Membrane Patents (Class 422/48)
  • Patent number: 10441490
    Abstract: Described herein are systems, devices, and methods for an extracorporeal, artificial, placenta. In some embodiments, an artificial placenta and amniotic bed system may comprise a control unit, a gas delivery unit, a gas exchange unit or membrane oxygenator, a fluids delivery unit, an amniotic fluid bed, and a human machine interface. In some embodiments, the artificial placenta and amniotic bed systems, devices, and methods described herein may improve survival rates and minimize long-term disabilities in preterm, gestational-age, newborns. In some embodiments, the extracorporeal systems, devices, and methods comprise an artificial network through which oxygen and nutrient-rich blood may flow into a fetus (residing in an amniotic fluid bed), while carbon dioxide and wastes may be removed, thus re-establishing a form of intrauterine placental circulation.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: October 15, 2019
    Assignee: Amnion Life, LLC
    Inventors: Amir Fassihi, Milos Ljubisa Radovanovic
  • Patent number: 9403129
    Abstract: A hollow fiber membrane module in which a housing body forming the hollow fiber membrane module includes an insertion opening into which end parts of the plurality of hollow fiber membranes are inserted so as to be fixed and held, and an opening portion which exposes open end surfaces of a plurality of hollow fiber membranes inserted from the insertion opening to outside, and a cover that blocks the opening portion of the housing body. According to the present invention, it is possible to provide a housing enabling open end surfaces of hollow fiber membranes to be sealed by easily exposing the open end surfaces of the hollow fiber membranes when the hollow fiber membranes are damaged.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: August 2, 2016
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Manabu Sasakawa, Tetsuya Torichigai, Hiroyuki Okazaki, Fumihiro Kira, Ikuo Kinoshita
  • Patent number: 9389023
    Abstract: A capillary tube bundle sub-assembly for use in an extracorporeal heat exchanger includes a continuous capillary tubing wound about a core to define a plurality of capillary layers each including a plurality of capillary segments. The capillary segments each define opposing terminal ends adjacent opposing ends of the core. The capillary segments of each layer are circumferentially aligned relative to an axis of the core, with each successive layer being radially outward of an immediately preceding layer. The capillary segments are non-parallel with the axis, spiraling partially about the axis in extension between the opposing terminal ends. Each capillary segment forms less than one complete revolution (i.e., winds less than 360°). The segments within each layer are substantially parallel with one another; however, an orientation of the segments differs from layer-to-layer such as by pitch or angle.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: July 12, 2016
    Assignee: Medtronic, Inc.
    Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
  • Patent number: 9339764
    Abstract: The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The gas and aqueous fluid are introduced into each basic wafer via a porous gas distributor which disperses the gas as micro-sized bubbles laterally throughout the distributor before entering the wafer. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme or inorganic catalyst to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: May 17, 2016
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: YuPo J. Lin, Seth W. Snyder, Michael P. Henry, Saurav Datta
  • Patent number: 9295763
    Abstract: The present invention provides a medical tube mainly comprising a thermoplastic resin wherein the surface contacting the blood has been subjected to a heparinizing treatment and wherein quality defect due to whitening and oil defect is reduced. According to the present invention, there is provided a medical tube wherein an antithrombotic material is coated on the inner surface of a tube prepared by a melt extrusion molding of a composition comprising a thermoplastic resin and a plasticizer, characterized in that the difference (?L) between the brightness of the medical tube before coating and the brightness of the medical tube after coating measured in accordance with JIS Z 8722 is 1 or less.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: March 29, 2016
    Assignee: TOYOBO CO., LTD.
