Nickel Containing Patents (Class 420/91)
  • Patent number: 10619230
    Abstract: A near-eutectoid bearing steel having from 0.7 to 0.9 wt. % carbon, from 0.1 to 0.35 wt. % silicon, from 0.7 to 1.2 wt. % manganese, from 1.0 to 2.0 wt. % chromium, from 0.1 to 0.35 wt. % molybdenum, from 0.2 to 0.6 wt. % nickel, from 0.4 to 1.2 wt. % copper, from 0 to 0.15 wt. % vanadium, from 0 to 0.15 wt. % niobium, from 0 to 0.15 wt. % tantalum, from 0 to 0.2 wt. % cobalt, from 0 to 0.1 wt. % aluminum, from 0 to 0.05 wt. % phosphorous, from 0 to 0.03 wt. % sulphur, from 0 to 0.075 wt. % tin, from 0 to 0.075 wt. % antimony, from 0 to 0.04 wt. % arsenic, from 0 to 0.01 wt. % lead, up to 350 ppm nitrogen, up to 100 ppm oxygen, up to 50 ppm calcium, up to 50 ppm boron, up to 50 ppm titanium, the balance iron, together with any other unavoidable impurities.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: April 14, 2020
    Assignee: AKTIEBOLAGET SKF
    Inventors: Mohamed Sherif, Urszula Alicja Sachadel-Solarek, Leif Viskari
  • Patent number: 10450623
    Abstract: This ferritic stainless steel sheet contains, in terms of % by mass, 0.02% or less of C, 0.02% or less of N, 0.10% to 0.60% of Si, 0.10% to 0.80% of Mn, 15.0% to 21.0% of Cr, more than 2.00% to 3.50% or less of Cu, 0.30% to 0.80% of Nb, 1.00% to 2.50% of Mo, and 0.0003% to 0.0030% of B, with a remainder being Fe and unavoidable impurities, wherein a maximum particle size of ?-Cu that is present in a structure is 20 nm to 200 nm.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: October 22, 2019
    Assignee: NIPPON STEEL & SUMIKIN STAINLESS STEEL CORPORATION
    Inventors: Norihiro Kanno, Junichi Hamada, Yoshiharu Inoue
  • Patent number: 10046383
    Abstract: A method for manufacturing Cu—Sn coexisting steel produces a good quality surface even after hot rolling. The steel is manufactured by continuous casting a molten steel that contains C: 0.04 to 0.20%, Si: 0.05 to 1.00%, Mn: 0.20 to 2.50%, P: no more than 0.05%, S: no more than 0.02%, Cu: 0.20 to 1.50%, Sn: 0.06 to 0.50%, Al: 0.06 to 1.00% and Ni: 0.05 to 1.00% by mass, and Fe and impurities as the remainder. The composition of the molten steel is defined as [Al]/(3[Si]+[Mn])?0.050, [Ni]/([Cu]+5[Sn])?0.10 and [Al]/[Ni]?0.20 if the content of an element X in the molten steel is represented as [X], an internal oxidation layer is formed in a process of cooling a slab, and Al2O3 is contained by the internal oxidation layer.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: August 14, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Naotsugu Yoshida, Hirofumi Nakamura, Takayuki Kamimura, Nobuo Otsuka
  • Publication number: 20150144233
    Abstract: Provided is a mold steel for plastic injection that is excellent in fatigue strength and tensile strength and available for long term use, where the mold steel includes: 0.15 to 0.40 wt. % of carbon (C), 0.15 to 0.50 wt. % of silicon (Si), 0.70 to 1.50 wt. % of manganese (Mn), 0.50 to 1.20 wt. % of nickel (Ni), 1.50 to 2.50 wt. % of chrome (Cr), 0.25 to 0.70 wt. % of molybdenum (Mo), 0.20 wt. % or less of vanadium (V), 0.010 wt. % or less of boron (B), and a trace of iron (Fe) and a plurality of impurities.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Applicant: DOOSAN HEAVY INDUSTRIES & CONSTRUCTION CO., LTD.
    Inventors: Young Chul PARK, Soo Mok LEE, Myeong Su JANG, Jei Yeong JEON
  • Publication number: 20150147224
    Abstract: A steel for wheel contains, in mass %, C: 0.65 to 0.84%, Si: 0.4 to 1.0%, Mn: 0.50 to 1.40%, Cr: 0.02 to 0.13%, S: 0.04% or less and V: 0.02 to 0.12%, wherein Fn1 expressed by formula (1) is 32 to 43, and Fn2 expressed by formula (2) is 25 or less, the balance being Fe and impurities. P, Cu and Ni as impurities are P: 0.05% or less, Cu: 0.20% or less and Ni: 0.20% or less: Fn1=2.7+29.5·C+2.9·Si+6.9·Mn+10.8·Cr+30.3·Mo+44.3·V??(1) Fn2=exp(0.76)·exp(0.05·exp(1.35·Si)·exp(0.38·Mn)·exp(0.77·Cr)·exp(3.0·Mo)·exp(4.6·V)??(2). The steel has excellent properties for use as a wheel.
    Type: Application
    Filed: April 8, 2013
    Publication date: May 28, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuichiro Yamamoto, Yukiteru Takeshita, Kentaro Kiriyama, Takanori Kato
  • Publication number: 20150147589
    Abstract: A rolled steel sheet or blank is provided, the composition of which comprises the elements listed below in per cent by weight: C?0.1%; 0.5%?Mn?7%; 0.5%?Si?3.5%; 0.5%<Ti?2%; 2%<Ni?7%; Al?0.10%; Cr?2%; Cu?2%; Co?2%; Mo?2%; S?0.005%; P?0.03%; Nb?0.1%; V?0.1%; B<0.005%; N?0.008%, and the silicon and titanium contents are such that: Si + Ti ? 2.5 ? % , Ti Si ? 0.3 the remainder of the composition consisting of iron and unavoidable impurities resulting from processing. A method for the fabrication of a part for a land motor vehicle from the sheet or blank by hot stamping is also provided. The microstructure of the part consisting essentially of martensite and intermetallic precipitates of type Fe2TiSi with an area percentage between 1 and 5% intermetallic precipitates.
