Including Means Injecting Combustion Fuel Into Reaction Chamber In Direct Contact With Waste Gas Patents (Class 422/182)
  • Patent number: 10888817
    Abstract: A purge gas feeding means, an abatement system comprising such a means and a method of modifying an abatement system to include such a purge gas feeding means is disclosed. The purge gas feeding means comprises a plurality of paths running from an outer perimeter of the purge gas feeding means to an inner surface, the inner surface comprising a purge gas outlet for outputting the purge gas into the abatement system; wherein a cross sectional area of the plurality of paths increases from the outer perimeter to the inner surface such that a pressure of the purge gas falls flowing along the paths drops.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: January 12, 2021
    Assignee: Edwards Limited
    Inventors: Andrew Seeley, Duncan Michael Price
  • Patent number: 10254241
    Abstract: A multiple gas detection device comprises: a first cell part provided with a first electrochemical cell; a second cell part provided with a second electrochemical cell; a third cell part provided with a third electrochemical cell; an inlet diffusion controller controlling diffusion of measured gas; and a measured gas chamber into which the measured gas flows through the inlet diffusion controller. The first cell part is configured to selectively detect a concentration of NOx or ammonia contained in measured gas in the measured gas chamber. The second cell part is configured to discharge oxygen contained in measured gas in the measured gas chamber and convert NO2 and ammonia contained in measured gas in the measured gas chamber to NO. The third cell part is configured to detect a concentration of NO contained in measured gas in the measured gas chamber.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: April 9, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiichiro Aoki, Koji Ide, Yoshihisa Serizawa
  • Patent number: 9644840
    Abstract: A gas treatment plant (3) for treating an industrial waste gas comprising carbon dioxide comprises an oxyfuel boiler (100) and a pipe (109; 122; 180) arranged for forwarding the industrial waste gas to the oxyfuel boiler (100) and injecting the industrial waste gas into the oxyfuel boiler (100) to participate in the combustion process occurring in the boiler (100) to cause oxidation of at least a portion of the content of at least one oxidizable substance of the industrial waste gas. The gas treatment plant (3) further comprises a gas cleaning system (108), and a pipe (126) for forwarding a carbon dioxide rich flue gas generated in the boiler (100) to the gas cleaning system (108) for being cleaned therein, such that an at least partly cleaned carbon dioxide rich flue gas is formed.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: May 9, 2017
    Assignee: General Electric Technology GmbH
    Inventors: Ulrich Koss, Glen D. Jukkola
  • Patent number: 9594359
    Abstract: A method of reducing plant emissions includes providing a MPC model for a flaring process including one-to-one models between controlled variables (CVs) including a smoke count and/or a flare count (CV1) and a noise level (CV2), and flow of assist gas as a manipulated variable (MV) and another process gas flow as a disturbance variable (DV). The MPC model receives sensed flare-related parameters during the flaring process including a measure of CV1 (CV1*) and CV2 (CV2*). Provided CV1* is above a minimum setpoint for CV1 (CV1 setpoint) and CV2* is above a setpoint for CV2 (CV2 setpoint), the flaring process is automatically controlled using the MPC model which determines an updated flow setpoint for MV from CV1* and CV2*, the CV1 and CV2 error, and the identified one-to-one models.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 14, 2017
    Assignee: Honeywell International Inc.
    Inventors: Mohammed Ibrahim Mohideen, Madhukar Madhavamurthy Gundappa, Mahesh Gellaboina, Viswanath Talasila
  • Patent number: 9353666
    Abstract: An exhaust treatment device of a diesel engine is provided in which combustible gas is burned with oxygen in exhaust, combustion heat increases a temperature of the exhaust, and heat of the exhaust can burn and remove PM accumulating in a DPF. In order to cause a heater for radiating heat at a start of generation of the combustible gas to enter a catalyst inlet portion, and fit a liquid fuel retaining member over a periphery of the heater, a guide plate is provided to a lower face of the liquid fuel retaining member so that the air-fuel mixture moving down in the liquid fuel retaining member flows along an upper face of the guide plate out to a periphery of the guide plate.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: May 31, 2016
    Assignee: KUBOTA Corporation
    Inventors: Takashi Onishi, Hidetaka Morinaga, Yoshikazu Takemoto, Toshio Nakahira, Mitsugu Okuda, Keita Naito
  • Patent number: 9028761
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. The exhaust purification catalyst (13) is comprised of an upstream-side catalyst (14a) and a downstream-side catalyst (14b) arranged in series at an interval from each other. The upstream-side catalyst (14b) has a smaller cross-sectional area than the downstream-side catalyst (14b). The concentration of hydrocarbons which flow into the upstream-side catalyst (14a) is made to vibrate by within a predetermined range of amplitude of a 200 ppm or more and within a predetermined range of period of 5 seconds or less, whereby the NOx which is contained in exhaust gas is reduced at the exhaust purification catalyst (13).
