Al. The aluminum-based bearing alloy according to the present invention has excellent fatigue resistance and anti-seizure property.
    Type: Grant
    Filed: August 27, 1991
    Date of Patent: November 10, 1992
    Assignee: Daido Metal Company, Ltd.
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Yoshiaki Sato, Tohru Kato
  • Patent number: 5162065
    Abstract: Disclosed is an aluminum alloy suitable for high temperature applications comprised of at least 9 wt. % Si, 3 to 7 wt. % Ni, 1.5 to 6 wt. % Cu, at least one of the elements selected from Mg, Mn, V, Sc, Fe, Ti, Sr, Zn, B and Cr, the remainder aluminum and impurities.
    Type: Grant
    Filed: October 2, 1991
    Date of Patent: November 10, 1992
    Assignee: Aluminum Company of America
    Inventors: Gerald D. Scott, Barrie S. Shabel, Anthony Morales
  • Patent number: 5123973
    Abstract: A worked rod extrusion product for fabricating into products having high wear resistance surfaces, the product comprised of 11 to 13.5 wt. % Si, 0.5 to 1.45 wt % Cu, 0.8 to 3 wt. % Mg, 0.5 to 2.95 wt. % Ni, max 1 wt. % Fe, max 0.1 wt. % Cr, max 0.25 wt. % Zn, the balance aluminum, incidental elements and impurities.
    Type: Grant
    Filed: February 26, 1991
    Date of Patent: June 23, 1992
    Assignee: Aluminum Company of America
    Inventors: Gerald D. Scott, James A. Brock, Thomas J. Klemp
  • Patent number: 5122208
    Abstract: An improved aluminum-silicon alloy having relatively substantial additions of tin and bismuth is provided which is particularly wear-resistant and sufficiently self-lubricating so as to be suitable for use in a wearing component even when poorly lubricated. The relatively high tin and bismuth additions within the alloy cooperate with the other elemental additions so as to provide a sufficiently low friction bearing surface (or self-lubricity) which significantly enhances the wear resistant properties of the alloy. In particular, the preferred aluminum alloy is used to form a socket plate which receives high strength steel bearing members within a compressor unit of an automobile air conditioning system. The improved aluminum alloy minimizes wear and alleviates galling of the socket plate during use.
    Type: Grant
    Filed: July 22, 1991
    Date of Patent: June 16, 1992
    Assignee: General Motors Corporation
    Inventor: Muftau M. Alabi
  • Patent number: 5122207
    Abstract: An improved aluminum-silicon-copper alloy having a relatively high level of bismuth is provided which is particularly wear-resistant and sufficiently self-lubricating so as to be suitable for use in a wearing component even when poorly lubricated. The relatively high bismuth level within the alloy cooperates with the other elemental additions so as to provide a sufficiently low friction bearing surface (or self-lubricity), which significantly enhances the wear resistant properties of the alloy. In particular, the preferred aluminum alloy is suited for use in a socket plate which receives high strength steel bearing members within a compressor unit of an automobile air conditioning system. The improved aluminum alloy should minimize wear and alleviate galling of the socket plate during use. In addition, the improved aluminum alloy should have sufficient strength and ductility so as to permit swaging of the socket plate formed from the alloy around a balled end of the high strength steel bearing member.
    Type: Grant
    Filed: July 22, 1991
    Date of Patent: June 16, 1992
    Assignee: General Motors Corporation
    Inventor: Muftau M. Alabi
  • Patent number: 5120372
    Abstract: An aluminum casting alloy consisting of, by weight, of 7.0-13.0% copper, 0.4-1.2% manganese, 0.21-40% vanadium, 0.31-0.70% zirconium; impurities limited to: less than to 0.6% Si, less than 0.8% Fe, less than 0.2% zinc, less than 0.1% Mn, less than 0.2% Ni, and the remainder being essentially aluminum. There is an absence of titanium, cobalt, molybdenum, tungsten, chromium, boron, tantalum, and niobium. The alloy has, at room temperature, a UTS of about 61 ksi, a YS of about 49 ksi, a tensile elongation of about 6%, and tensile modulus elasticity of about 11.5 MSI, a compressive yield strength of about 53 ksi, a compressive modulus of elasticity of about 18 MSi; high temperature physical properties at 500.degree. F., after 1000 hours exposure to 500.degree. F., comprise a tensile strength of 33 ksi or greater, a tensile yield strength of 23 ksi or greater, a tensile elongation of about 9%, and tensile modulus of elasticity of 10 msi.
