Iron, Cobalt, Or Nickel Containing Patents (Class 420/550)
  • Patent number: 6638377
    Abstract: An aluminum alloy piping material for automotive piping excelling in corrosion resistance and workability and a method of fabricating the same. The aluminum alloy piping material is made of an aluminum alloy which contains 0.3-1.5% of Mn, 0.01-0.20% of Fe, and 0.01-0.20% of Si, wherein the content of Cu as impurities is limited to 0.05% or less, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the alloy's matrix, the number of compounds with a particle diameter (equivalent circle diameter, hereinafter the same) of 0.5 &mgr;m or more is 3×104 or less per mm2. The aluminum alloy piping material has a tensile strength of 70-130 MPa (temper: O material). An ingot of an aluminum alloy having the composition is hot extruded. The resulting extruded pipe is cold drawn at a working ratio of 30% or more and annealed.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: October 28, 2003
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Takahiro Koyama, Hirokazu Tanaka, Yoshifusa Shoji
  • Patent number: 6635362
    Abstract: Coating for high temperature gas turbine components that include a MCrAlX phase, and an aluminum-rich phase, significantly increase oxidation and cracking resistance of the components, thereby increasing their useful life and reducing operating costs. The aluminum-rich phase includes aluminum at a higher concentration than aluminum concentration in the MCrAlX alloy, and an aluminum diffusion-retarding composition, which may include cobalt, nickel, yttrium, zirconium, niobium, molybdenum, rhodium, cadmium, indium, cerium, iron, chromium, tantalum, silicon, boron, carbon, titanium, tungsten, rhenium, platinum, and combinations thereof, and particularly nickel and/or rhenium. The aluminum-rich phase may be derived from a particulate aluminum composite that has a core comprising aluminum and a shell comprising the aluminum diffusion-retarding composition.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: October 21, 2003
    Inventor: Xiaoci Maggie Zheng
  • Patent number: 6572715
    Abstract: The present invention provides an aluminum alloy support body for a presensitized plate in which the uniformity of the grained surface due to electrochemical etching is further improved, and a method of producing the same. The aluminum alloy support body for the presensitized plate according to the present invention has a composition comprising 0.1 to 0.7% by weight of Fe; 0.01 to 0.2% by weight of Si; 0.005 to 1.0% by weight of one or more rare earth elements; and the balance of Al and unavoidable impurities. In the present invention, the aluminum alloy support body may further contain 0.005 to 0.1% by weight of Ni and 0.005 to 0.3% by weight of one or more rare earth elements. One or more elements of Ce, La and Nd can be selected as the rare earth elements.
    Type: Grant
    Filed: February 7, 2001
    Date of Patent: June 3, 2003
    Assignees: Kodak Polychrom Graphics, LLC, Mitsubishi Aluminum Co., Ltd.
    Inventors: Hirotaka Komine, Mitsuo Ishida, Keitarou Yamaguchi
  • Patent number: 6508888
    Abstract: A superconducting conductor and method for its production. The conductor is formed of least one superconducting core and an aluminum based cryogenic stabilizer which is a high purity Al—Fe—Ni aluminum alloy having a composition, in % by weight: 200 ppm≦Fe+Ni≦1500 ppm; 0.20≦Fe/(Fe+Ni)≦0.65; optionally, B<100 ppm; impurities other than Fe, Ni and B<0.01% total; and remainder aluminum.
    Type: Grant
    Filed: November 6, 2000
    Date of Patent: January 21, 2003
    Assignee: Aluminium Pechiney
    Inventor: Michel Leroy
  • Patent number: 6494137
    Abstract: A support for a lithographic printing plate obtained by performing surface graining and anodizing of an aluminum alloy plate, wherein the foregoing aluminum alloy plate contains specific contents of Fe, Si, Cu, Ti, Zn and Mg, with the balance being Al and incidental impurities. The presensitized plate obtained from this support for a lithographic printing plate is excellent in press life and in resistance to dot ink stain when processed into a lithographic printing plate. Preferably, the support for a lithographic printing plate, with regard to the surface of the support, has a center line average roughness Ra in the range of 0.2-0.6 &mgr;m, a maximum height Rmax in the range of 3.0-6.0 &mgr;m, a ten-point mean roughness Rz in the range of 2.0-5.5 &mgr;m, a center line peak height Rp in the range of 1.0-3.0 &mgr;m, a center line valley depth Rv in the range of 2.0-3.5 &mgr;m, a mean spacing Sm in the range of 40-70 &mgr;m, an average inclination &Dgr;a in the range of 6.0-12.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: December 17, 2002
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Akio Uesugi
  • Patent number: 6471794
    Abstract: An aluminum alloy fin material for brazing which is composed of an aluminum alloy comprising above 0.1 wt % to 3 wt % of Ni, above 1.5 wt % to 2.2 wt % of Fe, and 1.2 wt % or less of Si, and at least one selected from the group consisting of 4 wt % or less of Zn, 0.3 wt % or less of In, and 0.3 wt % or less of Sn, and further comprising, optionally, at least one selected from the group consisting of co, Cr, Zr, Ti, Cu, Mn, and Mg in given amounts, the balance being unavoidable impurities and aluminum, wherein a ratio of the grain length in the right angle direction/the grain length in the parallel direction is 1/30 or less, an electric conductivity is 50 to 55 %IACS, and a tensile strength is 170 to 280 MPa.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: October 29, 2002
    Assignees: The Furukawa Electric Co., Ltd., Denso Corporation
    Inventors: Takeyoshi Doko, Akira Kawahara, Sunao Fukuda, Yoshihiko Kamiya, Masaki Shimizu, Kenji Negura
  • Publication number: 20020106301
    Abstract: An aluminum-based die casting alloy exhibiting improved corrosion resistance and good die-castability contains from about 4.5 to about 12 percent silicon by weight, at least 87 percent aluminum by weight, and a maximum of 0.2 percent copper by weight. The alloys preferably contain iron in an amount sufficient to improve hot tear resistance and to decrease the tendency for die sticking or soldering during die casting.