    Type: Application
    Filed: September 6, 2011
    Publication date: May 28, 2015
    Applicant: Arcelormittal Investigacion Y Desarrollo, S.L.
    Inventors: Olivier Bouaziz, David Barbier, Coralie Jung
  • Publication number: 20150129559
    Abstract: Weld metals and methods for welding ferritic steels are provided. The weld metals have high strength and high ductile tearing resistance and are suitable for use in strain based pipelines. The weld metals are comprised of between 0.03 and 0.08 wt % carbon, between 2.0 and 3.5 wt % nickel, not greater than about 2.0 wt % manganese, not greater than about 0.80 wt % molybdenum, not greater than about 0.70 wt % silicon, not greater than about 0.03 wt % aluminum, not greater than 0.02 wt % titanium, not greater than 0.04 wt % zirconium, between 100 and 225 ppm oxygen, not greater than about 100 ppm nitrogen, not greater than about 100 ppm sulfur, not greater than about 100 ppm phosphorus, and the balance essentially iron. The weld metals are applied using a power source with pulsed current waveform control with <5% CO2 and <2% oxygen in the shielding gas.
    Type: Application
    Filed: June 24, 2013
    Publication date: May 14, 2015
    Inventors: Douglas P. Fairchild, Mario L. Macia, Nathan E. Nissley, Raghavan Ayer, Hyun-Woo Jin, Adnan Ozekcin
  • Publication number: 20150125339
    Abstract: A case hardening steel material having a chemical composition consists of, by mass percent, C: 0.15 to 0.23%, Si: 0.01 to 0.15%, Mn: 0.65 to 0.90%, S: 0.010 to 0.030%, Cr: 1.65 to 1.80%, Al: 0.015 to 0.060%, and N: 0.0100 to 0.0250%, further containing, as necessary, one or more kinds selected from Cu and Ni of predetermined amounts, the balance being Fe and impurities; 25?Mn/S?85, 0.90?Cr/(Si+2Mn)?1.20, and 1.16Si+0.70Mn+Cr?2.20; P, Ti and O in the impurities being P?0.020%, Ti?0.005%, and O?0.0015%; and having a structure consisting of 20 to 70% in an area ratio being ferrite; and the portion other than the ferrite being one or more kinds of pearlite and bainite. The steel material is used suitably as a raw material of the carburized part such as a CVT pulley shaft.
    Type: Application
    Filed: April 16, 2013
    Publication date: May 7, 2015
    Inventors: Hideki Imataka, Masayuki Horimoto, Gen Kato, Mitsuru Fijimoto
  • Patent number: 9023159
    Abstract: A steel for heat treatment, which exhibits high strength and high toughness even when the heat treatment (such as quenching and tempering) of the steel is conducted under conventional conditions in an after stage. The steel for heat treatment contains C: 0.10 to 0.70 mass %, Mn: 0.1 to 3.0 mass %, Al: 0.005 to 2.0 mass %, P: 0.050 mass % or less, S: 0.50 mass % or less, O: 0.0030 mass or less, N: 0.0200 mass % or less, and one or more selected from the group consisting of Ti: 0.30 mass % or less and Nb: 0.30 mass or less with the balance being Fe and unavoidable impurities, and has a TH value of 1.0 or above as calculated according to the formula: ({Ti}/48+{Nb}/93) 104 and grain diameters of 10 ?m or below. {Ti} and {Nb} refer respectively to the contents of Ti and Nb in precipitates of 5 to 100 nm in size as determined about their respective extraction residues.
    Type: Grant
    Filed: June 17, 2009
    Date of Patent: May 5, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Hitoshi Hatano, Takuya Kochi
  • Publication number: 20150099140
    Abstract: The invention relates generally to welding and, more specifically, to welding wires for arc welding, such as Gas Metal Arc Welding (GMAW) or Flux Core Arc Welding (FCAW). A disclosed tubular welding wire has a sheath and a core, and the tubular welding wire includes an organic stabilizer component, a rare earth component, and a corrosion resistant component comprising one or more of: nickel, chromium, and copper.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 9, 2015
    Inventors: Mario Anthony Amata, Steven Edward Barhorst, Tre' Dorell Heflin-King
  • Publication number: 20150078957
    Abstract: The present invention relates to a bearing steel comprising at least 0.6 percent by weight of carbon, 0.007 percent by weight or less of phosphorous, and optionally other alloying element(s); the balance being iron, or iron and impurities. The present invention also relates to a bearing consisting of the bearing steel.
    Type: Application
    Filed: May 16, 2012
    Publication date: March 19, 2015
    Inventors: Joakim Hallberg, Thore Lund, Karin Ryden, Ingemar Strandell
  • Publication number: 20150060050
    Abstract: A composition, method for depositing the composition on a downhole component, and a downhole tool. The composition includes about 0.25 wt % to about 1.25 wt % of carbon, about 1.0 wt % to about 3.5 wt % of manganese, about 0.1 wt % to about 1.4 wt % of silicon, about 1.0 wt % to about 3.0 wt % of nickel, about 0.0 to about 2.0 wt % of molybdenum, about 0.7 wt % to about 2.5 wt % of aluminum, about 1.0 wt % to about 2.7 wt % of vanadium, about 1.5 wt % to about 3.0 wt % of titanium, about 0.0 wt % to about 6.0 wt % of niobium, about 3.5 wt % to about 5.5 wt % of boron, about 0.0 wt % to about 10.0 wt % tungsten, and a balance of iron.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Inventors: Joe Lynn Scott, John H. Gammage
  • Publication number: 20150044087
    Abstract: A method of producing a mold steel, the method including a first process of preparing a molten steel A that is obtained after vacuum refining and has a component composition including from 0.005% to 0.1% by mass of C, from 1.0% to 5.0% by mass of Ni, from 3.0% to 8.0% by mass of Cr, more than 0% but less than or equal to 2.0% by mass of Mo, more than 0% but less than or equal to 3.5% by mass of Cu, and more than 0% but less than or equal to 2.0% by mass of Al, in which an amount of O is 0.005% by mass or less and an amount of N is 0.03% by mass or less; a second process of reducing the amount of O and the amount of N in the molten steel A, by slag refining the molten steel A, to obtain a molten steel B; and a third process of casting the molten steel B, is provided.