    Type: Grant
    Filed: November 8, 1990
    Date of Patent: June 9, 1992
    Assignee: Ford Motor Company
    Inventors: Chia M. Yen, Walter J. Evans
  • Patent number: 5106436
    Abstract: An improved eutectic aluminum-silicon alloy having a relatively high level of bismuth is provided which is particularly wear-resistant and sufficiently self-lubricating so as to be suitable for use in a wearing component even when poorly lubricated. The relatively high bismuth level within the alloy cooperates with the other elemental additions so as to provide a sufficiently low friction bearing surface (or self-lubricity), which significantly enhances the wear resistant properties of the alloy. In addition, the preferred alloy also has relatively substantial additions of both nickel and copper, which results in the homogeneous distribution of hard wear resistant nickel and copper phases throughout. The improved aluminum alloy should minimize wear and alleviate galling during use.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: April 21, 1992
    Assignee: General Motors Corporation
    Inventor: Muftau M. Alabi
  • Patent number: 5104444
    Abstract: An aluminum alloy is prepared from an aluminum alloy powder having a composition of:lubricating componentPb: 3 to 15 Wt %;hardening componentSi: 1 to 12 Wt %;rainforcement componentone or more selected among Cu, Cr, Mg, Mn, NiZn, Fe and: 0.2 to 5.0 Wt %;and remainder of aluminum as principal material or matrix.To the aluminum alloy powder set forth above, powder state Pb in 3 to 12 Wt % is added. With the mixture of the aluminium alloy powder and Pb powder, a billet is formed. For the billet, extrustion process is performed in a extrusion ratio greater than or equal to 40. In the extruded block, Si particle dispersed in the aluminum matrix is in a grain size smaller than or equal to 12 .mu.m. Furthermore, at least of half of added Pb power particle is dispersed to have greater than or equal to 0.74 of circularity coefficient.
    Type: Grant
    Filed: August 7, 1989
    Date of Patent: April 14, 1992
    Assignees: Nissan Motor Company, Limited, NDC Co., Ltd.
    Inventors: Masahiko Shioda, Masashi Arita, Katsuji Tanizaki, Koue Ohdawa, Takeshi Sakai
  • Patent number: 5057274
    Abstract: A die cast, heat treated shaped aluminum silicon alloy article consisting essentially of, based on an alloy weight, from 13 or 25 wt % silicon, from 2 to 6 wt % copper, up to 1 wt % magnesium, balance alumium, said heat treated alloy being formed by the process comprising:subjecting said alloy while in molten condition to a primary pressure die casting at a casting pressure of from about 450 to about 500 kg/cm.sup.2 to form a primary pressure die cast product;removing the primary casting pressure from said primary pressure die cast product;prior to the time said aluminum silicon alloy completely solidifies, subjecting said primary pressure die cast alloy to a secondary pressure die casting so as to reduce the volume thereof from about 1.5 to about 3%;heating the thus treated product to a temperature of from about 460.degree. C. to about 520.degree. C. for a period of time of from about 2 to about 10 hours; andrapidly quenching said product to produce said article.
    Type: Grant
    Filed: February 27, 1990
    Date of Patent: October 15, 1991
    Assignee: Taiho Kogyo Co., Ltd.
    Inventors: Kenichiro Futamura, Keiichiro Otsu
  • Patent number: 5055255
    Abstract: Disclosed is an aluminum alloy suitable for high temperature applications comprised of at least 9 wt. % Si, 3 to 7 wt. % Ni, 1.5 to 6 wt. % Cu, at least one of the elements selected from Mg, Mn, V, Sc, Fe, Ti, Sr, Zn, B and Cr, the remainder aluminum and impurities.