    Type: Application
    Filed: February 5, 2001
    Publication date: August 8, 2002
    Inventor: Kurt F. O'Connor
  • Patent number: 6408938
    Abstract: An aluminum alloy containing (in wt. %): 0.2-0.5 Fe; 0.7-1.2 Si; 1.2-1.6 Mn; up to 0.3 Mg; up to 0.5 Cu; up to 0.2 Zn; up to 0.1 Ti is used to make the fins of heat exchangers particularly car radiators. The finstock has high post braze strength and thermal conductivity, and has a sufficiently electronegative potential as to be capable of acting as a sacrificial anode for the heat exchanger tubes. By virtue of the absence of Sn, In, and Cr, these heat exchangers can be scrapped and melted for re-use.
    Type: Grant
    Filed: April 20, 1998
    Date of Patent: June 25, 2002
    Assignee: Alcan International Limited
    Inventors: Alan Gray, Richard Kendall Bolingbroke, John Michael Evans
  • Publication number: 20020050511
    Abstract: The invention relates to a brazing sheet product comprising a core sheet made of an aluminum alloy, an aluminum clad layer cladding at least one of the surfaces of said core sheet, and a layer comprising nickel on the outersurface of one or both said clad layer or layers, and wherein the brazing sheet product is devoid of a layer comprising zinc or tin as a bonding layer between said outersurface of said aluminum clad layer or layers and said layer comprising nickel, and wherein the aluminum clad alloy layer comprises, in weight percent: Si 2 to 18, Mg up to 8.0, Zn up to 5.0, Cu up to 5.0, Mn up to 0.30, In up to 0.30, Fe up to 0.80, Sr up to 0.20, at least one element selected from the group consisting of: (Bi 0.01 to 1.0, Pb 0.01 to 1.0, Li 0.01 to 1.0, Sb 0.01 to 1.0), impurities each up to 0.05, total up to 0.20, balance aluminum.
    Type: Application
    Filed: July 26, 2001
    Publication date: May 2, 2002
    Inventors: Adrianus Jacobus Wittebrood, Jacques Hubert Olga Joseph Wijenberg
  • Publication number: 20020034454
    Abstract: An aluminum bearing alloy includes, by mass, 3 to 40% Sn, 0.5 to 7% Si, 0.05 to 2% Fe, balance of Al, and unavoidable impurities. In the alloy, a ternary-element intermetallic compound of Al—Si—Fe and Si particles are contained as hard particles.
    Type: Application
    Filed: July 25, 2001
    Publication date: March 21, 2002
    Applicant: DAIDO METAL CO. LTD.
    Inventors: Masahito Fujita, Yukihiko Kagohara, Koichi Yamamoto, Takayuki Shibayama
  • Patent number: 6352671
    Abstract: A corrosion-resistant aluminum alloy includes 91%-95.7% by weight aluminum, 0.5%-1% by weight scandium, 3%-5% by weight magnesium, 0.5%-2% by weight nickel, and 0.3%-1% by weight chromium.
    Type: Grant
    Filed: November 20, 1999
    Date of Patent: March 5, 2002
    Assignees: University of New Orleans Foundation, The Board of Supervisors of Louisiana State University and Agricultural and Mechanical College
    Inventors: Alfred F. Daech, Nikhil K. Sarkar
  • Patent number: 6352789
    Abstract: The invention relates to a brazing sheet with a two-layer structure or a three-layer structure, having a core sheet made of an aluminium alloy core material and on one side or both sides thereof a brazing layer of an aluminium alloy containing silicon as main alloying element, wherein the aluminium alloy of the core sheet has the composition (in weight %) Mn 0.5 to 1.5 Cu 0.5 to 2.0 Si 0.3 to 1.5 Mg <0.05 Fe <0.4 Ti <0.15 Cr <0.35 Zr and/or V <0.35 in total Zn <0.25 balance aluminium and unavoidable impurities, and wherein said brazing sheet has a post-braze 0.2% yield strength of at least 50 MPa and having a corrosion life of more than 12 days in a SWAAT test without perforations in accordance with ASTM G-85, and further to a method of its manufacture.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: March 5, 2002
    Assignee: Corus Aluminium Walzprodukte GmbH
    Inventors: Timothy John Hurd, Nicolaas Dirk Adrianus Kooij, Achim Bürger, Klaus Vieregge
  • Patent number: 6350532
    Abstract: The invention relates to a recyclable aluminum foil. The foil is made of an alloy containing 0.2%-0.5% Si, 0.4%-0.8% Fe, 0.1%-0.3% Cu, and 0.05%-0.3% Mn by weight. with the balance aluminum and incidental impurities. The foil contains at least about 2% by weight of strengthening particulates and has at least about 0.1% by weight of the copper and/or manganese retained in solid solution. The invention also relates to a method of manufacturing a sheet of aluminum based on an alloy which involves continuously casting an alloy of the above composition to form a sheet of alloy, coiling said sheet of alloy, cold rolling the sheet of alloy, interannealing the alloy after a first pass of the cold rolling; and further cold rolling the alloy to a final desired gauge. The foil, which is suitable for household use, has improved strength due to a larger quantity of dispersoids fortified by elements in solid solution, and can be recycled with other alloy scrap.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: February 26, 2002
    Assignee: Alcan International Ltd.