    Type: Grant
    Filed: December 24, 2010
    Date of Patent: May 12, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhiro Umemoto, Kohei Yoshida, Mikio Inoue
  • Patent number: 9021788
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (15) and an exhaust purification catalyst (13) are arranged. At the time of engine operation, the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to become within a predetermined range of amplitude by control of the injection amount of hydrocarbons from the hydrocarbon feed valve (15), the concentration of hydrocarbons flowing into the exhaust purification catalyst (13) is made to vibrate by a predetermined range of period by control of the injection period of hydrocarbons from the hydrocarbon feed valve (15), and thereby the NOx contained in the exhaust gas and the NOx stored in the exhaust purification catalyst (13) are reduced.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mikio Inoue, Kohei Yoshida, Yuki Bisaiji, Kazuhiro Umemoto
  • Patent number: 9017614
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, an NOx adsorption part and an NOx purification part are arranged. The NOx purification part has the property of reducing NOx which is contained in exhaust gas if the concentration of hydrocarbons is made to vibrate by within a predetermined range of amplitude and within a predetermined range of period. When NOx is to be desorbed from the NOx adsorption part, the current NOx which is contained in the exhaust gas and the NOx which is desorbed from the NOx adsorption part are reduced by making the concentration of hydrocarbons of the NOx purification part vibrate by the amplitude and period which are set for the current engine operating state, at least of which (?T·k) has been corrected so that the amount of hydrocarbons becomes greater.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: April 28, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshihisa Tsukamoto, Hiromasa Nishioka, Kohei Yoshida, Yuki Bisaiji, Junichi Matsuo, Takamitsu Asanuma
  • Patent number: 9011569
    Abstract: A wall flow type particulate filter (24) adapted to be arranged in an exhaust passage of an internal combustion engine in which combustion is performed in an excess of oxygen carries a solid acid. The solid acid has an acid strength which is higher than the acid strength of sulfurous acid and lower than the acid strength of sulfuric acid.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Otsuki, Shigeki Nakayama, Hiromasa Nishioka, Katsuhiko Oshikawa, Yoshihisa Tsukamoto, Junichi Matsuo, Yuichi Sobue, Daichi Imai, Kou Sugawara
  • Patent number: 9011568
    Abstract: A filter for internal combustion engines, includes a rigid external casing provided with at least an inlet for a fluid to be filtered and an outlet for the fluid when filtered, and a filter cartridge located internally of the external casing, which includes a plurality of tubular filter walls arranged parallel to one another which are destined to be crossed by the fluid flowing from the inlet towards the outlet of the external casing; the external casing being conformed such as to delimit a pouch a transversal section of which, performed along a perpendicular plane to axes of the tubular filter walls, exhibits a prevalent line of development and a small width with respect to the prevalent line of development; the tubular filter walls being arranged internally of the pouch, side by side with one another, forming a single row which follows the prevalent line of development of the pouch.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: April 21, 2015
    Assignee: UFI Innovation Center S.R.L.