    Type: Grant
    Filed: April 19, 1990
    Date of Patent: October 8, 1991
    Assignee: Aluminum Company of America
    Inventors: Gerald D. Scott, Barrie S. Shabel, Anthony Morales
  • Patent number: 5030416
    Abstract: An aluminum alloy that is suitable as material for cathode foils in electrolytic capacitors comprises0.9 to 1.7% iron0.1 to 0.8% manganesemax. 0.15% siliconmax. 0.3% copper,the remainder being aluminum with further trace elements, individually <0.05%, in total <0.15%, and the total iron and manganese content amounting to at most 1.9%.
    Type: Grant
    Filed: September 19, 1989
    Date of Patent: July 9, 1991
    Assignees: Swiss Aluminium Ltd., Swiss Aluminium Ltd.
    Inventors: Martin Werner, Margarete Bloeck, Heinz Bichsel
  • Patent number: 4975243
    Abstract: Disclosed is an aluminum alloy suitable for high temperature applications comprised of at least 9.0 wt. % Si, 3.0 to 7.0 wt. % Ni, 1.5 to 6.0 wt. % Cu, at least one of the elements selected from Mg, Mn, V, Sc, Fe, Ti, Sr, Zn, B and Cr, the remainder aluminum and impurities.
    Type: Grant
    Filed: February 13, 1989
    Date of Patent: December 4, 1990
    Assignee: Aluminum Company of America
    Inventors: Gerald D. Scott, Barrie S. Shabel, Anthony Morales
  • Patent number: 4946647
    Abstract: A process is disclosed for the manufacture of aluminium-graphite particulate composite using uncoated graphite particles for automobile and engineering applications. In the process the aluminium-alloy melt is treated with a reactive metal to increase the wettability of the alloy and the graphite particles. Further treatment of the melt and gradual addition of activated graphite powder and stirring at about 500 to about 600 r.p.m. at a temperature of about 700.degree. to about 720.degree. C. result in the composite.
    Type: Grant
    Filed: May 4, 1988
    Date of Patent: August 7, 1990
    Inventors: Pradeep K. Rohatgi, Tapan K. Dan, Arya, S. C., S. V. Prasad, Das, S., A. K. Gupta, B. K. Prasad, Amol K. Jha
  • Patent number: 4830820
    Abstract: A new material for use in the manufacture of semiconductor devices, a method of manufacturing the new material, and a heat radiator structure for a semiconductor device. The material is an aluminum alloy containing 30-60% by weight of Si and the remaining weight % is Al. The method of manufacture includes solidifying molten material into a powder and forming the powder by hot plastic working. The heat radiator structure includes a substrate of envelope material and an Al-Si alloy layer glued to the substrate through a function layer.
    Type: Grant
    Filed: April 20, 1987
    Date of Patent: May 16, 1989
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yoshiaki Itoh, Yusuke Odani, Kiyoaki Akechi, Nobuhito Kuroishi
  • Patent number: 4828794
    Abstract: An aluminum core alloy for use in the manufacture of brazed heat exchanger assemblies having high resistance to corrosion and moderate strength. A preferred composition of the aluminum base alloy consists of from 0.13 to 0.22% titanium, from 0.8 to 1.5% manganese, 0.4 to 0.6% copper, up to 0.7% iron, up to 0.3% silicon, up to 0.3% magnesium, with the balance being essentially aluminum and normal impurities. Another preferred composition, which is a modification of the preceding composition, includes 0.3 to 0.6% magnesium.
    Type: Grant
    Filed: March 6, 1987
    Date of Patent: May 9, 1989
    Assignee: Reynolds Metals Company
    Inventors: Darwin H. Scott, Kenneth D. Wade
  • Patent number: 4808374
    Abstract: A method for producing aluminum alloy castings and the resulting product having improved toughness. An Al-Si or Al-Si-Cu alloy containing 4 to 24 wt % of silicon, iron and other incidental impurities, the balance being aluminum is melted, and the melt is heated to a temperature between 780.degree. C. and 950.degree. C. The melt is poured into a mold and there solidified. A solution heat treatment and aging are then conducted. The process is suitable for an alloy containing 0.25 to 1.4 wt % of iron. In a preferred embodiment, the alloy consists essentially of 6 to 12 wt % Si, 2 wt % Cu, 0.2 to 0.4 wt % Mg and other incidental impurities, the balance being aluminum. The solution heat treatment is preferably carried out by heating between 525.degree. 545.degree. C. for a period of 1 to 5 hours.
