Material Is An Input To Contact Zone Patents (Class 422/111)
  • Publication number: 20130028795
    Abstract: An exhaust gas purification apparatus for an internal combustion engine comprises a NOx selective reduction catalyst provided in an exhaust passage of an internal combustion engine; an upstream side oxidation catalyst which is a catalyst having an oxidizing ability provided in the exhaust passage upstream from the NOx selective reduction catalyst and which includes a carrier for carrying a noble metal for oxidation, the carrier being formed of a basic carrier; and a reducing agent supply until which supplies a reducing agent to an exhaust gas allowed to flow into the NOx selective reduction catalyst. Accordingly, even when the oxidation catalyst causes the SOx poisoning in the exhaust gas purification apparatus for the internal combustion engine having the oxidation catalyst and the NOx selective reduction catalyst provided in the exhaust passage, the reduction efficiency of NOx reduced by the aid of the NOx selective reduction catalyst is favorably maintained.
    Type: Application
    Filed: April 8, 2010
    Publication date: January 31, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Bisaiji, Kohei Yoshida, Mikio Inoue
  • Publication number: 20130028794
    Abstract: A sterilisation and disinfection apparatus can include a sterilisation environment for receiving items to be sterilised, a source of hydrogen peroxide and means for feeding to said sterilisation environment a controlled flow of a gaseous dispersion of vaporised hydrogen peroxide, characterised by comprising sensing means the electro-conductivity of which varies in response to a variation of the concentration of vaporised hydrogen peroxide in the gaseous atmosphere to which said sensing means are exposed; said sensing means being exposed to said gaseous dispersion and configured to output a signal which is a function of the concentration of vaporised hydrogen peroxide in said gaseous dispersion.
    Type: Application
    Filed: December 10, 2009
    Publication date: January 31, 2013
    Applicant: SIDEL S.p.A. con Socio Unico Via La Spezia 241/A
    Inventors: Angelo Silvestri, Andrea Minari
  • Publication number: 20130017121
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, an upstream side air-fuel ratio sensor (23), a hydrocarbon feed valve (15), an exhaust purification catalyst (13), and a downstream side air-fuel ratio sensor (24) are arranged in this order from the upstream. At the time of engine operation, the injection amount of hydrocarbons from the hydrocarbon feed valve (15) is controlled based on the air-fuel ratio detected by the upstream side air-fuel ratio sensor (23) and the downstream side air-fuel ratio sensor (24) so that the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) becomes within a predetermined range of amplitude.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Bisaiji, Kohei Yoshida, Mikio Inoue, Kazuhiro Umemoto
  • Publication number: 20130017136
    Abstract: A NOx selective reduction catalyst for reducing NOx by the ammonia adsorbed is disposed in an engine exhaust gas passage. As states of adsorption of ammonia by the catalyst, there are a first adsorption state of ammonia that occurs when the ammonia is adsorbed during low temperature and a second adsorption state of ammonia that occurs when the ammonia is adsorbed or has already been adsorbed during high temperature. The amount of adsorbed ammonia in the first state is restricted to control concentration of the ammonia that is in the first state and desorbed when the temperature of the catalyst increases so as to be not higher than an allowable concentration, and that in the second state is restricted to control concentration of the ammonia that is in the second state and desorbed when the temperature of the catalyst increases so as to be not higher than an allowable concentration.
    Type: Application
    Filed: April 5, 2011
    Publication date: January 17, 2013
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shinya Hirota, Yoshinori Yamashita
  • Patent number: 8349264
    Abstract: Methods and systems for preparing catalyst, such as chromium catalysts, are provided. The valence of at least a portion of the catalyst sent to an activator is changed from Cr(III) to Cr(VI). The catalyst is prepared or activated continuously using a fluidization bed catalyst activator.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: January 8, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Elizabeth A. Benham, Max P. McDaniel, Ted H. Cymbaluk, Charles K. Newsome, Charles R. Nease, H. Kenneth Staffin, Thomas R. Parr
  • Patent number: 8343448
    Abstract: Systems and methods are provided for reducing NOx emissions from a vehicle including an engine having an exhaust. In one example, the system comprises a NOx reducing system coupled to the engine exhaust including a base metal zeolite, said NOx reducing system including a first layer with a first pore size and a second layer with a second pore size, said first pore size being smaller than said second pore size.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: January 1, 2013
    Assignee: Ford Global Technologies, LLC
    Inventors: Giovanni Cavataio, James W. Girard, Hungwen Jen, Rachel Alison Snow, Christine Kay Lambert
  • Patent number: 8343429
    Abstract: In a target supply unit of an extreme ultraviolet light source apparatus for generating extreme ultraviolet light by applying a laser beam to a target material to turn the target material into plasma, clogging of a target nozzle for supplying the target material to a laser beam application point is suppressed. The target supply unit includes: a target container for accommodating the target material; a target nozzle for injecting the target material supplied from the target container; and a reducing gas supply unit for supplying a reducing gas into the target container. Instead of using the reducing gas, a carbon-based material having a reduction action may be provided within the target container for causing reduction reaction.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: January 1, 2013
    Assignee: Gigaphoton Inc.