    Inventor: Giorgio Girondi
  • Patent number: 9010097
    Abstract: In an internal combustion engine, inside of an engine exhaust passage, a hydrocarbon feed valve (16), an exhaust purification catalyst (13), a particulate filter (14), and an NO2 reduction catalyst (15) are arranged. At the time of engine operation, the amplitude of change of the concentration of hydrocarbons which flow into the exhaust purification catalyst (13) is made to become within a predetermined range of amplitude by control of the injection amount of hydrocarbons from the hydrocarbon feed valve (16). When the NO2 which is produced at the particulate filter (14) should be reduced to NO, the injection amount of hydrocarbons is increased whereby the pass through amount of hydrocarbons which pass straight through the exhaust purification catalyst (13) is increased.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: April 21, 2015
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Mikio Inoue, Kohei Yoshida, Yuki Bisaiji, Kazuhiro Umemoto, Masahide Iida
  • Patent number: 8999048
    Abstract: An exhaust gas purifying apparatus for a diesel engine includes a diesel particulate filter (DPF) in an exhaust system in the diesel engine. The exhaust gas purifying apparatus is constructed to execute regeneration of the DPF by raising a temperature of the DPF in a case where a predetermined DPF regeneration condition is fulfilled, interrupt the regeneration of the DPF, execute idling stop, automatically restart the diesel engine and then restart the regeneration of the DPF, and when shifting to the idling operation is carried out during regeneration of the DPF, delay execution of the idling stop until a temperature of the DPF at a time at which the idling stop is started becomes not less than a temperature of the DPF at a time at which shifting to an idling operation is carried out even in a case where the predetermined idling stop condition is fulfilled.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: April 7, 2015
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Toru Nishizawa, Risa Yamamoto
  • Patent number: 8991153
    Abstract: A method and system for treating emissions includes charging particles in an exhaust stream, producing one or more radicals, and oxidizing at least a portion of the charged particles with at least a portion of the produced radicals. At least a portion of the charged particles in the exhaust stream are then attracted on at least one attraction surface which is one of oppositely charged from the charged particles and grounded. The attracted particles are oxidized with another portion of the one or more produced radicals to self regenerate the at least one attraction surface. Downstream from where the attracted particles are oxidized, at least a portion of one or more first compounds in the exhaust stream are converted to one or more second compounds downstream from the attracting. Additionally, at least a portion of any remaining charged particles are oxidized into one or more gases.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 31, 2015
    Assignee: Rochester Institute of Technology
    Inventors: Ali Ogut, Chen Cheng
  • Patent number: 8992651
    Abstract: [Problem] To provide a filter whose initial collection efficiency can be increased and whose pressure loss increase can be suppressed. [Means to solve the problem] A ceramic filter includes: numerous crystalline masses bound to one another each formed of aggregation of columnar crystals, wherein a number of large diameter pores are present between the numerous crystalline masses, and small diameter pores are present between the numerous columnar crystals forming the crystalline mass.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: March 31, 2015
    Assignee: Kubota Corporation
    Inventors: Atsushi Sugai, Hiroshi Yamaguchi
  • Patent number: 8992652
    Abstract: A filtering device features a ceramic filter body for filtering a fluid flow, the filter body consisting of a wavy layer and a flat layer and the wavy and flat layer being wound in a spiral-shaped manner. The wave length of the waves increases from the inside to the outside with increasing distance to the longitudinal axis of the filter body such that the wave troughs and the wave peaks of at least two radially adjacent windings each lie on a common radial plane.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: March 31, 2015
    Assignee: Mann+Hummel GmbH
    Inventors: Arndt-Udo Rolle, Frank Ehlen, Kathrin Lichtenwalter, Jochen Linhart, Nadine Dietsch
  • Patent number: 8984863
    Abstract: Provided is an ammonia injection device (10) installed at an exhaust gas duct through which an exhaust gas generated in a gas turbine flows, and configured to inject ammonia into the exhaust gas at an upstream side of a denitration catalyst configured to perform denitration processing in a flowing direction of the exhaust gas, the device including a plurality of ammonia injection pipes (11) disposed in parallel each other in a surface which traverses the exhaust gas duct. A plurality of nozzle pipes (12) configured to eject the ammonia from the ammonia injection pipes in an arrangement direction of the plurality of ammonia injection pipes are installed at the ammonia injection pipe in a longitudinal direction of the ammonia injection pipes. Diffuser panels (13) extending toward a downstream side in a flowing direction of the exhaust gas at both sides in a longitudinal direction of the ammonia injection pipes with respect to the nozzle pipes are formed at the nozzle pipes.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: March 24, 2015
    Assignee: IHI Corporation
    Inventors: Akinori Yukimura, Masafumi Kawai, Yoshiyuki Yamane
  • Patent number: 8974563
    Abstract: An exhaust gas purification system includes a diesel particulate filter (“DPF”) which collects particulate matter (“PM”) in exhaust gas, an exhaust pipe injector which performs exhaust pipe injection, and a DPF regeneration control unit which performs temperature rise control of an exhaust gas temperature by the exhaust pipe injection to regenerate the DPF when the PM collected by the DPF exceeds a fixed amount and which, during the regeneration, integrates an amount of time during which the exhaust gas temperature exceeds a PM combustion temperature and completes the regeneration when an integrated value thereof reaches a set regeneration completion value. The DPF regeneration control unit aborts the regeneration when, during regeneration, a total amount of the exhaust pipe injection exceeds an upper limit before the integrated value.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 10, 2015
    Assignee: Isuzu Motors Limited
    Inventors: Takashi Haseyama, Shinji Gotou, Hiroyuki Oohira
  • Patent number: 8974570
    Abstract: A retaining seal material includes inorganic fibers, inorganic particles adhering to surfaces of the inorganic fibers, a first principal surface, and a second principal surface. A mean particle diameter of the inorganic particles in a vicinity of a center in a thickness direction of the retaining seal material is smaller than at least one of a mean particle diameter of the inorganic particles in a vicinity of the first principal surface and a mean particle diameter of the inorganic particles in a vicinity of the second principal surface.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 10, 2015
    Assignee: Ibiden Co., Ltd.