    Type: Application
    Filed: March 25, 2013
    Publication date: February 12, 2015
    Inventors: Yousuke Ayabe, Hideshi Nakatsu, Yasushi Tamura, Setsuo Mishima, Yuuki Intoh
  • Publication number: 20150041029
    Abstract: The present invention is a steel for a mechanical structure for cold working, the steel characterized in containing C, Si, Mn, P, S, Al, N, and Cr, the remainder being iron and inevitable impurities; the metal composition having pearlite and pro-eutectoid ferrite; the combined area of the pearlite and pro-eutectoid ferrite being 90% or more of the total composition; the area percentage A of the pro-eutectoid ferrite having the relationship A>Ae, where Ae=(0.8?Ceq)×96.75 (Ceq=[C]+0.1×[Si]+0.06×[Mn]?0.11×[Cr], and “(element names)” indicates the element content (percent in mass); and the mean grain size of the pro-eutectoid ferrite and the ferrite in the pearlite being 15 to 25 ?m.
    Type: Application
    Filed: April 4, 2013
    Publication date: February 12, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Koji Yamashita, Takehiro Tsuchida, Masamichi Chiba
  • Publication number: 20150044086
    Abstract: A steel wire rod or steel bar as hot-rolled, including: by mass %: C: 0.1 to 0.6%, Si: 0.01 to 1.5%, Mn: 0.05 to 2.5%, Al: 0.015 to 0.3%, and N: 0.0040 to 0.0150%, and P: limited to 0.035% or less and S: limited to 0.025% or less, and the balance substantially consisting of iron and unavoidable impurities, wherein a depth of d (mm) from the surface of the surface layer region with 20 HV 0.2 or more higher, relative to HV 0.2 that is the average hardness in the region where the depth from the surface is from sectional radius R×0.5 (mm) to the center satisfies the formula (1); the steel structure of the surface layer region has a ferrite fraction of 10% or less by area ratio, with the balance being one or two or more of martensite, bainite and pearlite; the steel structure where the depth from the surface is from the sectional radius R×0.
    Type: Application
    Filed: April 1, 2013
    Publication date: February 12, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kei Miyanishi, Atsushi Monden, Shingo Yamasaki, Shunta Homma
  • Publication number: 20150027591
    Abstract: A steel material for nitriding has a composition comprising, by mass percent, C: more than 0.15% and not more than 0.35%, Si?0.20%, Mn: 0.10 to 2.0%, P?0.030%, S?0.050%, Cr: 0.80 to 2.0%, V: 0.10 to 0.50%, Al: 0.01 to 0.06%, N?0.0080%, O?0.0030%, and optionally one or more elements of Mo, Cu, Ni, Ti, Nb, Zr, Pb, Ca, Bi, Te, Se and Sb, the balance being Fe and impurities. The composition satisfies the conditions of [20?(669.3×logeC?1959.6×logeN?6983.3)×(0.067×Mo+0.147×V)?80] and [140×Cr+125×Al+235×V?160]. The microstructure is a ferritic-pearlitic structure, a ferritic-bainitic structure, or a ferritic-pearlitic-bainitic structure. The area fraction of ferrite is 20% or more and the precipitate content of V is 0.10% or less.
    Type: Application
    Filed: February 4, 2013
    Publication date: January 29, 2015
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yuya Gyotoku, Masayuki Horimoto, Hideki Imataka, Kosuke Tanaka
  • Publication number: 20150020992
    Abstract: A non-scaling heat-treatable steel with particular suitability for producing hardened or die-hardened components is disclosed, characterized by the following chemical composition in % by weight: C 0.04-0.50; Mn 0.5-6.0; Al 0.5-3.0; Si 0.05-3.0; Cr 0.05-3.0; Ni less than 3.0; Cu less than 3.0; Ti 0.010-?0.050; B 0.0015-?0.0040; P less than 0.10; S less than 0.05; N less than 0.020; remainder iron and unavoidable impurities. Further disclosed is a method for producing a non-scaling hardened component from the steel and a method for producing a hot strip from a steel.
    Type: Application
    Filed: March 19, 2013
    Publication date: January 22, 2015
    Inventors: Joachim Schöttler, Friedrich Luther, Stefan Mütze
  • Publication number: 20150023833
    Abstract: An electric furnace steel contains, by mass %, C: 0.12 to 0.28%, Si: equal to or less than 0.15%, Mn: 0.65 to 0.95%, P: equal to or less than 0.035%, S: equal to or less than 0.035%, Cr: 1.35 to 1.90%, Al: 0.020 to 0.050%, and N: 0.0080 to 0.0230%. A scrap material is selected such that Cu, Ni, and Mo that derive from the scrap material and are thus contained as impurities in the electric furnace steel satisfy Expression 1. The electric furnace steel further contains Fe and unavoidable impurities as a remainder thereof. Accordingly, the electric furnace steel can secure carburizing quality equivalent to or higher than that of Cr—Mo steel, and can have properties equivalent to or higher than that of Cr—Mo steel, without adding Mo. ([Cu]+2×[Ni])0.76×[Mo]?0.