    Inventors: Thomas L. Davisson, Luc Montgrain, Daniel Pulliam, Sadashiv Nadkarni
  • Publication number: 20020014406
    Abstract: The first Al-based target material for sputtering contains 0.01-10 atomic % of at least one intermetallic compound-forming element, and an intermetallic compound having a maximum diameter of substantially 50 &mgr;m or less. The second Al-based target material for sputtering has a microstructure comprising an alloy phase containing 20 atomic % or less of the intermetallic compound-forming element and Al and an Al matrix phase comprising substantially pure Al, the maximum diameter of the intermetallic compound in the alloy phase being substantially 50 &mgr;m or less. The content of the intermetallic compound forming element based on the whole structure is 0.01-10 atomic %. These target materials are produced by pressure-sintering a rapid solidification powder at 400-600° C. After the pressure sintering, the target material is preferably hot-rolled at 400-600° C.
    Type: Application
    Filed: May 21, 1998
    Publication date: February 7, 2002
    Inventor: HIROSHI TAKASHIMA
  • Patent number: 6194082
    Abstract: A support for a lithographic printing plate in which uniform pits are efficiently formed by electrochemically graining treatment, always independently of electrolytic conditions to give excellent printing performance, which comprises an aluminum alloy plate containing 0.05% to 0.5% by weight of Fe, 0.03% to 0.15% of Si, 0.006% to 0.03% by weight of Cu and 0.010% to 0.040% by weight of Ti, wherein the Cu concentration of a surface layer portion of from a surface to a depth of 2 &mgr;m of the aluminum alloy plate is at least 20 ppm higher than that of a region deeper than the surface layer portion.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: February 27, 2001
    Assignee: Fuji Photo Film Co., Ltd.
    Inventors: Hirokazu Sawada, Hirokazu Sakaki
  • Patent number: 6123899
    Abstract: This invention relates to master alloy hardeners for use in preparing aluminum base alloys. The respective concentrations of the alloying elements in the master alloy hardener are a multiple equal to or greater than 2 of the concentrations of such elements in the base alloy, and the ratios of the alloying elements in the master alloy hardener to each other are the same as the ratios of the alloying elements in the base alloy. After the aluminum base alloy and the concentration of each alloying element therein are identified, a desired multiple of such concentrations is determined. An aluminum master alloy is prepared that contains the alloying elements at concentrations equivalent to such multiple of the corresponding concentrations of the elements in the base alloy. The master alloy hardeners are added to commercially pure aluminum to provide the desired base alloy.
    Type: Grant
    Filed: March 8, 1995
    Date of Patent: September 26, 2000
    Assignee: KB Alloys, Inc.
    Inventors: William C. Setzer, Richard J. Malliris, Gary W. Boone, Frank P. Koch, David K. Young
  • Patent number: 6106641
    Abstract: A continuous-cast and cold-rolled aluminum alloy sheet for a cross fin, characterized by a chemical composition consisting of not less than 0.05 wt % and less than 0.30 wt % Fe, more than 0.03 wt % and less than 0.10 wt % Mn, an amount of a grain refining agent, and the balance of Al and unavoidable impurities including less than 0.15 wt % Si; a microstructure substantially composed of subgrains; and an electrical conductivity of 55% IACS or more. The aluminum alloy sheet is advantageously produced by a process including the steps of continuous-casting an aluminum alloy melt having the above-mentioned chemical composition to form a cast sheet having a sheet thickness of not more than 30 mm; cold-rolling the cast sheet at a reduction of 90% or more, followed by a temper annealing at a temperature of from 250 to 300.degree. C. for a holding time of 2 hours or more.
    Type: Grant
    Filed: April 9, 1998
    Date of Patent: August 22, 2000
    Assignee: NipponLight Metal Company, Ltd.
    Inventors: Yasuhisa Nishikawa, Takahiko Watai
  • Patent number: 6096438
    Abstract: The invention provides an Al alloy film for use as an electrode of a semiconductor device and also provides an Al alloy sputtering target used to produce such an Al alloy film wherein the Al alloy film has not only a low resistivity equal to or less than 5 .mu..OMEGA.cm and a high hillock resistance (property of hillock suppression) but also a high dielectric strength when it is anodized into an anodic oxide film and wherein the Al alloy film has a composition such that the Ni content is equal to or greater than 0.3 at % and the Y content is equal to or greater than 0.3 at % and such that 0.22 C.sub.Ni +0.74 C.sub.Y <1.6 at % where C.sub.Ni denotes the Ni content (at %) and C.sub.Y denotes the Y content (at %) and further wherein, in order to deposit the Al alloy film by sputtering, a spray forming Al alloy target containing Ni and Y is used.
    Type: Grant
    Filed: April 13, 1998
    Date of Patent: August 1, 2000
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Katsutoshi Takagi, Takashi Onishi
  • Patent number: 6024806
    Abstract: An Al-base alloy prepared by hot-working a mixture of an Al alloy powder and dan Ni powder to join the powders and having a structure wherein Ni--Al intermetallic compounds are dispersed. The powder mixture can be hot-worked in the solid-phase temperature range, liquid phase temperature range or solid-liquid phase mixture temperature range of the Al alloy. A dispersion strengthening powder can be further admixed with the mixture of Al alloy powder and Ni powder.
    Type: Grant
    Filed: July 19, 1995
    Date of Patent: February 15, 2000
    Assignee: Kubota Corporation
    Inventors: Shoichi Yoshino, Toshio Tani, Kazuo Osada
  • Patent number: 6017403
    Abstract: An aluminum-based alloy having the general formula Al.sub.x L.sub.y M.sub.z (wherein L is Mn or Cr; M is Ni, Co, and/or Cu; and x, y, and z, representing a composition ratio in atomic percentages, satisfy the relationships x+y+z=100, 75.ltoreq.x.ltoreq.95, 2.ltoreq.y.ltoreq.15, and 0.5.ltoreq.z.ltoreq.10) having a metallographic structure comprising a quasi-crystalline phase possesses high strength and high rigidity. In order to enhance the ductility and toughness of the aluminum-based alloy, the atomic percentage of M may be further limited to 0.5.ltoreq.z.ltoreq.4, and more preferably to 0.5.ltoreq.z.ltoreq.3. The aluminum-based alloy is useful as a structural material for aircraft, vehicles and ships, and for engine parts; as material for sashes, roofing materials, and exterior materials for use in construction; or as materials for use in marine equipment, nuclear reactors, and the like.