    Inventors: Takahiko Okabe, Keiji Kumano
  • Patent number: 8961668
    Abstract: An exhaust gas purification system with which a frequency of diesel particulate filter (“DPF”) regeneration requests can be reduced during long low idle regeneration, thereby improving convenience, including a control unit that performs regeneration control on a DPF provided at an exhaust pipe of an engine. The control unit includes a particulate matter (“PM”) accumulation amount predictor for predicting the amount of PM accumulated by calculating a cumulated value of the PM in an idling state. The control unit starts calculating the cumulated value of the PM by the PM accumulation amount predictor after a first predetermined time has elapsed since a detection of the idling state.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: February 24, 2015
    Assignee: Isuzu Motors Limited
    Inventors: Takashi Haseyama, Hiroyuki Oohira, Shinji Gotou
  • Patent number: 8956436
    Abstract: Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: February 17, 2015
    Assignee: Corning Incorporated
    Inventors: Adriane Marie Divens-Dutcher, Patrick David Tepesch, Elizabeth Marie Vileno
  • Patent number: 8951323
    Abstract: A hybrid mounting mat for mounting a catalyst support structure within a housing in an exhaust gas treatment device. The exhaust gas treatment device includes an outer housing, a fragile catalyst support structure, and a mounting mat disposed in the gap between the housing and the fragile catalyst support structure. Additionally disclosed are methods of making the hybrid mounting mat and for making an exhaust gas treatment device incorporating the mounting mat.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: February 10, 2015
    Assignee: Unifrax I LLC
    Inventor: Amit Kumar
  • Patent number: 8945269
    Abstract: A holding sealing material includes a mat, an inorganic binder and an organic binder. The mat includes inorganic fibers and has an upper part, a center part, and a lower part in a thickness direction. The inorganic binder is loaded on the mat. The organic binder is loaded mainly on the upper part and the lower part of the mat. The holding sealing material is disposed between an exhaust gas-treating body and a casing for housing the exhaust gas-treating body to form an exhaust gas purifying apparatus.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: February 3, 2015
    Assignee: Ibiden Co., Ltd.
    Inventor: Keiji Kumano
  • Patent number: 8940072
    Abstract: A parallel passage fluid contactor structure for chemical reaction processes has one or more segments, where each segment has a plurality of substantially parallel fluid flow passages oriented in an axial direction; cell walls between each adjacent fluid flow passages and each cell wall has at least two opposite cell wall surfaces. The structure also includes at least one active compound in the cell walls and multiple axially continuous conductive filaments either embedded within the cell walls or situated between the cell wall surfaces. The conductive filaments are at least one of thermally and electrically conductive, are oriented in axially, and are in direct contact with the active compound, and are operable to transfer thermal energy between the active material and the conductive filaments. Heating of the conductive filaments may be used to transfer heat to the active material in the cell walls. Methods of manufacturing the structure are discussed.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: January 27, 2015
    Assignee: Inventys Thermal Technologies Inc.
    Inventors: Andre Boulet, Soheil Khiavi
  • Patent number: 8932379
    Abstract: An exhaust gas purification system with which diesel particulate filter (“DPF”) regeneration can be continued even when deceleration occurs during the DPF regeneration. The system includes a regeneration deceleration period intake/exhaust control unit that, when a vehicle decelerates during the DPF regeneration, increases an exhaust gas flow rate through an exhaust pipe by controlling respective openings of an exhaust gas recirculation (“EGR”) device and an intake throttle and adjusting a turbocharging amount of a high pressure stage turbocharger.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: January 13, 2015
    Assignee: Isuzu Motors Limited
    Inventors: Takashi Ikeda, Takayuki Mukunashi, Hiroyuki Ishikawa
  • Patent number: 8926726
    Abstract: A exhaust gas purification device is structured such that it is possible to improve an assembling work ability or a maintenance work ability of gas purifying bodies or exhaust gas purifying cases. In an exhaust gas purification device provided with gas purifying bodies which purify an exhaust gas discharged by an engine, and a gas purifying housing which is provided with the gas purifying bodies therein, the exhaust gas purification device is structured such that a support bracket which supports the gas purifying housing is provided, a bolt hole is formed in the support bracket, an insertion guide is formed in the support bracket, and an attaching bolt is engaged with and disengaged from the bolt hole via the insertion guide.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: January 6, 2015
    Assignee: Yanmar Co., Ltd.