    Type: Application
    Filed: July 18, 2014
    Publication date: January 22, 2015
    Applicant: AICHI STEEL CORPORATION
    Inventors: Yuji Adachi, Naoki Fukuda
  • Publication number: 20150017462
    Abstract: A cast alloy is generally provided, along with methods of forming the cast alloy and components constructed from the cast alloy (e.g., stationary components of a turbine). The cast alloy can include, by weight, 0.12% to 0.20% carbon, 0.50% to 0.90% manganese, 0.25% to 0.60% silicon, 0.10% to 0.50% nickel, 1.15% to 1.50% chromium, 0.90% to 1.50% molybdenum, 0.70% to 0.80% vanadium, 0.0075% to 0.060% titanium, 0.008% to 0.012% boron, the balance iron, optionally low levels of other alloying constituents, and incidental impurities.
    Type: Application
    Filed: July 11, 2013
    Publication date: January 15, 2015
    Inventors: Deepak Saha, Subrahmanyam Thangirala, Jeffrey Michael Breznak, Steven Louis Breitenbach
  • Publication number: 20150003935
    Abstract: A steel is used for providing a bolt that has a high strength and still exhibits excellent hydrogen embrittlement resistance. The steel contains C of 0.30% to 0.50%, Si of 1.0% to 2.5%, Mn of 0.1% to 1.5%, P of greater than 0% to 0.015%, S of greater than 0% to 0.015%, Cr of 0.15% to 2.4%, Al of 0.010% to 0.10%, N of 0.001% to 0.10%, Cu of 0.1% to 0.50%, Ni of 0.1% to 1.0%, Ti of 0.05% to 0.2%, and V of 0% to 0.2%, with the remainder including iron and inevitable impurities, in which a ratio [Ni]/[Cu] is 0.5 or more, and a total content [Ti]+[V] is 0.085% to 0.30%.
    Type: Application
    Filed: November 26, 2012
    Publication date: January 1, 2015
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yosuke Matsumoto, Atsushi Inada, Masamichi Chiba
  • Publication number: 20150004050
    Abstract: A steel strip for coiled tubing contains, in terms of percent by mass, C: 0.10% or more and 0.16% or less, Si: 0.1% or more and 0.5% or less, Mn: 0.5% or more and 1.5% or less, P: 0.02% or less, S: 0.005% or less, Sol. Al: 0.01% or more and 0.07% or less, Cr: 0.4% or more and 0.8% or less, Cu: 0.1% or more and 0.5% or less, Ni: 0.1% or more and 0.3% or less, Mo: 0.1% or more and 0.2% or less, Nb: 0.01% or more and 0.04% or less, Ti: 0.005% or more and 0.03% or less, N: 0.005% or less, and the balance of Fe and inevitable impurities.
    Type: Application
    Filed: January 18, 2013
    Publication date: January 1, 2015
    Inventors: Yasuhiro Matsuki, Takahiko Ogura, Chikara Kami, Hiroshi Nakata
  • Publication number: 20140377123
    Abstract: The present invention is a weld metal formed by gas shielded arc welding using a flux cored wire, the welded metal having a predetermined chemical composition, residual austenite particles being present in an amount of at least 2500 particles/mm2, and the volume fraction of residual austenite particles being at least 4.0%.
    Type: Application
    Filed: February 25, 2013
    Publication date: December 25, 2014
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd)
    Inventors: Hidenori Nako, Takuya Kochi, Wataru Urushihara, Munenobu Sato, Yoshihiko Kitagawa
  • Publication number: 20140353464
    Abstract: A high mechanical strength reinforcement steel comprising, in addition to iron, at most about 0.5% by weight carbon, at most about 0.5% by weight vanadium and/or niobium, and the usual residual elements of scrap steel. A method of reinforcing a dwelling from damage resulting from seismic activity, the method comprising providing, as a component of the dwelling, at least one rebar of a composition comprising, in addition to iron, at most about 0.5% by weight carbon, at most about 0.5% by weight vanadium and/or niobium, at most 1.7% by weight of manganese, at most 0.5% by weight of silicon, and the usual residual elements of scrap steel.
    Type: Application
    Filed: June 3, 2014
    Publication date: December 4, 2014
    Inventors: Winky Lai, Cameron A. Cossette, James F. Petersen
  • Patent number: 8900511
    Abstract: The present invention relates a high-strength nonmagnetic stainless steel, containing, by weight percent, 0.01 to 0.06% of C, 0.10 to 0.50% of Si, 20.5 to 24.5% of Mn, 0.040% or less of P, 0.010% or less of S, 3.1 to 6.0% of Ni, 0.10 to 0.80% of Cu, 20.5 to 24.5% of Cr, 0.10 to 1.50% of Mo, 0.0010 to 0.0050% of B, 0.010% or less of O, 0.65 to 0.90% of N, and the remainder being Fe and inevitable impurities; the steel satisfying the following formulae (1) to (4): [Cr]+3.3×[Mo]+16×[N]?30??(1), {Ni}/{Cr}?0.15??(2), 2.0?[Ni]/[Mo]?30.0??(3), and [C]×1000/[Cr]?2.5??(4), wherein [Cr], [Mo], [N], [Ni], [Mo] and [C] represent the content of Cr, the content of Mo, the content of N, the content of Ni, the content of Mo and the content of C in the steel, respectively, and {Ni} represents the sum of [Ni], [Cu] and [N], and {Cr} represents the sum of [Cr] and [Mo]. The present invention further relates to a high-strength nonmagnetic stainless steel part containing the steel and a process for producing the same.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: December 2, 2014
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Koichi Ishikawa, Tetsuya Shimizu
  • Publication number: 20140348695
    Abstract: A low alloy steel, containing, by mass percent, C: 0.01 to 0.15%, Si: 3% or less, Mn: 3% or less, B: 0.005 to 0.050%, and Al: 0.08% or less, and the balance being Fe and impurities, wherein in the impurities, N: 0.01% or less, P: 0.05% or less, S: 0.03% or less, and O: 0.03% or less. In the alloy steel, a HAZ has excellent resistance to embrittlement attributable to hydrogen such as stress corrosion cracking in wet hydrogen sulfide environments.