    Type: Grant
    Filed: December 22, 1986
    Date of Patent: February 28, 1989
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Yoji Awano, Yoshihiro Shimizu, Junichi Takabatake
  • Patent number: 4806307
    Abstract: An aluminium alloy with superior thermal neutron absorptivity contains 0.2-30 wt. % of Gd. An aluminium alloy for an wrought material with high-temperature strength contains 0.2-20 wt. % of Gd and 0.5-6 wt. % of Mg. An aluminium alloy for casting contains 0.2-10 wt. % of Gd and 6-12 wt. % of Si.
    Type: Grant
    Filed: October 27, 1986
    Date of Patent: February 21, 1989
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Yagoro Hirose, Yoshimitsu Miyagi, Kiko Hirose, Mitsuo Hino, Masayuki Harada, Takehiko Eto, Tetsunari Iida, Masahiro Shimamura
  • Patent number: 4785092
    Abstract: Aluminum brazing alloys for assembling aluminum heat exchangers by brazing which consist essentially of 4.5 to 13.5% of Si, from 0.005% to less than 0.1% of Sr and the balance essentially Al and, further, optionally may contain at least one element selected from the group consisting of 0.3 to 3.0% of Mg, 2.3 t0 4.7% of Cu and 9.3 to 10.7% of Zn. The aluminum brazing alloys provide high strength brazed joints with highly refined microstructure and brazing operation can be performed in a good condition without causing any detrimental cavity. Such excellent properties make the brazing alloys especially suited for the fabrication of superhigh pressure heat exchangers.
    Type: Grant
    Filed: March 15, 1985
    Date of Patent: November 15, 1988
    Assignees: Sumitomo Light Metal Industrial, Ltd., Sumitomo Precision Products Co., Ltd.
    Inventors: Keizo Nanba, Michiki Hagiwara, Shosuke Iwasaki, Tetsuo Abiko
  • Patent number: 4781888
    Abstract: Aluminum brazing alloys for assembling aluminum heat exchangers by brazing which consist essentially of 4.5 to 13.5% of Si, 0.05 to 0.5% of Ca and the balance essentially Al and, additionally may contain Mg in the range of 0.3 to 3.0% or at least Cu component of 2.3 to 4.7% of Cu and 9.3 to 10.7% of Zn. The aluminum brazing alloys have an excellent brazability and provide high strength brazed joints with highly refined microstructure. Such superior properties make the brazing alloys especially suited for the fabrication of superhigh pressure heat exchangers.
    Type: Grant
    Filed: April 5, 1985
    Date of Patent: November 1, 1988
    Assignee: Sumitomo Precision Products Co., Ltd.
    Inventors: Michiki Hagiwara, Keizo Nanba, Shosuke Iwasaki, Tetsuo Abiko
  • Patent number: 4761267
    Abstract: An aluminum alloy-core material for brazing, having improved secular corrosion resistance is provided, by a composition of 0.5.about.1.0% of Cu, 0.5.about.1.0% of Mn, 0.10.about.0.30% of Ti, 0.3% or less of Fe, less than 0.10% of Si, and balance of Al, and contains, occasionally at least one element selected from the group consisting of from 0.05 to 0.4% of Mg, from 0.05 to 0.4% of Cr, and from 0.05 to 0.4% of Zr. The alloy is free of an Al-Fe intermetallic compound, has an improved resistance to pitting corrosion and exhibits only a slight reduction in mechanical strength after brazing.
    Type: Grant
    Filed: February 3, 1987
    Date of Patent: August 2, 1988
    Assignee: Sky Aluminium Co., Ltd.