    Inventor: Masataka Mitsuda
  • Patent number: 8906134
    Abstract: A method for engine-out soot flow rate prediction of an exhaust gas treatment system is provided. A measured level of oxides of nitrogen in the exhaust gas treatment system is received. An engine fuel injection timing and air-fuel ratio of an engine producing the oxides of nitrogen are also received. An engine timing factor is determined based on the engine fuel injection timing. An engine air-fuel ratio factor is determined based on the engine air-fuel ratio. An engine-out soot flow rate prediction is generated based on the measured level of oxides of nitrogen, the engine timing factor, and the engine air-fuel ratio factor.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: December 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Min Sun, Michelangelo Ardanese, Jean-Yves Lavallee, Amanpal S. Grewal, Paul Jasinkiewicz
  • Patent number: 8888883
    Abstract: A ceramic honeycomb structure suitable for particulate filters, having an inlet face and an outlet face, comprising a plurality of inlet cells and a plurality of outlet cells extending through the structure from the inlet face to the outlet face, the inlet cells being open at the inlet face and closed where adjoining the outlet face, and the outlet cells being open at the outlet face and closed where adjoining the inlet face. The inlet and/or outlet cells are quadrangular in cross-section and are arranged in an alternating pattern; the outlet cells may have a cross-sectional area generally smaller than that of inlet cells and no point of a given inlet cell is closer to an adjacent inlet cell than to an adjacent outlet cell. A process for preparing the ceramic honeycomb structure is also disclosed.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: November 18, 2014
    Assignee: Imerys
    Inventors: Thierry Salmona, Carl De Poncins
  • Patent number: 8870987
    Abstract: An object of the present invention is to detect any breakdown or failure of a particulate filter more appropriately. A failure detecting apparatus for detecting failure of a particulate filter according to the present invention comprises an acquiring section which acquires an amount of PM contained in an exhaust gas allowed to outflow from the particulate filter; a regeneration process executing section which executes a filter regeneration process for oxidizing and removing PM deposited in the particulate filter; and a failure judging section which judges that the particulate filter is in the failure state if a decreased amount of the amount of PM contained in the exhaust gas acquired by the acquiring section, during a predetermined period of time as started from a point in time at which the execution of the filter regeneration process performed by the regeneration process executing section is completed, is not equal to or larger than a predetermined reference amount.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: October 28, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuya Takaoka, Daisuke Shibata
  • Patent number: 8870990
    Abstract: A fracking trailer includes a particulate storage enclosure to receive a mixture of particulate and air in an interior of the particulate storage enclosure having a front end and a rear end. The fracking trailer also includes a filtration system connected to the particulate storage enclosure at the front end to filter particulate from the air in the mixture and exhaust filtered air.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: October 28, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Alexander Lynn Marks, Kary Layne Covington, Johnny Ray Sanders, Jr.
  • Patent number: 8864875
    Abstract: An exhaust gas treatment system for an internal combustion engine is provided comprising an exhaust gas conduit, a particulate filter (“PF”) device, a hydrocarbon source and an electronic control module including operative logic which when implemented. The PF has a filter structure for removal of particulates in the exhaust gas and is selectively regenerated based on an amount of particulates trapped within the filter structure of the PF device. The control module is in communication with the internal combustion engine and the hydrocarbon source, and receives a regeneration signal indicating the amount of particulates trapped within the filter structure of the PF device. The electronic control module includes control logic for monitoring the internal combustion engine prior to a regeneration event. The electronic control module includes control logic for determining a plurality operating parameters of the internal combustion engine based on the monitoring.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Eugene V. Gonze, Michael J. Paratore, Jr., Julian C. Tan
  • Patent number: 8852311
    Abstract: The present invention aims to provide a honeycomb structure capable of preventing a plugging failure and forming cracks by heat shock which are caused by a cell having a small cross-section.