    Type: Grant
    Filed: February 15, 1996
    Date of Patent: January 25, 2000
    Assignees: Yamaha Corporation, Isuyoshi Masumoto, Akihisa Inoue
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Yuma Horio
  • Patent number: 5925199
    Abstract: Solid and liquid phases coexist in a semi-molten casting material. A plurality of composite-solid phases having liquid and solid phase regions and a plurality of single-solid phases exist as the solid phases in a mixed state in an outer layer portion of the semi-molten casting material. If the sectional area of the solid phase region is represented by A, and the sectional area of the solid phase region is represented by B in one of the composite-solid phases, the liquid phase enclosure rate P of the composite-solid phase is defined as being represented by P={B/(A+B)}.times.100 (%). The liquid phase enclosure rate P of the single-solid phase is equal to 0 (%). When two groups are selected from a class of the solid phases, for example, by first and second straight lines so as to include a plurality of the solid phases, average values M.sub.1 and M.sub.2 of liquid phase enclosure rates of, for example, six solid phases in each of the first and second groups are represented by M.sub.1 =(P.sub.1 +P.sub.2 - - - +P.
    Type: Grant
    Filed: November 22, 1996
    Date of Patent: July 20, 1999
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Haruo Shiina, Nobuhiro Saito, Takeyoshi Nakamura
  • Patent number: 5911845
    Abstract: A high-strength extruded article of an age-hardening aluminum alloy capable of educing an achromatic dark gray color after the anodizing treatment thereof and a method for the production thereof are disclosed. The method comprises subjecting an alloy billet comprising 0.9 to 3.0% by weight of Si, 0.3 to 0.6% by weight of Mg, less than 0.3% by weight of Fe, and the balance of Al and unavoidable impurities or an alloy billet comprising 0.005 to 0.1% by weight of Ti either alone or in combination with 0.001 to 0.02% by weight of B besides the components mentioned above to a soaking treatment at a temperature in the range of from 350 to 480.degree. C. for 2 to 12 hours, extruding the soaked alloy billet at a billet temperature in the range of from 380 to 450 .degree. C., and subjecting the extruded alloy to an aging treatment at a temperature in the range of from 170 to 200.degree. C. for 2 to 8 hours.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: June 15, 1999
    Assignee: YKK Corporation
    Inventors: Kazuyuki Fukagawa, Shoso Yamamoto, Hiroshi Chiba, Mitsunao Satomura, Kengo Kawase
  • Patent number: 5902546
    Abstract: There is disclosed a high heat resistant aluminum alloy impeller, which is suitably used as an impeller, especially for a centrifugal compressor, and for the rotor and the blade of a turbo molecular pump or the scroll of a scroll compressor. Also, a method for manufacturing this aluminum alloy impeller is disclosed. The impeller is composed of an Al--Fe rapid solidification aluminum alloy, which is produced by a spray forming process for spraying a molten metal with inert gas and rapidly solidifying the metal at a cooling speed of 10.sup.2 .degree. C./sec. or higher while simultaneously deposing the metal. The rapid solidification aluminum alloy is subjected to hot extrusion processing within a temperature range of 200.degree. C. to 600.degree. C. and further subjected to hot forging.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: May 11, 1999
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Nozomu Kawasetsu, Masatomo Shinohara, Kouichiro Imakiire, Masanori Kimura, Keiichi Shiraishi, Masayuki Hayakawa, Kazuhisa Shibue, Yoshimasa Okubo, Naoki Tokizane
  • Patent number: 5900210
    Abstract: A high-strength and high-ductility aluminum-base alloy consisting of a composition of general formula: Al.sub.ba1 Mn.sub.a Si.sub.b or Al.sub.ba1 Mn.sub.a Si.sub.b TM.sub.c (wherein TM is one or more elements selected from the group consisting of Ti, V, Cr, Fe, Co, Ni, Cu, Y, Zr, La, Ce and Mm; and a, b and c are, in atomic percentages, 2.ltoreq.a.ltoreq.8, 0.5.ltoreq.b.ltoreq.6, 0<c.ltoreq.4, and a.gtoreq.b), wherein the alloy contains quasi-crystals. The an aluminum-base alloy have superior mechanical properties such as high hardness, high strength and high ductility.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: May 4, 1999
    Assignee: YKK Corporation
    Inventors: Erik Buchler, Kazuhiko Kita
  • Patent number: 5858131
    Abstract: An aluminum-based alloy having the general formula Al.sub.100 -(a+b)Q.sub.a M.sub.b (wherein Q is V, Mo, Fe, W, Nb, and/or Pd; M is Mn, Fe, Co, Ni, and/or Cu; and a and b, representing a composition ratio in atomic percentages, satisfy the relationships 1.ltoreq.a.ltoreq.8, 0<b<5, and 3.ltoreq.a+b.ltoreq.8) having a metallographic structure comprising a quasi-crystalline phase, wherein the difference in the atomic radii between Q and M exceeds 0.01 .ANG., and said alloy does not contain rare earths, possesses high strength and high rigidity. The aluminum-based alloy is useful as a structural material for aircraft, vehicles and ships, and for engine parts; as material for sashes, roofing materials, and exterior materials for use in construction; or as materials for use in marine equipment, nuclear reactors, and the like.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: January 12, 1999
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yamaha Corp.