    Inventors: Takayuki Yabu, Takanobu Ishihara, Masaki Nakano
  • Patent number: 8337758
    Abstract: The present invention relates to an in vitro method modeling and measuring the consistency generated in vivo by a food during the digestion thereof. The method includes the steps of grinding the food to reproduce the mechanical breakdown performed during chewing, mixing under stirring of the ground food with a solution modeling gastric fluid in a reactor vessel coupled with a rheometer for a time corresponding to gastric digestion, and adjustment under stirring of the reaction mixture to model intestinal digestion conditions for a time corresponding to intestinal digestion, wherein the rheometer is provided with a stirrer used to homogenize the mixture and measure the viscosity and/or the viscoelasticity thereof.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: December 25, 2012
    Assignee: Generale Biscuit
    Inventors: Pierre Aymard, Robin Wahl
  • Patent number: 8337757
    Abstract: A method is provided for controlling the operating temperature of a catalytic reactor using a closed-loop system that provides for varying the reactor input and other operating parameters in order to maintain the operating temperature of the reactor at or near the initial setpoint temperature for operation of the reactor. In one example, maximum and minimum operating temperatures with a catalytic partial oxidation reactor are controlled, as well as maintaining control over the corresponding minimum required ratio of oxygen atoms to carbon atoms, such that the operating temperature within the reactor is maintained below the material limits but above threshold temperatures for coking.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: December 25, 2012
    Assignee: Precision Combustion, Inc.
    Inventors: Subir Roychoudhury, Joel M. Desjardins, David Spence, Richard Mastanduno, Dennis E. Walsh, William C. Pfefferle
  • Publication number: 20120321542
    Abstract: Technologies are generally described for forming graphene and structures including graphene. In an example, a system effective to form graphene may include a chamber adapted to receive graphite oxide. The system may also include a source of an inert gas and a source of hydrogen, which may both be configured in communication with the chamber. A processor may be configured in communication with the chamber, the inert gas source and/or the hydrogen source. The processor may be further configured to control the flow of the inert gas from the first source through the chamber under first sufficient reaction conditions to remove at least some oxygen from the atmosphere of the chamber. The processor may also be configured to control the flow of the hydrogen from the second source to the graphite oxide in the chamber under second sufficient reaction conditions to form graphene from the graphite oxide.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Sundara Ramaprabhu, Adarsh Kaniyoor, Tessy Theres Baby
  • Patent number: 8329125
    Abstract: Recirculation of treated flue gas either independently or as a substitute for ambient air at specific points of ingress in a flue gas treatment system is provided to stabilize approach temperature and related parameters such as reagent consumption and pollution admission rate preventing both the accumulation of particulate matter and excessive corrosion associated with ambient air ingress. This recirculation provides a desired turbulence within remote regions of the flue gas treatment system to reduce the amount of particulate matter that may otherwise settle and accumulate in the absorber vessel or other areas of the system thereby causing particulate matter to be conveyed to the particulate removal device.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: December 11, 2012
    Assignee: Primex Process Specialists, Inc.
    Inventor: Stewart Nicholson
  • Patent number: 8323590
    Abstract: A process and apparatus are presented for the removal of carbon monoxide from ethylene streams. The removal of carbon monoxide before selective hydrogenation protects the catalyst in the selective hydrogenation reactor. Carbon monoxide levels are controlled with the water gas shift process to convert the carbon monoxide to carbon dioxide, with the carbon dioxide removed in an acid gas removal process.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche
  • Patent number: 8318100
    Abstract: Reactor vessels with pressure and heat transfer features for producing hydrogen-based fuels and structural elements, and associated systems and methods. A representative reactor system in accordance with a particular embodiment includes a first reaction zone and a heat path positioned to direct heat into the first reaction zone, a reactant source coupled to the first reaction zone, and a first actuator coupled to cyclically pressurize the first reaction zone. The system can further include a second reaction zone in fluid communication with the first, a valve coupled between the first and second reaction zones to control a flow rate therebetween, and a second actuator coupled in fluid communication with the second reaction zone to cyclically pressurize the second reaction zone.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: November 27, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8313323
    Abstract: Sorbent compositions containing halogen and calcium are added to coal to mitigate the release of sulfur and/or other harmful elements, including mercury, into the environment during combustion of coal containing natural levels of mercury.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: November 20, 2012
    Assignee: NOx II, Ltd.