    Type: Grant
    Filed: January 18, 2011
    Date of Patent: October 7, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Teruo Komori, Hajime Yoshino
  • Patent number: 8845783
    Abstract: The present invention is intended to detect a failure of a PM filter with a higher degree of accuracy. The present invention is provided with: a PM trapping efficiency calculation part to calculate a PM trapping efficiency (which is a proportion of an amount of particulate matter trapped with respect to an amount of inflow particulate matter) based on an amount of inflow particulate matter obtained by an inflow particulate matter obtaining part, and an amount of outflow particulate matter detected by a PM sensor; and a failure detection part to make a determination that a failure has occurred in the PM filter, in cases where there has appeared a tendency for the PM trapping efficiency to decrease during a period of time until the execution of the following filter regeneration processing is started after the completion of execution of the filter regeneration processing.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuya Takaoka, Daisuke Shibata, Hiroshi Sawada, Toru Kidokoro
  • Patent number: 8845798
    Abstract: A particulate matter detecting apparatus for an internal combustion engine that can estimate a discharge amount of the particulate matter accurately. The particulate matter detecting apparatus for an internal combustion engine, comprises: a sensor disposed at an exhaust passage of the internal combustion engine, the sensor including a pair of electrodes for detecting particulate matter in an exhaust gas; means for estimating a discharge amount of the particulate matter based on an output of the sensor, and means for acquiring a predetermined parameter that serves as an index for a rate with which the particulate matter in the exhaust gas is deposited on the sensor. The discharge amount estimating means corrects an estimated value of the discharge amount of the particulate matter based on the parameter acquired by the parameter acquiring means.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: September 30, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroki Nishijima
  • Patent number: 8821608
    Abstract: Inner cases are connected to outer cases through joining flanges which protrude toward outer peripheries of the outer cases. A plurality of combinations each including filters, the inner cases, and the outer cases are provided. Both the joining flanges are sandwiched and fixed between a pair of sandwiching flanges, thereby connecting the plurality of outer cases to each other.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: September 2, 2014
    Assignee: Yanmar Co., Ltd.
    Inventor: Masataka Mitsuda
  • Patent number: 8814974
    Abstract: A thin-walled porous ceramic wall-flow filter is disclosed. The filter produces a relatively lower pressure drop coupled with relatively high initial filtration efficiency (FE0), and may enable packaging the filter in a smaller volume. The filter includes a plurality of porous ceramic walls forming cell channels. At least some of the cells are plugged forcing some exhaust gases through the walls, thereby filtering out entrained particulates. The walls have a wall thickness (Twall) wherein 102 ?m?Twall<279 ?m, and a median pore diameter (MPD), and wherein 10<Twall/MPD, and may also be <40. The relatively small median pore diameter (MPD) in comparison to the wall thickness (Twall) allows the use of thinner ceramic walls that provide less flow resistance than thicker walls while maintaining sufficient initial filtration efficiency (FE0). Furthermore, such thin-walled filter structure coupled with unequal inlet/outlet area ratio (Ai/Ao) may allow filter lengths to be additionally shortened.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: August 26, 2014
    Assignee: Corning Incorporated
    Inventors: Douglas Munroe Beall, Achim Karl-Erich Heibel, Pushkar Tandon
  • Patent number: 8814975
    Abstract: There is provided a honeycomb structure including a honeycomb base material including a porous partition wall parent material; plugged portions; and a porous collecting layer disposed on the surface of the partition wall parent material in the remaining cells. A melting point of a material constituting the collecting layer is higher than that of a material constituting the partition wall parent material, a pore surface area per unit volume of the collecting layer is 2.0 times or more a pore surface area per unit volume of the partition wall parent material, and a thickness of a portion of the collecting layer which penetrates into pores of the partition wall parent material is 6% or smaller of that of each of partition walls including the partition wall parent material and the collecting layer.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: August 26, 2014
    Assignee: NGK Insulators, Ltd.
    Inventor: Yoshio Kikuchi
  • Patent number: 8814969
    Abstract: An exhaust gas emission control system includes a cylindrical inflow body and an inflow pipe into which exhaust gas flows. The exhaust gas emission control system also includes a cylindrical outflow body and an outflow pipe from which the exhaust gas flows. The inflow pipe is provided with a louver member that covers an opening of the inflow body near an upstream side of an exhaust gas flow direction. The louver member is provided with slits and inclined plates capable of changing a flow direction of the exhaust gas passing through the slits into a desired direction.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: August 26, 2014
    Assignee: Komatsu Ltd.