    Type: Application
    Filed: December 17, 2012
    Publication date: November 27, 2014
    Inventors: Hiroyuki Hirata, Kenji Kobayashi, Tomohiko Omura, Kaori Kawano, Kota Tomatsu, Kazuhiro Ogawa
  • Publication number: 20140332517
    Abstract: The present disclosure relates generally to welding alloys and, more specifically, to welding consumables (e.g., welding wires and rods) for welding, such as Gas Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), Shielded Metal Arc Welding (SMAW), and Flux Core Arc Welding (FCAW). In an embodiment, a welding alloy includes less than approximately 1 wt % manganese as well as one or more strengthening agents selected from the group: nickel, cobalt, copper, carbon, molybdenum, chromium, vanadium, silicon, and boron. Additionally, the welding alloy has a carbon equivalence (CE) value that is less than approximately 0.23, according to the Ito and Bessyo carbon equivalence equation. The welding alloy also includes one or more grain control agents selected from the group: niobium, tantalum, titanium, zirconium, and boron, wherein the welding alloy includes less than approximately 0.6 wt % grain control agents.
    Type: Application
    Filed: April 30, 2014
    Publication date: November 13, 2014
    Applicant: HOBART BROTHERS COMPANY
    Inventors: Steven Edward Barhorst, Kevin M. Krieger, Joseph C. Bundy, Mario Anthony Amata, Daryl L. Duncan, Susan Renata Fiore
  • Publication number: 20140328716
    Abstract: A steel for welding includes steel components in which PCTOD is less than or equal to 0.065%, CeqH is less than or equal to 0.225%, FB is greater than or equal to 0.0003%, and Bp is 0.09% to 0.30%. In the steel for welding, in a thickness center portion of a cross-section in a thickness direction, the number of oxide particles having an equivalent circle diameter of 2 ?m or greater is less than or equal to 20 particles/mm2 and the number of Ti oxides having an equivalent circle diameter of 0.05 ?m to 0.5 ?m is 1.0×103 particles/mm2 to 1.0×105 particles/mm2.
    Type: Application
    Filed: June 29, 2012
    Publication date: November 6, 2014
    Applicants: NIPPON FINE COATINGS, INC., NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuhiro Fukunaga, Yoshiyuki Watanabe, Shinsuke Usui, Rikio Chijiiwa
  • Patent number: 8876451
    Abstract: Provided is a high-strength bolt which has a tensile strength of 1,200 MPa or more while exhibiting excellent ductility and delayed facture resistance, and further has an excellent impact toughness which had not been obtained in the conventional high-strength bolt. The high-strength bolt has a tensile strength of 1.2 GPa or more and includes a threaded portion and cylindrical neck portion. The bolt has K of 0.8 or more and satisfies Ho<Hs, where K is defined by the equation: (Ao×Ho)/(As×Hs)=K, in which Ao is an effective cross-sectional area of the cylindrical neck portion with a diameter larger than that of the threaded portion, Ho is a Vickers hardness of a portion at which Ao is measured, As is an effective cross-sectional area of the threaded portion, and Hs is a Vickers hardness of the threaded portion.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: November 4, 2014
    Assignees: National Institute for Materials Science, Fusokiko Co., Ltd., Kyowa Kogyosyo Co., Ltd.
    Inventors: Yuuji Kimura, Tadanobu Inoue, Shuji Murasaki, Mataichi Fukuda
  • Publication number: 20140322066
    Abstract: A rolled steel bar has a composition consisting, by mass percent, of C: 0.27 to 0.37%, Si: 0.30 to 0.75%, Mn: 1.00 to 1.45%, S: 0.008% or more and less than 0.030%, Cr: 0.05 to 0.30%, Al: 0.005 to 0.050%, V: 0.200 to 0.320%, and N: 0.0080 to 0.0200%, the balance being Fe and impurities. The contents of P, Ti and O in the impurities are, by mass percent, P: 0.030% or less, Ti: 0.0040% or less, and O: 0.0020% or less. Y1 expressed by the formula <1> is 1.05 to 1.18. Y1=C+(1/10)Si+(1/5)Mn+(5/22)Cr+1.65V?(5/7)S ??<1>. C, Si, Mn, Cr, V, and S in the formula represent mass percent of the elements. A hot-forged part having a tensile strength of 900 MPa or higher and a transverse endurance ratio of 0.47 can be obtained by the rolled steel bar.
    Type: Application
    Filed: November 7, 2012
    Publication date: October 30, 2014
    Inventors: Masashi Higashida, Hitoshi Matsumoto, Naoki Matsui, Yutaka Neishi, Taizo Makino
  • Publication number: 20140301889
    Abstract: This H-beam steel has a composition including C, Si, Mn, Cu, Ni, V, Al, Ti, B, N, and O, and further including at least one of Mo and Nb, in which Ceq obtained in Equation 1 described below falls in a range of 0.37 to 0.50, the thickness of a flange falls in a range of 100 to 150 mm, and the area fraction of bainite at a depth of one quarter of the thickness of the flange from the external surface of the flange is 60% or more. Ceq=C+Mn/6+(Mo+V)/5+(Ni+Cu)/15 ??Equation 1, where C, Mn, Mo, V, Ni, and Cu represent the amount of each element contained.
    Type: Application
    Filed: December 11, 2012
    Publication date: October 9, 2014
    Inventors: Kazutoshi Ichikawa, Masaki Mizoguchi, Kazuaki Mitsuyasu, Hirokazu Sugiyama
  • Patent number: 8853903
    Abstract: Disclosed is a low alloy steel material for generator rotor shafts, which has tensile strength of not less than 700 MPa at room temperature. Preferably the low alloy steel material consists of, by mass percent, 0.15 to 0.35% carbon, 0.01 to 0.10% Si, 0.10 to 0.50% Mn, 1.3 to 2.0% Ni, 2.1 to 3.0% Cr, 0.20 to 0.50% Mo, 0.15 to 0.35% Cu, 0.06 to 0.14% V, and the balance of Fe and unavoidable impurities.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: October 7, 2014
    Assignee: Mitsubishi Hitachi Power Systems, Ltd.