    Inventor: Douglas C. Comrie
  • Patent number: 8313701
    Abstract: A device and method for continuously controlling the flow rate of an aqueous chemical drawn into a flowing fluid stock includes a metering assembly drawing the aqueous chemical into the inlet of a metering assembly through a flow rate sensor and then through a metering device and into the flowing fluid stock. The flow sensor is monitored and an electronic controller can adjusts the flow rate of the aqueous chemical through the metering device in response to monitoring the flow rate sensor. An electronic controller can also change the direction of the flow of the aqueous chemical into the flowing fluid stock through one ejector to another ejector in response to monitoring at the metering assembly.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: November 20, 2012
    Inventor: Brian S. Whitmore, Sr.
  • Patent number: 8313700
    Abstract: The water gas shift reactor includes a gas reaction tank including a reaction chamber formed in the shape of a hollow body provided with a porous plate installed therein to divide the inside of the reaction chamber into an upper reaction space and a lower collection space and a catalyst stacked on the upper surface of the porous plate to convert carbon monoxide into hydrogen, and an insulating layer provided at the outer surface of the reaction chamber, a syngas storage tank to store the syngas, a syngas supply pipe to supply the syngas to the gas reaction tank, after the syngas is heated by a preheater, a steam supply pipe to supply steam generated from a steam generator to the gas reaction tank such that the steam reacts with the syngas, after the steam is heated by a preheater, and a reaction gas discharge pipe.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: November 20, 2012
    Assignee: Korea Institute of Energy Research
    Inventors: See Hoon Lee, Jae Ho Kim, Jae Goo Lee
  • Publication number: 20120288412
    Abstract: A reformer system (11) having a hydrodesulfurizer (12) provides desulfurized natural gas feedstock to a catalytic steam reformer (16), the outflow of which is treated by a water gas shift reactor (20) and optionally a preferential CO oxidizer (58) to provide reformate gas (28, 28a) having high hydrogen and moderate carbon dioxide content. To avoid damage to the hydrodesulfurizer from overheating, any deleterious hydrogen reactants, such as the oxygen in peak shave gas or olefins, in the non-desulfurized natural gas feedstock (35) are reacted (38) with hydrogen (28, 28a; 71) to convert them to alkanes (e.g., ethylene and propylene to ethane and propane) and to convert oxygen to water in a catalytic reactor (38) having no sulfide sorbent, and cooled (46), below a temperature which would damage the reactor, by evaporative cooling with pressurized hot water (42). Hydrogen for the desulfurizer and the hydrogen reactions may be provided as recycle reformate (28, 28a) or from a mini-CPO (67), or from other sources.
    Type: Application
    Filed: March 9, 2012
    Publication date: November 15, 2012
    Inventors: Antonio M. Vincitore, Peter F. Foley, Nancy P. Foley, Derek W. Hildreth, John L. Preston, Stephen G. Pixton, James A. Davies
  • Publication number: 20120279117
    Abstract: A method of processing coal to remove contaminants by mixing coal in a solution of potassium permanganate in a selected concentration range, rinsing the coal, mixing the coal in a solution of ammonia hydroxide in a selected concentration range to cause the solution to be brought into contact with the surfaces and pores of the coal, discharging the processed coal from the second reaction vessel, monitoring the process to detect when the concentration of aqueous ammonia in the second reaction vessel has fallen below the selected range, and feeding aqueous ammonia solution with an ammonia concentration in or above the selected range to the second reaction vessel to return the solution to within the selected range.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 8, 2012
    Inventor: Bruce L. Bruso
  • Publication number: 20120283395
    Abstract: Techniques are provided for operating a reactor during a catalyst transition period. The instantaneous reaction rate during a catalyst transition period can be determined using real-time measured process variables, and material balance calculations to provide an instantaneous reaction rate in approximately real time. According to certain embodiments, a material balance can be performed on the reactor system using a continuous ideal stirred tank reactor to determine the fractions of each type of catalyst that are present in the reactor, as well as the overall weight percent of catalyst in the reactor. A controller can then calculate the overall instantaneous reaction rate based on the respective catalyst fractions and the overall weight percent of catalyst in the reactor. The catalyst feed rate can then be adjusted based on the determined instantaneous reaction rate to maintain the instantaneous reaction rate within desired limits during a catalyst transition period.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 8, 2012
    Applicant: Chevron Phillips Chemical Company LP
    Inventor: Gregory G. Hendrickson
  • Patent number: 8306665
    Abstract: The present invention provides a control system for the conversion of carbonaceous feedstock into a gas. In particular, the control system is designed to be configurable for use in controlling one or more processes implemented in, and/or by, a gasification system for the conversion of such feedstock into a gas, which may be used for one or more downstream applications. Gasification processes controllable by different embodiments of the disclosed control system may include in various combinations, a converter, a residue conditioner, a recuperator and/or heat exchanger system, one or more gas conditioners, a gas homogenization system and one or more downstream applications. The control system operatively controls various local, regional and/or global processes related to the overall gasification process, and thereby adjusts various control parameters thereof adapted to affect these processes for a selected result.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: November 6, 2012
    Assignee: Plasco Energy Group Inc.