    Inventors: Shouhei Nagasaka, Hiroki Sato, Issei Hara, Yosuke Obuchi, Tatsushi Itoh, Yuuki Kasaoka
  • Patent number: 8808418
    Abstract: A system for treating diesel exhaust is disclosed. The system includes a first filter including layers of filtration material positioned between layers of corrugated metallic foil. The metallic foil defines a honeycomb arrangement of longitudinal passageways from an upstream end to a downstream end and also openings for allowing exhaust to pass between adjacent longitudinal passageways of the metallic foil. The filtration material is positioned such that exhaust between the adjacent longitudinal passageways passes through the filtration material. The metallic foil also includes flow diverting structures to divert flow within the longitudinal passageways through the openings. A second filter is positioned downstream from the first filter. The second filter defines a honeycomb arrangement of longitudinal passageways. The longitudinal passages are selectively plugged adjacent upstream and downstream ends to force flow radially through walls between the longitudinal passages of the second filter.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: August 19, 2014
    Assignee: Donaldson Company
    Inventors: Wenzhong Zhang, Todd R. Taubert, Timothy L. Ricke, Julian A. Imes
  • Patent number: 8801822
    Abstract: An exhaust gas aftertreatment system for an engine can perform manual regeneration control for regenerating a particulate removal filter by increasing the engine rotation speed. The system can suppress the engine rotation speed increase while maintaining the exhaust gas temperature required to regenerate the particulate removal filter. The system can set the target engine rotation speed to a first set value when a regeneration instruction signal from a manual regeneration switch is received. When, although the engine rotation speed falls within a predetermined engine rotation speed range including the first set value that is the target engine rotation speed for a predetermined time period, the exhaust gas temperature does not reach the filter's regeneration temperature within the predetermined time period, the target engine rotation speed is repeatedly reset by being increased from the first set value by a predetermined rotation speed.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: August 12, 2014
    Assignee: Yanmar Co., Ltd.
    Inventors: Hideo Shiomi, Taichi Togashi
  • Patent number: 8801818
    Abstract: A method for cleaning and checking a particle filter of a motor vehicle is provided. In a first step soot particles which have collected in the particle filter are burnt off. In a second step ash located in the particle filter is blown out using compressed air. A cleaning device for a particle filter of a motor vehicle is also provided.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: August 12, 2014
    Assignee: Daimler AG
    Inventors: Andreas Albrecht, Peter Benz, Charles W. Emley, Uwe Gaertner, Christian Medau
  • Patent number: 8778045
    Abstract: Cellular ceramic articles are manufactured from a green cellular ceramic body that includes a binder material and a plurality of channels. At least one of the channels is coated with a slurry that includes a green coating composition and a solvent to form a coating layer. The binder material is insoluble in the solvent.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 15, 2014
    Assignee: Corning Incorporated
    Inventors: Thorsten Rolf Boger, Willard Ashton Cutler, Kenneth Joseph Drury, Todd Parrish St Clair, Patrick David Tepesch, John Forrest Wight, Jr.
  • Patent number: 8778053
    Abstract: A method of removing ash from a wall flow type particulate filter which is arranged in an exhaust passage of an internal combustion engine in which combustion is performed in an excess of oxygen for trapping particulate matter in exhaust gas, using a solid acid which is carried on the particulate filter, renders the state of the particulate filter a state where the exhaust gas which flows into the particulate filter is lowered in concentration of oxygen and the particulate filter is raised in temperature, and then renders the state of the particulate filter a state where the exhaust gas which flows into the particulate filter in an oxidizing atmosphere contains SOx.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 15, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Otsuki, Shigeki Nakayama, Hiromasa Nishioka, Katsuhiko Oshikawa, Yoshihisa Tsukamoto, Junichi Matsuo, Yuichi Sobue, Daichi Imai, Kou Sugawara
  • Patent number: 8778041
    Abstract: In an exhaust gas treatment device provided with: an exhaust gas treatment unit in which an oxygen combustion boiler 1 using coal as fuel, a denitration device 3, an air preheater 4, a dust-collection device 5, a desulfurization device 6, and a carbon dioxide recovery device 8 are sequentially arranged from the upstream side to the downstream side of an exhaust gas duct; and an exhaust gas circulation unit which branches off from the exhaust gas duct at an outlet of the dust-collection device 5 or an outlet of the desulfurization device 6 and through which the exhaust gas is preheated by the air preheater 4 and returned to the oxygen combustion boiler 1, a heat-recovery heat exchanger 13 that adjusts a gas temperature at an inlet of the dust-collection device 5 to be not greater than an acid dew point of SO3 and not lower than a water dew point is provided between the air preheater 4 and the dust-collection device 5, a reheating heat exchanger 13 that adjusts a gas temperature to be not lower than the acid de
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 15, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yoshiaki Mitsui, Hidehisa Yoshizako, Noriyuki Imada, Naoki Oda
  • Patent number: 8764872
    Abstract: A honeycomb filter includes a honeycomb base material, plugged portions, and a porous collecting layer disposed on the surface of the partition wall parent material in at least the remaining cells. The collecting layer has a constitution in which a plurality of particles combine or intertwine with one another, and the collecting layer includes fibrous fiber particles as the plurality of particles, and includes the particles having an average fiber diameter of 0.1 to 15 ?m and an average aspect ratio of 3 or larger. An open area ratio of the surface of the collecting layer is 20% or larger.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: July 1, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshinori Isoda, Yoshio Kikuchi
  • Patent number: 8758464
    Abstract: The disclosed exhaust treatment device for a diesel engine can prevent heat damage to a DPF when regenerating said DPF. If a selection device (7), which selects whether to allow or prohibit an automatic DPF regeneration process, is set to prohibit the automatic DPF regeneration process, a DPF regeneration control device (4) is made able to start a process to cancel execution of the automatic DPF regeneration process. If the selection device (7) is set to allow the automatic DPF regeneration process, the DPF regeneration control device (4) retracts the cancellation of the automatic DPF regeneration process, allowing execution of the previously-cancelled automatic DPF regeneration process to begin.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: June 24, 2014
    Assignee: KUBOTA Corporation
    Inventors: Yasuo Fujii, Masanori Fujiwara, Katsushi Inoue, Yuuki Ishii, Kenta Mitamura, Noriyoshi Eguchi, Yongchol Lee, Tomohiro Ninomiya
  • Patent number: 8747510
    Abstract: An exhaust treatment unit including a longitudinal core around an axis, a support mat, and powdered insulation impregnated between first and second layers of the support mat. In assembly, the mat is first wrapped around the core once, and powdered insulation is applied to the surface of the unwrapped portion of the mat prior to further winding whereby powdered insulation is disposed between mat layers after further winding.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: June 10, 2014
    Assignee: Tenneco Automotive Operating Company, Inc.