    Inventor: Takanobu Mori
  • Publication number: 20140250966
    Abstract: A ferrous alloy is provided for coining The ferrous alloy includes a composition of: 4.00-10.80 wt % of chromium (Cr), 8.00-25.00 wt % of nickel (Ni), 3.00-6.00 wt % of copper (Cu), and a balance of iron (Fe) and incidental impurities.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 11, 2014
    Applicant: CRS Holdings Inc.
    Inventor: Christopher F. Pilliod
  • Publication number: 20140237935
    Abstract: A high mechanical strength reinforcement, hot rolled steel, in particular, rebar suitable for construction in areas prone to seismic activity, comprising iron, at most 0.4 weight percent carbon, at most about 0.4 weight percent vanadium and/or niobium, at most about 1.6 weight percent of manganese, at most about 0.5 weight percent of silicon, and the usual residual elements of scrap steel. A method of reinforcing a dwelling from damage resulting from seismic activity, the method comprising providing, as a component of the dwelling, at least one high strength, hot rolled steel rebar with high mechanical strength which meets the requirements of construction, in particular, rebar suitable for construction in areas prone to seismic activity, comprising iron, at most 0.4 weight percent carbon, at most about 0.4 weight percent vanadium and/or niobium, at most about 1.6 weight percent of manganese, at most about 0.5 weight percent of silicon, and the usual residual elements of scrap steel.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: NUCOR CORPORATION
    Inventors: ERIK NISSEN, JEFFREY L. JANSON
  • Publication number: 20140227126
    Abstract: The present invention provides high strength steel pipe for line pipe superior in low temperature toughness suppressed in drop of toughness of the HAZ and a method of production of the same, more particularly high strength steel plate for line pipe used as a material for high strength steel pipe for line pipe and a method of production of the same, in particular high strength steel pipe for line pipe superior in low temperature toughness characterized in that the chemical compositions of the base metal is, by mass %, C: 0.020 to 0.080%, Si: 0.01 to 0.50%, Mo: 0.01 to 0.15%, Al: 0.0005 to 0.030%, and Nb: 0.0001 to 0.030% contained in a range of C+0.25Si+0.1Mo+Al+Nb: 0.100% or less and the mixture of austenite and martensite present along prior austenite grain boundaries of the reheated part of the heat affected zone has a width of 10 ?m or less and a length of 50 ?m or less.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Takuya Hara, Hitoshi Asahi, Yoshio Terada
  • Publication number: 20140224383
    Abstract: Steel for manufacturing cemented steel parts, characterized in that the composition thereof in weight percentages is: 0.1%?C?0.15%; 0.8%?Mn?2%; 1%?Cr?2.5%; 0.2%?Mo?0.6%; trace elements?Si?0.35%; trace elements?Ni?0.7% trace elements?B?0.005%; trace elements?Ti?0.1% trace elements?N?0.01% if 0.0005% (5 ppm)?B?0.005%, and trace elements?N?0.02% if trace elements?B?0.0005% (5 ppm); trace elements?Al?0.1%; trace elements?V?0.3%; trace elements?P?0.025%; trace elements?Cu?1%, preferably?0.6%; trace elements?S?0.1%; the remainder being iron and impurities resulting from production. A cemented steel part made with this steel, and to the method for manufacturing same.
    Type: Application
    Filed: August 8, 2012
    Publication date: August 14, 2014
    Applicant: Ascometal
    Inventor: Christophe Mendibide
  • Publication number: 20140212323
    Abstract: The present invention relates to a multilayer overlay welding section in which a first layer of an overlay welding section to be formed on the bearing contact surface of a high Cr steel turbine rotor includes C: 0.05 to 0.2%, Si: 0.1 to 1.0%, Mn: 0.3 to 1.5%, Cr: 4.0 to 7.7%, and Mo: 0.5 to 1.5% with a remainder including Fe and unavoidable impurities, a multilayer overlay welding section in which, in addition to the above layer, an upper layer welding section includes C: 0.05 to 0.2%, Si: 0.1 to 1.0%, Mn: 0.3 to 2.5%, Cr: 1.0 to 4.0%, and Mo: 0.5 to 1.5%, and a welding material therefor and a process for producing the multilayer overlay welding section.
    Type: Application
    Filed: August 17, 2012
    Publication date: July 31, 2014
    Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.), THE JAPAN STEEL WORKS, LTD.
    Inventors: Yuta Honma, Rinzo Kayano, Mikihiro Sakata, Ken Yamashita
  • Patent number: 8778096
    Abstract: Provided is a low yield ratio, high strength and high toughness steel plate having excellent strain ageing resistance equivalent to API 5L X70 Grade or lower and a method for manufacturing the same. The steel plate has a metallographic microstructure that is a three-phase microstructure including bainite, M-A constituent, and quasi-polygonal ferrite, the area fraction of the bainite being 5% to 70%, the area fraction of the M-A constituent being 3% to 20%, the remainder being the quasi-polygonal ferrite, the equivalent circle diameter of the M-A constituent being 3.0 ?m or less. The steel plate has a yield ratio of 85% or less and a Charpy impact test absorbed energy of 200 J or more at ?30° C. before or after being subjected to strain ageing treatment at a temperature of 250° C. or lower for 30 minutes or less.