    Inventors: Andreas Tsangaris, Kenneth Craig Campbell, Douglas Michael Feasby, Alisdair Alan McLean
  • Patent number: 8302388
    Abstract: After adjusting an exhaust gas temperature at an exit of a heat recovery unit (11) of an exhaust gas treating apparatus to not more than a dew point temperature of sulfur trioxide (SO3), a heavy metal adsorbent is supplied from a heavy metal adsorbent supply unit (16) disposed in an exhaust gas at an entrance of a precipitator (4) or an intermediate position within the precipitator (4), and the exhaust gas containing the heavy metal adsorbent is supplied into the precipitator (4). Preferably at this stage, the heavy metal adsorbent is supplied into the exhaust gas at the entrance of the precipitator (4) 0.1 seconds after the exhaust gas temperature at the exit of the heat recovery unit (11) has been adjusted to not more than the dew point temperature of SO3.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: November 6, 2012
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Kazuki Kobayashi, Hirofumi Kikkawa, Hiroshi Ishizaka, Hiroshi Takezaki, Hiroyuki Nosaka
  • Patent number: 8292977
    Abstract: The invention has its object to arbitrarily adjust an amount of particles to be circulated without changing a flow rate of a gasification agent to thereby enhance gasification efficiency in a fluidized bed gasification furnace. The fluidized bed gasification furnace 107 comprises first and second chambers 113 and 114 in communication with each other in a fluidized bed 105. The hot particles 102 separated in the separator 104 and raw material M are introduced into the first chamber 113. The particles 102 introduced from the first chamber 113 through interior in the fluidized bed 105 to the second chamber 114 are supplied in an overflow manner to the fluidized bed combustion furnace 100.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 23, 2012
    Assignee: IHI Corporation
    Inventors: Toshiyuki Suda, Yoshiaki Matsuzawa, Toshiro Fujimori
  • Patent number: 8273489
    Abstract: A hydrogen generator (100a) includes: a heater (1) which combusts a mixture gas of combustion fuel and combustion air to generate a combustion gas; a preheat evaporator (6) which heats a raw material and water by the combustion gas generated by the heater to generate a mixture gas of the raw material and the water; a reformer (2) which generates a hydrogen-containing gas by causing the mixture gas generated by the preheat evaporator to pass through a reforming catalyst (2a) heated by the combustion gas; and a shift converter (3) which incorporates a shift catalyst (3a) which reduces, by a shift reaction, carbon monoxide contained in the hydrogen-containing gas generated by the reformer, and further includes a water trapping portion (7) which traps liquid water discharged from the preheat evaporator, and the hydrogen generator (100a) is configured to carry out heat exchange between the hydrogen-containing gas supplied from the reformer to the shift converter and the water in the water trapping portion.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: September 25, 2012
    Assignees: Fuji Electric Co., Ltd., Panasonic Corporation
    Inventors: Kunihiro Ukai, Akira Maenishi, Yuji Mukai, Toru Nakamura, Masaya Tsujimoto, Shingo Nagatomo
  • Publication number: 20120237402
    Abstract: A detection device for internal combustion engines exhaust gases post-treatment systems has a casing (2, 3) housing a circuit arrangement (21, 31) including humidity sensor means (32), for measuring the humidity of the gas. The circuit arrangement further comprises temperature sensor means (33) and pressure sensor means (22), for detecting a gas temperature value and a gas pressure value, respectively. The gas temperature value can be used for compensating the humidity value obtained through the humidity sensor means (32) and the pressure value can be used for deducing the clogging degree of a filter of the post-treatment system. Preferably the pressure sensor means (22) are housed in a first chamber (8) of the casing (2-3) while the humidity sensor means (32) and the temperature sensor means (33) are housed in a second chamber (10b) of the casing (2, 3).
    Type: Application
    Filed: December 10, 2010
    Publication date: September 20, 2012
    Inventors: Domenico Cantarelli, Enrico Chiesa, Paolo Colombo
  • Patent number: 8268275
    Abstract: A selective catalytic reduction reactor (8), which comprises at least one catalyst layer (14), is operative for removing NOx from a flow of process gas of a process plant, such as a combustion plant or an incineration plant. A device for controlling the feeding of a reducing agent, such as urea or ammonia, to said at least one catalyst layer (14), which has an attack area (A) facing the flow (P) of process gas, comprises at least one supply nozzle (32) which is operative for supplying reducing agent in at least one supply area (34) which corresponds to a part of the attack area (A), and a moving device (36) which is operative for moving said supply area (34) over the attack area (A).