    Inventors: Shinji Takeno, Seishi Nakamoto, Kouhei Oono
  • Patent number: 4720434
    Abstract: A composite material is made from silicon carbide and/or silicon nitride short fibers embedded in a matrix of metal. The metal is an alloy consisting essentially of between approximately 2% to approximately 6% of copper, between approximately 0.5% to approximately 3% of silicon, and remainder substantially aluminum. The short fibers may be all silicon carbide short fibers, or may be all silicon nitride short fibers, or may be a mixture of silicon carbide and silicon nitride short fibers. The fiber volume proportion of the silicon carbide and/or silicon nitride short fibers may desirably be between approximately 5% and approximately 50%, and may more desirably be between approximately 5% and approximately 40%.
    Type: Grant
    Filed: August 28, 1986
    Date of Patent: January 19, 1988
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Kubo, Tadashi Dohnomoto, Atsuo Tanaka, Hidetoshi Hirai
  • Patent number: 4681736
    Abstract: An aluminum alloy consisting essentially of about the following percentages of materials:Si=14 to 18Fe=0.4 to 2Cu=4 to 6Mg=up to 1Ni=4.5 to 10P=0.001 to 0.1 (recovered)remainder grain refiner, Al and incidental impurities.
    Type: Grant
    Filed: December 7, 1984
    Date of Patent: July 21, 1987
    Assignee: Aluminum Company of America
    Inventors: Michael M. Kersker, William G. Truckner, Douglas A. Granger, Elwin L. Rooy
  • Patent number: 4649087
    Abstract: An aluminum core alloy for use in the manufacture of brazed heat exchanger assemblies having high resistance to corrosion and moderate strength. A preferred composition of the aluminum base alloy consists of from 0.13 to 0.22% titanium, from 0.8 to 1.5% manganese, 0.4 to 0.6% copper, up to 0.7% iron, up to 0.3% silicon, up to 0.3% magnesium, with the balance being essentially aluminum and normal impurities. Another preferred composition, which is a modification of the preceding composition, includes 0.3 to 0.6% magnesium.
    Type: Grant
    Filed: June 10, 1985
    Date of Patent: March 10, 1987
    Assignee: Reynolds Metals Company
    Inventors: Darwin H. Scott, Kenneth D. Wade
  • Patent number: 4631236
    Abstract: A process and a device for manufacturing an extruded section of an aluminum alloy containing additions of boron or compounds thereof are intended to simplify the manufacture of aluminum alloy sections for use in nuclear science and technology. Using a boron-containing aluminum-based raw material a section is to be formed such that its design ensures adequate stability and at the same time the necessary screening properties. To this end a billet having a core of aluminum alloy with additions of boron or the like and a mantel surrounding the same is manufactured and hot formed by extrusion, such that, using the molten metal route or powder metallurgy, a blank of aluminum alloy of particular alloy groups with additions of boron or its compounds at a concentration of 0.05 to 50 wt % is taken as the starting basis.
    Type: Grant
    Filed: February 14, 1985
    Date of Patent: December 23, 1986
    Assignee: Swiss Aluminium Ltd.
    Inventor: Hans-Gerd Roczyn
  • Patent number: 4603029
    Abstract: An aluminum-lithium alloy exhibiting good fracture toughness and relatively high strength has a nominal composition of 2.5 percent lithium, 0.6 percent magnesium, 1.8 percent copper, 0.12 percent zirconium with the balance being aluminum and trace elements.
    Type: Grant
    Filed: March 13, 1985
    Date of Patent: July 29, 1986
    Assignee: The Boeing Company
    Inventors: William E. Quist, R. Eugene Curtis, G. Hari Narayanan
  • Patent number: 4590133
    Abstract: An aluminum base alloy for use as a bearing material. The alloy contains 4% or more by weight of bismuth. The bismuth content by weight may be up to 8%, and for some purposes as much as 12%. The alloy also contains lead and silicon to enhance bearing surface properties and wear resistance and copper as a strengthening addition. There may be other strengthening and/or hard particles additivies such as nickel, manganese, chromium, antimony and zinc. Tin can be added to improve corrosion resistance.