    Inventors: Ruth Latham, William Alcini
  • Patent number: 8747509
    Abstract: There is provided a honeycomb filter including a honeycomb base material including a porous partition wall parent material; plugged portions arranged in open frontal areas of predetermined cells in an end surface on an inflow side of the fluid, and open frontal areas of the remaining cells in an end surface on an outflow side of the fluid; and a porous collecting layer disposed on the surface of the partition wall parent material in the remaining cells. In a cross section orthogonal to an extending direction of the cells, a shape of the cells is a rectangular shape, and a thickness of a portion of the collecting layer which is positioned in each of corner portions of each of the cells is from one to three times that of a portion of the collecting layer which is positioned in the center of each of sides of the cell.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: June 10, 2014
    Assignee: NGK Insulators, Ltd.
    Inventor: Yoshio Kikuchi
  • Patent number: 8747511
    Abstract: A honeycomb filter includes a tubular honeycomb structure having porous partition walls with which there are formed a plurality of cells extending from one end surface to the other end surface to become through channels of a fluid; and plugged portions arranged in one open end portion of each of predetermined cells and the other open end portion of each of the remaining cells, porosities of the partition walls are 46% or less, a pore volume ratio of pores having pore diameters of 40 ?m or more is 7.5% or less, and a pore volume ratio of pores having pore diameters of 10 ?m or less is 25% or less, a permeability of the honeycomb structure is 0.8 ?m2 or more, and a coefficient of thermal expansion of the honeycomb structure in a range of 40 to 800° C. is 1.0×10?6/° C. or less.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: June 10, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Koji Motoki, Hiroyuki Suenobu, Eriko Kodama
  • Patent number: 8747508
    Abstract: There is provided a honeycomb filter including: a honeycomb base material; plugged portions; and a porous collecting layer disposed on the surface of the partition wall parent material in at least the remaining cells. The collecting layer has a constitution in which a plurality of particles combine or intertwine with one another, and the collecting layer includes flat plate-like particles as the plurality of particles. The plurality of particles are particles in which an average long diameter is 0.2 ?m or larger and smaller than 10 ?m, an average value of ratios (long diameters/short diameters) of the long diameters to the short diameters of the respective particles is smaller than 3, and an average value of ratios (the long diameters/thicknesses) of the long diameters to thicknesses of the respective particles is 3 or larger. An open area ratio of the surface of the collecting layer is 10% or larger.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: June 10, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshinori Isoda, Yoshio Kikuchi
  • Patent number: 8741020
    Abstract: An object is to provide an exhaust gas purification filter that can achieve high trapping efficiency of particulate matter and low pressure loss, and the exhaust gas purification filter includes an inflow surface through which exhaust gas containing particulate matter flows in, a discharge surface from which purified gas is discharged, and a filter base body that is formed from a porous body, wherein the filter base body includes porous partition walls and gas flow paths surrounded by the partition walls, a porous film having a pore size smaller than that of pores of the partition walls is provided on each surface of the partition walls, and microgrooves having a depth shallower than the thickness of the porous film are formed on at least a part of a surface of the porous film.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: June 3, 2014
    Assignees: Sumitomo Osaka Cement Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Atsushi Kishimoto, Masamichi Tanaka, Keita Ishizaki, Katsunori Hanamura