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: September 18, 2012
    Assignee: ALSTOM Technology Ltd
    Inventor: Mikael Larsson
  • Publication number: 20120230898
    Abstract: A control system of a NOx removal device is provided with reagent introducing means for introducing a reagent into a fluid, a temperature measuring device that measures a temperature distribution of the fluid, a reagent-concentration calculating portion that calculates a concentration distribution of the reagent introduced into the fluid with the temperature distribution determined at the temperature measuring device, a reagent-flow-rate determining portion that determines a flow rate of the reagent that the reagent introducing means introduces in accordance with the concentration distribution calculated at the reagent-concentration calculating portion, and a reagent-introducing-means control portion that controls the reagent introducing means so as to introduce the reagent into the fluid at the flow rate determined at the reagent-flow-rate determining portion.
    Type: Application
    Filed: January 6, 2011
    Publication date: September 13, 2012
    Inventors: Taketoshi Yamaura, Yoshihiro Deguchi, Nobuyuki Ukai, Susumu Okino, Tatsuto Nagayasu
  • Publication number: 20120230876
    Abstract: A method for purifying polluted air having particle phase pollutants and gaseous phase pollutants is provided. The method comprising: separately purifying and treating particle phase and gaseous phase pollutants present in the air; providing a dust cleaning apparatus, a catalytic filter core and a valve for controlling an airflow path within an air purification apparatus; controlling the airflow path for the air to bypass the catalytic filter core in a way that: if the amount of particle phase pollutants is above a predetermined value, the valve is moved to the open position to enable the air to bypass the catalyst filtering core; if the amount of particle phase pollutants is less than a predetermined value, the valve is moved to the closed position to force the air to pass through the catalyst filtering core.
    Type: Application
    Filed: May 23, 2012
    Publication date: September 13, 2012
    Inventors: Yiu Wai CHAN, Sui Chun Law
  • Patent number: 8263031
    Abstract: A method is provided for purifying exhaust gas from an engine having an exhaust passage with a selective reducing catalyst and an oxidation catalyst upstream of the selective reducing catalyst. The method calculates an amount of NOx that flows into the selective reducing catalyst; sets an amount of an additive agent to be supplied to the selective reducing catalyst based on the calculated amount of NOx; determines a degradation degree of the oxidation catalyst; determines whether a correction to the amount of the additive agent is necessary based on the determined degradation degree of the oxidation catalyst; corrects the amount of the additive agent to be supplied when the correction is necessary; and supplies the additive agent to the selective reducing catalyst in the corrected amount if the amount is determined to be corrected and in the uncorrected amount if the amount is determined not to be corrected.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: September 11, 2012
    Assignee: Mazda Motor Corporation
    Inventors: Hiroaki Gotan, Yoshiaki Tomita, Masashi Naono, Tamiharu Nakamura, Hiroaki Ishida
  • Publication number: 20120224994
    Abstract: An air cleaning apparatus for deodorising or cleaning of air containing noxious or toxic odours is disclosed. The apparatus includes a controller that is a PLC, an air pump, a solenoid, a manifold, a pressure gauge, an air supply line and air supply lines in fluid communication with the manifold. It also includes a first tank that contains a deodorising solution, a second tank contains a detoxifying solution and the third tank contains an oxidising/disinfecting solution. These are the components that are delivered into the air to deodorise and/or clean the air. The apparatus further includes outlet conduits or lines which are in fluid communication with in line filters which as shown are in fluid communication with solenoids. The apparatus further includes supply flow conduits which are in flow communication with an evaporation assembly where a phase change of said decontamination solution occurs to convert it into an activated molecular species.
    Type: Application
    Filed: February 24, 2010
    Publication date: September 6, 2012
    Inventor: John William Steiner
  • Publication number: 20120219460
    Abstract: An object of the present invention is to provide a downsized ozone generation unit including control means having plurality of means for outputting an ozone gas, and the ozone generation unit. In the present invention, a gas pipe integrated block (30) has a plurality of internal pipe paths (R30a to R30f). The plurality of internal pipe paths are connected to an ozone generator (1), control means (an MFC (3), a gas filter (51), and an APC (4)), a raw gas supply port (14), an ozone gas output port (15), and cooling water inlet/outlet ports (13A, 13B), to thereby form a unit in which a raw gas input pipe path and an ozone gas output pipe path are integrated. The raw gas input pipe path extends from the raw gas supply port through the APC to the ozone gas generator. The ozone gas output pipe path extends from the ozone generator through the gas filter, the ozone concentration meter 5, and the MFC 3, to the ozone gas output port.