    Type: Grant
    Filed: September 28, 2010
    Date of Patent: July 15, 2014
    Assignee: JFE Steel Corporation
    Inventors: Junji Shimamura, Nobuyuki Ishikawa, Nobuo Shikanai
  • Patent number: 8765269
    Abstract: An APIX100-grade high strength steel pipe includes a base material containing, in mass percentage, C: more than 0.03% and 0.08% or less, Si: 0.01% to 0.5%, Mn: 1.5% to 3.0%, P: 0.015% or less, S: 0.005% or less, Al: 0.01% to 0.08%, Nb: 0.005% to 0.025%, Ti: 0.005% to 0.025%, N: 0.001% to 0.010%, O: 0.005% or less, and B: 0.0003% to 0.0020%, further contains one or more of Cu, Ni, Cr, Mo, and V, satisfies 0.19?Pcm?0.25, the balance being Fe and unavoidable impurities, and has a TS of 760 to 930 MPa, a uniform elongation of 5% or more, and a YR of 85% or less; the seam weld metal has a specific composition.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: July 1, 2014
    Assignee: JFE Steel Corporation
    Inventors: Junji Shimamura, Nobuyuki Ishikawa, Mitsuhiro Okatsu, Nobuo Shikanai
  • Publication number: 20140170015
    Abstract: A steel composition resistant to sulfidic corrosion has been discovered. The newly discovered steel composition comprises the elements Fe, C, Si, Cu, and Mn wherein the composition comprises from about 96.80 to about 99.00 percent by weight iron, from about 0.10 to about 0.30 percent by weight carbon, from about 0.20 to about 1.40 percent by weight silicon, from about 0.50 to about 1.50 percent by weight copper, and from about 0.20 to about 1.00 percent by weight manganese, wherein the composition is substantially free of chromium, and wherein the composition contains less than 0.1 percent by weight nickel, molybdenum, or tungsten.
    Type: Application
    Filed: December 17, 2012
    Publication date: June 19, 2014
    Applicants: GENERAL ELECTRIC COMPANY
    Inventors: Raul Basilio Rebak, Andrew David Deal, Voramon Supatarawanich Dheeradhada, Judson Sloan Marte, Raghavendra Rao Adharapurapu
  • Publication number: 20140127074
    Abstract: A hot-formed and press-hardened wear-resistant steel component with a hardness of between 500 and 700 HB is constructed for use in construction machines, agricultural machines, mining machines, in supply, transport, clearing or maintenance machines or appliances or in household, garden, DIY or handicraft machines or appliances which are subjected to high levels of abrasive wear
    Type: Application
    Filed: November 8, 2011
    Publication date: May 8, 2014
    Inventors: Wilfried Rosteck, Oswald Gerl
  • Publication number: 20140060709
    Abstract: Steel, excellent in corrosion resistance and low-temperature toughness, for a vehicle suspension spring part, includes 0.15 to 0.35% by mass of C, more than 0.6% by mass but 1.5% by mass or less of Si, 1 to 3% by mass of Mn, 0.3 to 0.8% by mass of Cr, 0.005 to 0.080% by mass of sol. Al, 0.005 to 0.060% by mass of Ti, 0.005 to 0.060% by mass of Nb, not more than 150 ppm of N, not more than 0.035% by mass of P, not more than 0.035% by mass of S, 0.01 to 1.00% by mass of Cu, and 0.01 to 1.00% by mass of Ni, the balance consisting of Fe and unavoidable impurities, with Ti+Nb?0.07% by mass. The steel has a tensile strength of not less than 1,300 MPa.
    Type: Application
    Filed: November 11, 2013
    Publication date: March 6, 2014
    Applicants: JFE BARS & SHAPES CORPORATION, NHK SPRING CO., LTD.
    Inventors: Akira TANGE, Kiyoshi KURIMOTO, Yurika GOTO, Katsuhiko KIKUCHI, Kunikazu TOMITA, Kazuaki FUKUOKA, Kazuaki HATTORI
  • Publication number: 20140056752
    Abstract: A steel material has excellent atmospheric corrosion resistance and a composition which contains more than 0.06% and less than 0.14% C, 0.05% or more and 2.00% or less Si, 0.20% or more and 2.00% or less Mn, 0.005% or more and 0.030% or less P, 0.0001% or more and 0.0200% or less S, 0.001% or more and 0.100% or less Al, 0.10% or more and 1.00% or less Cu, 0.10% or more and 0.65% or less Ni, 0.0001% or more and 1.000% or less Mo, preferably 0.005% or more and 1.000% or less Mo, 0.005% or more and 0.200% or less Nb, and Fe and unavoidable impurities as a balance.
    Type: Application
    Filed: February 24, 2012
    Publication date: February 27, 2014
    Applicant: JFE Steel Corporation
    Inventors: Shinichi Miura, Isamu Kage, Tsutomu Komori, Toshiyuki Hoshino
  • Patent number: 8657969
    Abstract: A high strength galvanized steel sheet has a TS of 590 MPa or more and excellent processability. The component composition contains, by mass %, C: 0.05% to 0.3%, Si: 0.7% to 2.7%, Mn: 0.5% to 2.8%, P: 0.1% or lower, S: 0.01% or lower, Al: 0.1% or lower, and N: 0.008% or lower, and the balance: Fe or inevitable impurities. The microstructure contains, in terms of area ratio, ferrite phases: 30% to 90%, bainite phases: 3% to 30%, and martensite phases: 5% to 40%, in which, among the martensite phases, martensite phases having an aspect ratio of 3 or more are present in a proportion of 30% or more.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: February 25, 2014
    Assignee: JFE Steel Corporation
    Inventors: Yoshiyasu Kawasaki, Tatsuya Nakagaito, Shinjiro Kaneko, Saiji Matsuoka
  • Publication number: 20140030136
    Abstract: There is provided a steel material with superior surface pressure fatigue strength, comprising a machine structural steel used for power transmission components such as gears and shafts used in automobiles, industrial machines, and the like. The steel material comprises in mass %: C: 0.15 to 0.35%; Si: 0.30 to 0.95%; Mn: 0.10 to 1.00%; P: 0 to 0.030%; S: 0 to 0.030%; Cr: 0.80 to 2.30%; Cu: 0 to 0.30%; Al: 0.008 to 0.500%; O: 0 to 0.0030%; N: 0.0020 to 0.0300%; Ni: 0 to 3.00%; Mo: 0 to 0.29%; Ti: 0 to 0.200%; Nb: 0 to 0.20%; and B: 0 to 0.0050%; and the balance Fe and unavoidable impurities. The steel material has, in mass %, a parameter represented by Si+Cr-2Mn of 1.05 or more and a parameter represented by 0.7Si+2.5Mn+2.0Cr+2.5Ni+4.0Mo of 6.30 or less.