    Inventors: Akihisa Inoue, Hisamichi Kimura, Yuma Horio
  • Patent number: 5837388
    Abstract: The present invention relates to an Al alloy solder material comprising a composition containing Si in an amount of more than 7.0 to 12.0% or less by weight, Cu in an amount of more than 0.4 to 8.0% or less by weight, Zn in an amount of more than 0.5 to 6.0% or less by weight, Mn in an amount of more than 0.05 to 1.2% or less by weight and Fe in an amount of more than 0.05 to 0.5% or less by weight, or at need, further one or both of In and Sn respectively in an amount of 0.3% or less by weight, with the remainder being Al and inevitable impurities. A brazing sheet clad with the solder material and used for various members of the heat exchanger enables satisfactory brazing at a temperature as low as 570.degree. to 580.degree. C. and is excellent in corrosion resistance. Since the brazing sheet is brazed at a low temperature, a high-strength material having a low melting point is used for a core material of a fin, a tube or the like.
    Type: Grant
    Filed: August 5, 1996
    Date of Patent: November 17, 1998
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Takeyoshi Doko, Koji Okada
  • Patent number: 5809393
    Abstract: A sputtering target comprising a body of metal such as aluminum and its alloy with an ultrafine grain size and small second phase. Also described is a method for making an ultra-fine grain sputtering target comprising melting, atomizing, and depositing atomized metal to form a workpiece, and fabricating the workpiece to form a sputtering target. A method is also disclosed that includes the steps of extruding a workpiece through a die having contiguous, transverse inlet and outlet channels of substantially identical cross section, and fabricating the extruded article into a sputtering target. The extrusion may be performed several times, producing grain size of still smaller size and controlled grain texture.
    Type: Grant
    Filed: October 30, 1995
    Date of Patent: September 15, 1998
    Assignee: Johnson Matthey Electronics, Inc.
    Inventors: John Alden Dunlop, Jun Yuan, Janine Kiyabu Kardokus, Roger Alan Emigh
  • Patent number: 5795541
    Abstract: An aluminum alloy sheet for printing plate contains Fe: 0.2 to 0.6 Wt %, Si: 0.03 to 0.15 Wt %, Ti: 0.005 to 0.05 Wt %, Ni: 0.005 to 0.20 Wt %, and remainder of Al and inevitable impurity, wherein a ratio of Ni content and Si content satisfies 0.1.ltoreq.Ni/Si.ltoreq.3.7. The aluminum alloy sheet is manufactured by homogenizing an aluminum alloy ingot at a temperature in a range of 500.degree. to 630.degree. C., after performing hot rolling at start temperature in a range of 400.degree. to 450.degree. C., providing cold rolling and intermediate annealing, and further performing final cold rolling. By this, the aluminum alloy sheet for printing plate is prevented from pit generation upon dipping in electrolytic solution in a condition where an electric power is not applied. Uniformity of grained surface of the aluminum alloy sheet by electrolytic treatment can be improved.
    Type: Grant
    Filed: December 26, 1996
    Date of Patent: August 18, 1998
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Masaki Tanigawa, Shinichiro Hosono, Kozo Hoshino, Yoshihiko Asakawa
  • Patent number: 5750288
    Abstract: The present invention relates to electrochemical cells, and more particularly to secondary lithium intercalation cells. Nickel is employed as a component "M" in an active cathode material represented by the formula Li.sub.x M.sub.y O.sub.z, where "x" and "y" are generally about 1, and "z" is generally about 2. In the present invention "M.sub.y " is divided into two components, a first major component of nickel, corresponding to at least 70% of "M.sub.y," and a second minor component comprising at least one of a non-transition metal selected from the group consisting of aluminum, gallium, tin, and zinc, and in some embodiments at least one transition metal selected from the group consisting of scandium and the Period 5 metals having atomic numbers between 39 and 42. A two-stage reaction process for making the compounds of the active cathode materials of the present invention is described.
    Type: Grant
    Filed: October 3, 1995
    Date of Patent: May 12, 1998
    Assignee: Rayovac Corporation
    Inventors: Like Xie, David T. Fouchard, Walter B. Ebner, El-Sayed Megahed
  • Patent number: 5714018
    Abstract: A high-strength and high-toughness aluminum-based alloy having a composition represented by the general formula: Al.sub.a Ni.sub.b X.sub.c M.sub.d Q.sub.e, wherein X is at least one element selected from the group consisting of La, Ce, Mm, Ti and Zr; M is at least one element selected from the group consisting of V, Cr, Mn, Fe, Co, Y, Nb, Mo, Hf, Ta and W; Q is at least one element selected from the group consisting of Mg, Si, Cu and Zn; and a, b, c, d and e are, in atomic percentage, 83.ltoreq.a.ltoreq.94,3, 5.ltoreq.b.ltoreq.10, 0.5.ltoreq.c.ltoreq.3, 0.1.ltoreq.d.ltoreq.2, and 0.1.ltoreq.e.ltoreq.2. The aluminum-based alloy has a high strength and an excellent toughness and can maintain the excellent characteristics provided by a quench solidification process even when subjected to thermal influence at the time of working. In addition, it can provide an alloy material having a high specific strength by virtue of minimized amounts of elements having a high specific gravity to be added to the alloy.
    Type: Grant
    Filed: October 27, 1992
    Date of Patent: February 3, 1998
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Hidenobu Nagahama, Takeshi Terabayashi, Makoto Kawanishi
  • Patent number: 5667600
    Abstract: Disclosed is a practical aluminum-based alloy containing 1 to 99 weight percent beryllium and improved methods for the investment casting of net shape aluminum-beryllium alloy parts.
    Type: Grant
    Filed: March 31, 1994
    Date of Patent: September 16, 1997
    Assignee: Brush Wellman, Inc.