    Type: Application
    Filed: September 6, 2010
    Publication date: August 30, 2012
    Applicant: TOSHIBA MITSUBISHI-ELECTRIC INDUSTRIAL SYSTEMS CORPORATION
    Inventors: Yujiro Okihara, Yoichiro Tabata, Noriyuki Nakamura, Tetsuya Saitsu, Hatsuo Yotsumoto, Nobuyuki Itoh
  • Patent number: 8236247
    Abstract: Material withdrawal apparatus, methods, and systems of regulating material inventory in one or more units are provided. A material withdrawal apparatus includes a heat exchanger and transport medium junction configured to provide transport medium to transport the withdrawn material from the unit to the heat exchanger. Another material withdrawal apparatus includes a heat exchanger and shock coolant junction configured to provide shock coolant to the material withdrawn from the unit. Another material withdrawal apparatus includes a heat exchanger, shock coolant junction, and transport medium junction. Another embodiment of a material withdrawal apparatus includes a vessel and shock coolant junction. Another material withdrawal apparatus includes a vessel and transport medium junction. The vessel includes a wall, liner with heat insulating refractory material, fill port, and a discharge port.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: August 7, 2012
    Assignee: Intercat Equipment, Inc.
    Inventors: Martin Evans, Ronald Butterfield
  • Publication number: 20120189523
    Abstract: Disclosed are a method and an apparatus for removing methane from a gas which contains the methane at such a low concentration as not to be rendered into a combustible range with whatever ratio of air mixed therewith. In order to ensure satisfactory methane removal performance even in the coexistence of sulfur compound and in order also to provide stable methane removal performance for an extended period of time without performance deterioration even when the methane concentration varies significantly, the gas is fed to a heat exchanger for preheating and methane is exposed to an oxidation catalyst which oxidizes the methane through contact therewith. Then, the resultant gas is fed again to the heat exchanger for heat recovery through heat exchange with un-reacted gas. Further, the flow rate of gas to be treated is varied, according to a concentration of the methane contained in this treated gas.
    Type: Application
    Filed: September 15, 2010
    Publication date: July 26, 2012
    Applicant: OSAKA GAS CO., LTD.
    Inventors: Hirofumi Ohtsuka, Tsutomu Sakai
  • Patent number: 8226913
    Abstract: Sorbent components containing halogen, calcium, alumina, and silica are used in combination during coal combustion to produce environmental benefits. Sorbents such as calcium bromide are added to the coal ahead of combustion and other components are added into the flame or downstream of the flame, preferably at minimum temperatures to assure complete formation of the refractory structures that result in various advantages of the methods. When used together, the components reduce emissions of elemental and oxidized mercury; increase the level of Hg, As, Pb, and/or Cl in the coal ash; decrease the levels of leachable heavy metals (such as Hg) in the ash, preferably to levels below the detectable limits; and make a highly cementitious ash product.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: July 24, 2012
    Assignee: NOx II, Ltd.
    Inventor: Douglas C. Comrie
  • Patent number: 8226893
    Abstract: A method operable to remove contaminants from a contaminated fluid stream is provided. The process includes receiving the fluid stream containing contaminants. A first portion of the contaminants are removed from the fluid stream with a first scrubbing vessel. A first base solution reacts with the contaminants such that the contaminants enter a contaminant solution. A remaining portion of the contaminants from the fluid stream is then removed with a at least one additional scrubbing vessel, wherein a second base solution reacts with the contaminants such that part of the remaining portion of the contaminants enter a second solution. Water content is then removed from the fluid stream with a desiccating module, wherein the desiccating module outputs a clean fluid stream.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: July 24, 2012
    Inventors: Robert A. McLauchlan, Frederick J. Siegele, Daniel Hage
  • Publication number: 20120167840
    Abstract: A hydrogen generator provided with a cracker which cracks a compound containing hydrogen atoms and nitrogen atoms to generate hydrogen, a compound feeder which feeds the compound to the cracker, and an oxygen feeder which feeds oxygen to the cracker. The cracker includes catalyst particles which promote the cracking of the compound and catalyst particles which promote the oxidation of the compound. The cracker is fed with the compound and oxygen, causes the compound to oxidize to generate heat of oxidation, and uses the generated heat of oxidation to crack the compound.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 5, 2012
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Hiroshi MIYAGAWA, Makoto KOIKE, Susumu KOJIMA, Tomojiro SUGIMOTO, Rioh SHIMIZU, Norihiko NAKAMURA
  • Publication number: 20120164090
    Abstract: A continuous system for manufacturing a composition that contains an active ingredient that includes a base manufacturing portion and an addition portion. The system can manufacture compositions having different levels of the active ingredient. A base is formed that contains a first level of the active ingredient that is desired for any composition to be manufactured. The addition portion can be used to add more of the materials for the composition to lower the level of the active ingredient, or more active ingredient can be added to increase the level of the active ingredient. The system is controlled by a sensor that measures an amount of associated material that is associated with the active ingredient. This is useful when the active ingredient is not detectable by the sensor.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: COLGATE-PALMOLIVE COMPANY