    Type: Application
    Filed: April 12, 2012
    Publication date: January 30, 2014
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventor: Takeshi Fujimatsu
  • Publication number: 20140030135
    Abstract: A high-strength non-oriented electrical steel sheet contains: in mass %, C: 0.010% or less; Si: not less than 2.0% nor more than 4.0%; Mn: not less than 0.05% nor more than 0.50%; Al: not less than 0.2% nor more than 3.0%; N: 0.005% or less; S: not less than 0.005% nor more than 0.030%; and Cu: not less than 0.5% nor more than 3.0%, a balance being composed of Fe and inevitable impurities. An expression (1) is established where a Mn content is represented as [Mn] and a S content is represented as [S], and not less than 1.0×104 pieces nor more than 1.0×106 pieces of sulfide having a circle-equivalent diameter of not less than 0.1 ?m nor more than 1.0 ?m are contained per 1 mm2.
    Type: Application
    Filed: April 11, 2012
    Publication date: January 30, 2014
    Applicant: Nippon Steel Corporation
    Inventors: Yoshihiro Arita, Masahiro Fujikura, Hidekuni Murakami
  • Publication number: 20140003752
    Abstract: Steel for a high temperature joining process suitable, in particular for components intended for applications with high demands on fatigue and toughness properties, such as bearing components, comprising the following composition in weight-%: 0.5-0.8 C, 0- 0.15 Si, 0-1.0 Mn, 0.01-2.0 Cr, 0.01-1.0 Mo, 0.01-2.0 Ni, 0.01-1.0 of V or 0.01-1.0 of Nb, or 0.01-1.0 of both V and Nb, 0-0.002 S, 0-0.010 P, 0-0.15 Cu, 0.010-1.0 Al, the remainder being Fe and normally occurring impurities.
    Type: Application
    Filed: December 6, 2011
    Publication date: January 2, 2014
    Inventor: Thore Lund
  • Publication number: 20130343949
    Abstract: Disclosed is a steel material with small heat treatment deformation, comprising a machine structural steel used for components for power transmission, such as gears and shafts used in automobiles, industrial machines, and the like. The steel material comprises in mass %: C: 0.16 to 0.35%; Si: 0.10 to 1.50%; Mn: 0.10 to 1.20%; P: 0 to 0.030%; S: 0 to 0.030%; Cr: 1.3 to 2.5%; Cu: 0 to 0.30%; Al: 0.008 to 0.800%; O: 0 to 0.0030%; N: 0.0020 to 0.0300%; Ni: 0 to 3.00%; Mo: 0 to 0.50%; Ti: 0 to 0.200%; Nb: 0 to 0.20%; and the balance Fe and unavoidable impurities.
    Type: Application
    Filed: March 16, 2012
    Publication date: December 26, 2013
    Applicant: SANYO SPECIAL STEEL CO., LTD.
    Inventors: Takeshi Fujimatsu, Morihiko Nakasaki, Yasuhiro Matsumoto
  • Publication number: 20130330226
    Abstract: This high-strength steel sheet has a component composition containing, in mass %, 0.02 to 0.3% C, 1 to 3% Si, 1.8 to 3% Mn, 0.1% or less P, 0.01% or less S, 0.001 to 0.1% Al, and 0.002 to 0.03% N, the remainder being iron and impurities. The high-strength steel sheet has a structure containing, in terms of area ratio relative to the entire structure, each of the following phases: 50 to 85% bainitic ferrite; 3% or more retained austenite (?); 10 to 45% martensite and the aforementioned retained austenite (?); and 5 to 40% ferrite. The ratio between the Mn concentration (Mn?R) in the retained austenite (?) and the average Mn concentration (Mnav) in the entire structure is 1.2 or more (Mn?R/ Mnav) based on the Mn concentration distribution obtained by means of EPMA line analysis. As a consequence, the high-strength steel sheet exhibits strength of 980 MPa or more and exerts excellent deep drawability.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 12, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Toshio Murakami, Elijah Kakiuchi, Hideo Hata, Tatsuya Asai, Naoki Mizuta
  • Publication number: 20130330119
    Abstract: A forged steel for components for nuclear power plants meets a specific chemical composition. The grain size number of a metal structure thereof is 4.5 to 7.0 in terms of ASTM grain size number. It is preferred that the content of N is 0.0100 mass % or more when the mass ratio (Al/N) of the content of Al to the content of N is 1.93 or more, and that the content of Al is 0.022 mass % or more when the mass ratio (Al/N) of the content of Al to the content of N is less than 1.93. The forged steel for components for nuclear power plants exhibits excellent strength, toughness and hydrogen cracking resistance even after being subjected to a stress relief heat treatment subsequent to welding.
    Type: Application
    Filed: February 24, 2012
    Publication date: December 12, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hiroyuki Takaoka, Nobuyuki Fujitsuna
  • Publication number: 20130309003
    Abstract: This weld metal has excellent creep characteristics and has a given chemical composition. In the weld metal, the value A defined by equation (1) is 200 or greater, and carbide particles each having an equivalent-circle diameter of 0.40 ?m or more have an average equivalent-circle diameter less than 0.85 ?m. In the segments that connect the centers of three or more carbide particles which are present on a 6-?m straight line and which each has an equivalent-circle diameter of 0.40 ?m or more, the sum of the lengths of the portions where the segments intersect the carbide particles is 25% or more of the overall length of the segments. Value A=([V]/51+[Nb]/93)/{[V]×([Cr]/5+[Mo]/2)}×104??(1) In the equation, [V], [Nb], [Cr], and [Mo] respectively indicate the contents (mass %) of V, Nb, Cr, and Mo in the weld metal.
    Type: Application
    Filed: February 9, 2012
    Publication date: November 21, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Hidenori Nako, Ken Yamashita, Minoru Otsu, Mikihiro Sakata, Genichi Taniguchi