    Inventors: Fritz C. Grensing, James M. Marder, Jere H. Brophy
  • Patent number: 5647919
    Abstract: A high strength, rapidly solidified alloy consisting of aluminum and, added thereto, additive elements. The mean crystal grain size of the aluminum is 40 to 1000 nm, the mean size of particles of a stable phase or a metastable phase of various intermetallic compounds formed from the aluminum and the additive element and/or various intermetallic compounds formed from the additive elements themselves is 10 to 800 nm, and the intermetallic compound particles are distributed in a volume fraction of 20 to 50% in a matrix consisting of aluminum. The rapidly solidified alloy has an improved strength at room temperature and a high toughness and can maintain the properties inherent in a material produced by the rapid solidification process even when it undergoes a thermal influence during working.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: July 15, 1997
    Assignee: YKK Corporation
    Inventors: Kazuhiko Kita, Hidenobu Nagahama
  • Patent number: 5618358
    Abstract: A new aluminum based alloy having properties which mimic homogenized DC cast 3003 alloy and a low-cost method for manufacturing it are described. The alloy contains 0.40% to 0.70% Fe, 0.10% to less than 0.30% Mn, more than 0.10% to 0.25% Cu, less than 0.10% Si, optionally up to 0.10% Ti and the balance Al and incidental impurities. The alloy achieves properties similar to homogenized DC cast 3003 when continuously cast followed by cold rolling and if desired annealing at final gauge. Suprisingly no other heat treatments are required.
    Type: Grant
    Filed: March 1, 1995
    Date of Patent: April 8, 1997
    Inventors: Thomas Davisson, Sadashiv Nadkarni, Douglas Reesor
  • Patent number: 5616189
    Abstract: An alloy of aluminum containing magnesium, silicon and optionally copper in amounts in percent by weight falling within one of the following ranges:(1) 0.4.ltoreq.Mg.ltoreq.0.8, 0.2.ltoreq.Si.ltoreq.0.5, 0.3.ltoreq.Cu.ltoreq.3.5;(2) 0.8.ltoreq.Mg.ltoreq.1.4, 0.2.ltoreq.Si.ltoreq.0.5, Cu.ltoreq.2.5; and(3) 0.4.ltoreq.Mg.ltoreq.1.0, 0.2.ltoreq.Si.ltoreq.1.4, Cu.ltoreq.2.0; said alloyhaving been formed into a sheet having properties suitable for automotive applications. The alloy may also contain at least one additional element selected from the group consisting of Fe in an amount of 0.4 percent by weight or less, Mn in an amount of 0.4 percent by weight or less, Zn in an amount of 0.3 percent by weight or less and a small amount of at least one other element, such as Cr, Ti, Zr and V.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: April 1, 1997
    Assignee: Alcan International Limited
    Inventors: Iljoon Jin, John Fitzsimon, Michael J. Bull, Pierre H. Marois, Alok K. Gupta, David J. Lloyd
  • Patent number: 5614036
    Abstract: A high heat resisting and high abrasion resisting aluminum alloy and aluminum alloy powder have superior toughness, abrasion resistance, high temperature strength, and creep resistance and are useful to form engine parts for automobiles, airplanes, etc. The high heat resisting and high abrasion resisting aluminum alloy comprises 2 to 15 wt % of Ni, 0.2 to 15 wt % of Si, 0.6 to 8.0 wt % of Fe, one or two of 0.6 to 5.0 wt % of Cu and 0.5 to 3 wt % of Mg, the total amount of Cu and Mg being equal to or less than 6 wt %, one or two of 0.3 to 3 wt % of Zr and 0.3 to 3 wt % of Mo, the total amount of Zr and Mo being equal to or less than 4 wt %, 0.05 to 10 wt % of B, and the balance of Al and unavoidable impurities, and is produced by powder metallurgy.
    Type: Grant
    Filed: January 30, 1996
    Date of Patent: March 25, 1997
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminium Kabushiki Kaisha
    Inventors: Kunihiko Imahashi, Hirohisa Miura, Yasuhiro Yamada, Hirofumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5607523
    Abstract: A high-strength aluminum-based alloy consisting of a composition represented by the general formula: Al.sub.bal Q.sub.a M.sub.b X.sub.c, wherein Q is at least one element selected from the group consisting of Mn and Cr; M is at least one element selected from the group consisting of Co, Ni, and Cu; X is at least one of rare earth elements including Y, or Misch metal (Mm); and a, b and c are, in atomic percentages, 1.ltoreq.a.ltoreq.7, 0.5.ltoreq.b.ltoreq.5, and 0<c.ltoreq.5, the aluminum-based alloy containing quasicrystals in the structure thereof. The quasicrystals may be of an icosahedral phase (I phase), a decagonal phase (D phase), or a crystalline phase akin thereto and the structure may comprise the quasicrystalline phase and a phase formed of any one of an amorphous phase, aluminum, and a supersaturated aluminum solid solution or a composite (mixed phase) thereof.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: March 4, 1997
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, YKK Corporation
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Junichi Nagahora, Toshisuke Shibata, Kazuhiko Kita
  • Patent number: 5593516
    Abstract: An aluminum-based alloy composition having improved combinations of strength and fracture toughness consists essentially of 2.5-5.5 percent copper, 0.10-2.30 percent magnesium, with minor amounts of grain refining elements, dispersoid additions and impurities and the balance aluminum. The amounts of copper and magnesium are controlled such that the solid solubility limit for these elements in aluminum is not exceeded. The inventive alloy composition may also include 0.10-1.00 percent silver for improved mechanical properties. The alloys are useful as high strength, high fracture toughness components for aircraft and aerospace structural parts.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: January 14, 1997
    Assignee: Reynolds Metals Company
    Inventor: William A. Cassada, III
  • Patent number: 5593515
    Abstract: A high strength aluminum-based alloy, which having a composition of the general formula: Al.sub.bal Q.sub.a M.sub.b X.sub.c T.sub.d, wherein Q represents at least one element selected from the group consisting of Mn, Cr, V, Mo and W; M represents at least one element selected from the group consisting of Co, Ni, Cu and Fe; X represents at least one element selected from rare earth elements including Y or Mm; T represents at least one element selected from the group consisting of Ti, Zr and Hf; and a, b, c and d represent the following atomic percentages: 1.ltoreq.a.ltoreq.7, 0>5, 0>c.ltoreq.5 and 0>d.ltoreq.2, and contains quasi-crystals in the structure thereof. The alloy of the present invention is excellent in the hardness and strength at both room temperature and a high temperature, and also in thermal resistance and ductility.