    Inventors: John Patrick Hogan, H. Steven Misner, Peter Wisniewski, Tammy Evans, Shawn Flanders, Ron Growe, Ramon Santana, Paul Vincenti
  • Publication number: 20120149125
    Abstract: A method of providing reagent ions to a mass spectrometer comprises delivering a reagent species to a reagent ionization volume via a passageway at a flow rate. Using previously acquired information, an injection time duration is calculated for injecting reagent ions that are formed in the reagent ionization volume into a reaction region of the mass spectrometer. A determination is made as to whether the calculated injection time duration is within a specified range of injection time duration values. When it is determined that the calculated injection time duration falls outside of the specified range of injection time duration values, the flow rate at which the reagent species is delivered to the ionization volume is adjusted.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 14, 2012
    Inventors: Lee EARLEY, Christopher Mullen, Jean-Jacques Dunyach
  • Patent number: 8192687
    Abstract: Prior to adding detergent or chelant, the conductivity of water in a washing chamber is measured. The maximum concentration of hard water ions that could correspond to the measured conductivity is determined, i.e., it is assumed that all of the conductivity is from calcium and/or magnesium ions in the water even though other ions may in fact be contributing to the measured conductivity. Enough chelating agent is added to the chamber to sequester this maximum concentration of hard water ions and the conductivity is measured again. Using the two conductivity measurements, the actual concentration of hard water ions is determined. A chelant factor based on the actual concentration of hard water ions is then used to determine the amount of chelant to be added for subsequent wash cycles to sequester all of the hard water ions.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: June 5, 2012
    Assignee: Diversey, Inc.
    Inventors: Wai Yin Cedric Chan, James W. Livingston, Patricia Anne Anderson
  • Publication number: 20120134881
    Abstract: A system for conveying a sterilant vapor to a plurality of processing lines having articles moving therealong. The system includes a central source of a sterilant vapor. A conveying device is provided for conveying a sterilant vapor from the central source to a plurality of processing lines. A plurality of sensing devices are provided for sensing a plurality of operational parameters associated with the system and the plurality of processing lines. A controller is provided for receiving signals from the plurality of sensing devices. The controller is programmed to monitor continuously the plurality of sensing devices to determine if an event indicative of a malfunction has occurred with respect to the system or the plurality of processing lines. The controller is programmed to adjust the operation of the system in response to the event to maintain uninterrupted operation of one or more of the plurality of processing lines.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 31, 2012
    Inventors: Aaron L. Hill, Thaddeus J. Mielnik
  • Patent number: 8178070
    Abstract: A Claus plant with multiple parallel thermal stages that provide a combined effluent to downstream catalytic stages includes a controller that allows independent and individual control for each of the thermal stages as a function of measured chemical composition of the thermal stage effluents and catalytic stage effluent.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: May 15, 2012
    Assignee: Fluor Technologies Corporation
    Inventors: Vincent Wai Wong, Thomas King Chow, John Gebur
  • Patent number: 8178460
    Abstract: An exhaust treatment method is provided. Method of increasing activation of NOx reduction catalyst using two or more reductant is discussed. The NOx catalyst is disposed to receive both the exhaust stream and reductant stream. The sensor is disposed to sense a system parameter related to carbon loading of the catalyst and produce a signal corresponding to the system parameter. The controller is disposed to receive the signal and to control dosing of the reductant stream based at least in part on the signal. The method includes sensing a system parameter related to carbon loading of a catalyst, producing a signal corresponding to the system parameter and sending the signal to a controller; and controlling a dosing of a reductant stream based at least in part on the signal.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 15, 2012
    Assignee: General Electric Company
    Inventors: Daniel George Norton, Benjamin Hale Winkler, Ashish Balkrishna Mhadeshwar, Dan Hancu, Stanlee Teresa Buddle
  • Publication number: 20120107182
    Abstract: A process and apparatus are presented for the removal of carbon monoxide from ethylene streams. The removal of carbon monoxide before selective hydrogenation protects the catalyst in the selective hydrogenation reactor. Carbon monoxide levels are controlled with the water gas shift process to convert the carbon monoxide to carbon dioxide, with the carbon dioxide removed in an acid gas removal process.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 3, 2012
    Applicant: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche
  • Publication number: 20120107183
    Abstract: A method and system for reducing corrosion in a turbomachine are provided. The method may include providing a process gas to a condenser, wherein the process gas contains a condensate having a pH level that is acidic. The condenser may be configured to remove at least a portion of the condensate from the process gas. Any condensate that is not removed is a remaining condensate. The method may further include increasing the pH level of the remaining condensate to above about 4 by mixing the process gas and the remaining condensate with an amount of pH modifier to form a mixture, and directing the mixture to a compressor coupled to the condenser, wherein the compressor is configured to compress the mixture.