    Type: Grant
    Filed: February 1, 1985
    Date of Patent: May 20, 1986
    Assignee: D.A.B. Industries
    Inventor: Kenneth Lloyd
  • Patent number: 4571368
    Abstract: An improved aluminum base alloy which provides corrosion protection in fin stock applications includes 0.6-3.0% silicon; 0.2-1.0% by weight iron; up to 0.2% by weight copper; 0.8-2.0% by weight manganese; up to 0.2% by weight magnesium; from about 0.5% by weight zinc to 2.5% by weight zinc; up to 0.2% by weight other constituents; and the balance aluminum. The alloy is especially useful as a sacrificial alloy having improved mechanical strength.
    Type: Grant
    Filed: July 3, 1984
    Date of Patent: February 18, 1986
    Assignee: Atlantic Richfield Company
    Inventors: John C. Fenoglio, David L. Wilbur, William H. Anthony
  • Patent number: 4511632
    Abstract: A clad sheet comprising an aluminum alloy sheet having excellent high-temperature sagging resistance and thermal conductivity comprising an aluminum alloy sheet clad on at least one surface with a brazing metal, said aluminum alloy sheet consists essentially of:manganese: from 0.1 to 0.5 wt. %,silicon: from 0.1 to 0.8 wt. %,zirconium: from 0.02 to 0.2 wt. %,and, the balance being aluminum and incidental impurities.The clad sheet is particularly adapted to be used as a fin material for tubes of a heat exchanger, said aluminum alloy sheet may also contain chromium within the range of from 0.05 to 0.4 wt. % and/or at least one element selected from the group consisting of:magnesium: from 0.1 to 0.7 wt. %, and,copper: from 0.1 to 0.7 wt. %,total amount of said magnesium and said copper being up to 1.0 wt. %.
    Type: Grant
    Filed: July 19, 1982
    Date of Patent: April 16, 1985
    Assignee: Mitsubishi Aluminum Kabushiki Kaisha
    Inventors: Ken Toma, Masanao Iida, Yo Takeuchi
  • Patent number: 4502207
    Abstract: A wiring material of a semiconductor device, which comprises aluminum as a major component and at least a surface layer of the wiring layer is alloyed with boron and silicon. A method for forming a wiring material of a semiconductor device, which comprises the steps of: forming a wiring pattern comprising aluminum as a major component on a semiconductor element; and ion-implanting one of boron and a mixture of boron and silicon in the wiring pattern and alloying at least a surface layer of the wiring pattern to form an alloy layer containing aluminum, boron and silicon.
    Type: Grant
    Filed: December 16, 1983
    Date of Patent: March 5, 1985
    Assignee: Toshiba Shibaura Denki Kabushiki Kaisha
    Inventors: Jiro Ohshima, Masahiro Abe, Yutaka Koshino
  • Patent number: 4432313
    Abstract: An aluminum base material with a hard facing deposit which shows extremely good hot hardness properties when subjected to high operating temperatures. The invention provides a hard facing deposit which shows a hot hardness of at least 100 BHN at 600.degree. F., and has sufficient toughness to resist the formation of cracks when subjected to such operating temperatures. According to the preferred embodiment, the hard facing deposit includes, by weight, about 6% to about 12% silicon, up to about 6% copper, about 2% to about 6% manganese, up to about 3% iron, and about 16% to about 25% nickel. The invention is particularly useful in forming a heavy duty diesel engine piston with a piston ring groove formed in the hard facing deposit.
    Type: Grant
    Filed: May 27, 1982
    Date of Patent: February 21, 1984
    Assignee: TRW Inc.
    Inventor: Wallace M. Matlock
  • Patent number: 4402905
    Abstract: The present invention is directed to a process for preparing a body of polycrystalline silicon doped with aluminum comprising melting a mixture of silicon powder and aluminum powder, rapidly quenching the melt, grinding the solidified silicon-aluminum alloy and hot pressing to form a compact.
    Type: Grant
    Filed: March 5, 1982
    Date of Patent: September 6, 1983
    Assignee: Westinghouse Electric Corp.
    Inventors: Michael A. Burke, Robert E. Gainer