    Type: Grant
    Filed: March 27, 1995
    Date of Patent: January 14, 1997
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Teikoku Piston Ring Co., Ltd., Yamaha Corporation, YKK Corporation
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Hisamichi Kimura, Yoshiyuki Shinohara, Yuma Horio, Kazuhiko Kita
  • Patent number: 5587028
    Abstract: An amorphous alloy which is resistant to hot corrosion in sulfidizing and oxidizing atmospheres at high temperatures, consisting of at least one element selected from the group of Al and Cr and at least one element selected from refractory metals of Mo. W, Nb and Ta, a portion of the set forth refractory metals being allowed to be substituted with at least one element selected from Ti, Zr, Fe, Co, Ni and Cu. The addition of Si further improves the alloy's oxidation resistance.
    Type: Grant
    Filed: February 9, 1995
    Date of Patent: December 24, 1996
    Assignees: Koji Hashimoto, YKK Corporation
    Inventors: Koji Hashimoto, Hiroki Habazaki, Stanislaw Mrowec, Marek Danielewski
  • Patent number: 5578144
    Abstract: To provide a high-strength, high-ductility cast aluminum alloy, which enables a near-net shape product to be produced by improving the casting structure of an aluminum alloy, particularly by using specific constituents and controlling the cooling rate, and a process for producing the same. The high-strength, high-ductility cast aluminum alloy of the present invention is characterized in that it has a structure comprising fine grains of .alpha.-Al, having an average grain diameter of not more than 10 .mu.m, surrounded by a network of a compound of Al-lanthanide-base metal, the .alpha.-Al grains forming a domain, that the domain comprises an aggregate of .alpha.-Al grains which have been refined, cleaved, and ordered in a single direction and that it has a composition represented by the general formula Al.sub.a Ln.sub.b M.sub.c wherein a, b, and c are, in terms of by weight, respectively 75%.ltoreq.a.ltoreq.95%, 0.5%.ltoreq.b<15%, and 0.5%.ltoreq.c<15%.
    Type: Grant
    Filed: June 14, 1995
    Date of Patent: November 26, 1996
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuaki Satou, Yukio Okochi
  • Patent number: 5523050
    Abstract: A method is described for preparing a refined or reinforced eutectic or hyper-eutectic metal alloy, comprising: melting the eutectic or hyper-eutectic metal alloy, adding particles of non-metallic refractory material to the molten metal matrix, mixing together the molten metal alloy and the particles of refractory material, and casting the resulting mixture under conditions causing precipitation of at least one intermetallic phase from the molten metal matrix during solidification thereof such that the intermetallics formed during solidification wet and engulf said refractory particles. The added particles may be very small and serve only to refine the precipitating intermetallics in the alloy or they may be larger and serve as reinforcing particles in a composite with the alloy. The products obtained are also novel.
    Type: Grant
    Filed: March 15, 1993
    Date of Patent: June 4, 1996
    Assignee: Alcan International Limited
    Inventors: David J. Lloyd, Iljoon Jin
  • Patent number: 5516382
    Abstract: An aluminum alloy useful for drawing and/or ironing, particularly of drink cans. The alloy consists essentially of, in weight percent, Fe<0.25; Si<0.25; Mn from 1.05 to 1.6; Mg from 0.7 to 2.5; Cu from 0.20 to 0.6; Cr from 0 to 0.35; Ti from 0 to 0.1; V from 0 to 0.1; other elements: each <0.05; total<0.15; and remainder Al.
    Type: Grant
    Filed: October 20, 1994
    Date of Patent: May 14, 1996
    Assignee: Pechiney Rhenalu
    Inventor: Guy-Michel Raynaud
  • Patent number: 5516374
    Abstract: A method for manufacturing an aluminum alloy sheet for use in a body panel material, comprising: (a) casting a melted aluminum alloy containing Al, Mg, Fe, Mn, Cr, Ti and Zr, having a Mg content of 4 to 10 weight %, and having contents of Fe, Mn, Cr, Ti and Zr which are determined by a value f satisfying the following equation (I), and the balance being Al: 0.4 wt %.ltoreq.f.ltoreq.1.5 wt % (I), wherein, f=(Fe)+1.1 (Mn)+1.1 (Cr)+3 (Ti)+3 (Zr), wherein (Fe), (Mn), (Cr), (Ti), and (Zr) respectively represent the percentage content by weight of Fe, Mn, Cr, Ti and Zr, to form an ingot; (b) hot rolling the ingot to obtain a hot rolled sheet; (c) cold rolling the hot rolled sheet at a cold reduction R satisfying the following equation (II): -log(f-0.2)+8.ltoreq.R.ltoreq.-60 log (f-0.2)+50 (II) to obtain a cold rolled sheet; (d) subjecting the cold rolled sheet to a final annealing treatment including raising the temperature of the rolled sheet to 450.degree. to 550.degree. C. at a rate of 100.degree. C.
    Type: Grant
    Filed: May 4, 1994
    Date of Patent: May 14, 1996
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Tetsushi Habu, Minoru Hayashi, Yoichiro Bekki
  • Patent number: 5509978
    Abstract: The present invention provides a high strength and anti-corrosive aluminum-based alloy essentially consisting of an amorphous structure or a multiphase amorphous/fine crystalline structure, which is represented by the general formula Al.sub.x M.sub.y R.sub.z. In this formula, M represents at least one metal element selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, Zr, Nb, Mo and Ni, and R represents at least one element or mixture selected from the group consisting of Y, Ce, La, Nd and Mm (misch metal). Additionally, in the formula, x, y and z represent the composition ratio, and are atomic percentages satisfying the relationships of x+y+z=100, 64.5.ltoreq.x.ltoreq.95, 5.ltoreq.y.ltoreq.35, and 0<z.ltoreq.0.4.