    Type: Application
    Filed: December 21, 2011
    Publication date: May 3, 2012
    Applicant: Dresser-Rand Company
    Inventors: Robert R. Odle, David C. Seib
  • Publication number: 20120108847
    Abstract: The objective of the present invention is to provide a crystallization device and a crystallization process for obtaining (meth)acrylic acid with higher purity without causing leakage of a crude solution by preventing complete clogging in a crystallization tube from occurring.
    Type: Application
    Filed: June 24, 2010
    Publication date: May 3, 2012
    Inventors: Kazuhiko Sakamoto, Koji Ueno, Yoshitake Ishii, Masatsugu Kitaura
  • Patent number: 8168148
    Abstract: A flue-gas purification system includes a flue-gas cycling system, a reactor, an absorbent adding system having at least a catalytic absorbent, wherein the catalytic absorbent is being gasified for reacting with the flue-gas in the reactor in a homogenous gas-gas phase reacting manner. Therefore, the purification system has fast reaction rate between the pollutants of the flue-gas and the catalytic absorbent, which is preferably ammonia, to efficiently remove pollutants, so as to effectively purify the flue-gas.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: May 1, 2012
    Inventors: Baoquan Zhang, Xiaoqing Zhang
  • Patent number: 8137627
    Abstract: A hydrogen generator includes a plurality of fuel sticks each of which includes a hydrogen release compound configured to generate hydrogen by a chemical reaction, a pressure-resistant container configured to store therein the plurality of fuel sticks, and a controller configured to carry out control in such a manner that hydrogen is generated selectively from the plurality of fuel sticks.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: March 20, 2012
    Assignee: Qinetiq Limited
    Inventors: Toshio Horiguchi, Robert W. Reeve, Darren P. Scattergood
  • Patent number: 8114368
    Abstract: Sorbent compositions containing halogen and calcium are added to coal to mitigate the release of sulfur and/or other harmful elements, including mercury, into the environment during combustion of coal containing natural levels of mercury.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: February 14, 2012
    Assignee: NOx II, Ltd.
    Inventor: Douglas C. Comrie
  • Patent number: 8110164
    Abstract: A flue-gas purification system includes a flue-gas cycling system, a reactor, an absorbent adding system having at least a catalytic absorbent, wherein the catalytic absorbent is being gasified for reacting with the flue-gas in the reactor in a homogenous gas-gas phase reacting manner. Therefore, the purification system has fast reaction rate between the pollutants of the flue-gas and the catalytic absorbent, which is preferably ammonia, to efficiently remove pollutants, so as to effectively purify the flue-gas.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: February 7, 2012
    Inventors: Baoquan Zhang, Xiaoqing Zhang
  • Patent number: 8110095
    Abstract: A control system for an oil sand processing apparatus and a method for controlling the apparatus. The apparatus includes a rotatable drum, an oil sand feed mechanism, a drive mechanism for rotating the drum, a first drum support and a second drum support. The control system includes a first drum load sensor associated with the first drum support for sensing a first drum load, a second drum load sensor associated with the second drum support for sensing a second drum load and an oil sand feedrate sensor associated with the oil sand feed mechanism for sensing a feedrate of the oil sand feed mechanism. A controller is provided for controlling a rotation speed of the drum and a feedrate of the oil sand feed mechanism in response to input data from the first drum load sensor, the second drum load sensor and the oil sand feedrate sensor.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: February 7, 2012
    Assignee: Bitmin Resources Inc.
    Inventor: William L. Strand
  • Patent number: 8105563
    Abstract: Example embodiments relate to methods of controlling hydrogen concentrations in an offgas system of a nuclear reactor by passive air injection. A method according to a non-limiting embodiment may include passively injecting ambient air through the hydrogen water chemistry system into an existing offgas line of the offgas system. The offgas line is configured to transport non-condensable gases, including hydrogen, from a condenser to a recombiner. As a result of the passive air injection, the combined flow of hydrogen and oxygen react in the recombiner to form water vapor, thereby reducing the hydrogen concentration of the offgas exiting the recombiner.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: January 31, 2012
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Paul Y. Shu, John C. Whittaker, Angelito Foz Gonzaga, Luong C. Tran