    Type: Grant
    Filed: February 9, 1995
    Date of Patent: April 23, 1996
    Assignee: Yamaha Corporation
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Yuma Horio
  • Patent number: 5494540
    Abstract: An abrasion-resistant aluminum alloy consists of 13.0 to 16.0 percent by weight of Si, 4.0 to 5.0 percent by weight of Cu, at least 0.8 and less than 1.4 percent by weight of Mg, not more than 0.8 percent by weight of Fe, not more than 0.1 percent by weight of either P or at least one of Na, Sb and Sr and a remainder of Al and unavoidable impurities. The alloy's microstructure contains coarse Si particles of 15 to 40 .mu.m mean particle diameter, fine Si particles of not more than 5 .mu.m mean particle diameter and other fine particles, with a homogeneous dispersion of all of these particles. This abrasion-resistant aluminum alloy has specific abrasion loss of not more than 10.times.10.sup.-7 mm.sup.2 /kg.
    Type: Grant
    Filed: January 26, 1995
    Date of Patent: February 27, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Shigeki Ochi, Tosio Fujiwara
  • Patent number: 5489347
    Abstract: An aluminum alloy fin material for heat-exchanger with excellent thermal conductance and strength after brazing comprising 0.005 to 0.8 wt. % of Si, 0.5 to 1.5 wt. % of Fe, 0.1 to 2.0 wt. % of Ni, and a balance of Al and inevitable impurities is disclosed. The aluminum alloy fin material can additionally contain 0.01 to 0.2 wt. % of Zr and/or at least one element of the group consisting of not more than 2.0 wt. % of Zn, not more than 0.3 wt. % of In, and not more than 0.3 wt. % of Sn.
    Type: Grant
    Filed: July 27, 1994
    Date of Patent: February 6, 1996
    Assignees: Furukawa Electric Co., Ltd., Nippondenso Co., Ltd.
    Inventors: Fujio Himuro, Takeyoshi Doko
  • Patent number: 5478418
    Abstract: An aluminum alloy powder for sliding members includes Fe in an amount of from 0.5 to 5.0% by weight, Cu in an amount of from 0.6 to 5.0% by weight, B in an amount of from 0.1 to 2.0% by weight and the balance of Al. An aluminum alloy includes a matrix made from the aluminum alloy powder and at least one member dispersed, with respect to whole of the matrix taken 100% by weight, in the matrix, and selected from the group consisting of B in an amount of from 0.1 to 5.0% by weight, boride in an amount of from 1.0 to 15% by weight and iron compound in an amount of from 1.0 to 15% by weight, and thereby it exhibits the tensile strength of 400 MPa or more. The aluminum alloy powder and the aluminum alloy are suitable for making sliding members like valve lifters for automobiles.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: December 26, 1995
    Assignees: Toyota Jidosha Kabushiki Kaisha, Toyo Aluminum Kabushiki Kaisha
    Inventors: Hirohisa Miura, Yasuhiro Yamada, Hirohumi Michioka, Jun Kusui, Akiei Tanaka
  • Patent number: 5472920
    Abstract: The invention relates to the thermal barriers, to a process and material for their production, and to their application. Thermal barriers consist of a material comprising at least one refractory oxide with low thermal diffusivity and at least one quasicrystalline aluminum alloy, the proportion of which represents from 2-30% by volume. They can be produced by deposition of a mixture of refractory oxide and of quasicrystalline alloy in vapor phase, or from a mixture of refractory oxide and quasicrystalline aluminum alloy in the molten state, or else by deposition onto the support to be protected with the aid of an oxygen-gas torch fed with material using a flexible cord which contains the refractory oxide and the quasicrystalline alloy. The applications include the protection of components of aircraft or motor vehicle engines, of aeronautical or aerospace components, of chemical reactors or of electrical households appliances.
    Type: Grant
    Filed: December 22, 1993
    Date of Patent: December 5, 1995
    Assignee: Societe Nouvelle de Metallisation Industries
    Inventors: Jean-Marie Dubois, Philippe Cathonnet
  • Patent number: 5458700
    Abstract: A high-strength aluminum alloy consisting of an amorphous phase containing quasicrystals constituted of aluminum as the principal element, a first additive element consisting of at least one rare earth element and a second additive element consisting of at least one element other than aluminum and rare earth elements, and a crystalline phase consisting of the principal element and the first additive element and the second additive element contained in a supersaturated solid solution form, the amorphous phase containing quasicrystals being contained in a volume percentage of 60 to 90%. The contents of the additive elements preferably fall within a hatched range in the figure, still preferably within a range covered with dot-dash lines in the figure.
    Type: Grant
    Filed: April 28, 1994
    Date of Patent: October 17, 1995
    Assignees: Tsuyoshi Masumoto, Akihisa Inoue, Yoshida Kogyo K.K.
    Inventors: Tsuyoshi Masumoto, Akihisa Inoue, Mitsuru Watanabe, Junichi Nagahora, Toshisuke Shitata
  • Patent number: 5437746
    Abstract: An aluminium alloy sheet for various discs having good platability is described. The alloy consists essentially of 2 to 6 wt % of Mg, 0.1 to 0.5 wt % of Zn, 0.03 to 0.40 wt % of Cu, 0.01 to 0.30 wt % of Fe and the balance of Al.
    Type: Grant
    Filed: January 25, 1994
    Date of Patent: August 1, 1995
    Assignee: Kabushiki Kaisha Kobe Seiko Sho
    Inventors: Eiki Usui, Masahiro Kawaguchi