    Inventors: Yuta Kawakatsu, Shigeo Tsuchiya, Masaharu Yamada, Tomoya Ohashi, Wataru Takahama
  • Patent number: 9186628
    Abstract: An air separation module includes a housing, a bundle of hollow fiber membranes, and a clam shell axial support assembly. The axial support assembly includes two supportive elements, each supportive element including a flow-through component. The flow-through component includes a plurality of openings through which a supply of fluid (e.g. oxygen enriched air) may pass. The axial support assembly is secured around the bundle of hollow fiber membranes at a position radially inward from the housing and radially outward from the fiber bundle.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: November 17, 2015
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: David A. Fautsch, Michael S. Sandacz, Steven M. Poklop, Rehan Zaki
  • Patent number: 9039969
    Abstract: The present disclosure relates, in some embodiments, to pre-concentrator compositions, devices, systems, and/or methods for concentrating small quantities of chemical or biological compounds, e.g., CBRNE compounds. A pre-concentrator of the disclosure may be operable to releasably bind and concentrate CBRNE compounds. In some embodiments, a pre-concentrator may comprise a 3-D structure of electrospun nanofibers, that comprise at least one polymer, one conducting agent and at least one chemical-specific functional group and/or biological-specific moiety configured to selectively bind to a CBRNE compound. Bound compounds may be released and detected. Pre-concentrator devices and systems operable to bind, concentrate, and/or detect one or more CBRNE compounds are described. Devices and systems of the disclosure may be configured to concentrate and detect multiple compounds.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: May 26, 2015
    Assignee: RAYTHEON COMPANY
    Inventors: Randal W. Tustison, Vincent B. Tucci, Jr., Jiyun Imholt, Mary Herndon
  • Patent number: 9011769
    Abstract: A blood reservoir may be used in combination with other elements such as a heart lung machine (HLM), oxygenator, heat exchanger, arterial filter and the like to form an extracorporeal blood circuit that may be employed in a procedure such as a bypass procedure. The blood reservoir may be configured to receive, filter and store blood from a number of sources including vent blood (from within the heart), venous blood (from a major vein), purge blood (from a sampling line) and cardiotomy or suction blood (from the surgical field).
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: April 21, 2015
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Claudio Silvestri, Gabriele Tommasi
  • Patent number: 8980176
    Abstract: A blood processing apparatus may include a heat exchanger and a gas exchanger. The heat exchanger may be configured to provide a cross-flow or radially directed blood flow through the heat exchanger.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: March 17, 2015
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Stefano Reggiani, Claudio Giovannini, Claudio Silvestri, Gabriele Tommasi
  • Publication number: 20150010433
    Abstract: A production method for a medical instrument includes a plurality of integrated hollow fiber membrane producing a base material forming a cylindrically-shaped body. Each of the hollow fiber membranes sequentially passes through a first point, a second point, a third point, a fourth point, and a fifth point that are set on a core member. In an outward path heading toward the third point from the second point, the hollow fiber membrane reaches the third point from the second point at the shortest distance while being wound in the circumferential direction of the core member. Moreover, in a homeward path heading toward the fifth point from the fourth point, the hollow fiber membrane reaches the fifth point from the fourth point at the shortest distance while being wound in the circumferential direction of the core member in the same direction as in the case of the outward path.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Applicant: Terumo Kabushiki Kaisha
    Inventors: Kazuhiko TAKEUCHI, Eisuke Sasaki
  • Publication number: 20150010434
    Abstract: An Oxygenator as a medical instrument includes at least one first hollow fiber membrane layer comprised of a plurality of integrated first hollow fiber membranes, and forms a shape of a cylindrical body as a whole, and at least one second hollow fiber membrane layer disposed at the outer circumferential side of the first hollow fiber membrane layer in a state of being concentric with the first hollow fiber membrane layer, has a plurality of integrated second hollow fiber membranes, and forms a shape of a cylindrical body as a whole. Moreover, each of the first hollow fiber membranes is wound around a central axis, and each of the second hollow fiber membranes is wound around a central axis. The number of times the second hollow fiber membranes are wound is smaller than the number of times the first hollow fiber membranes are wound.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Applicant: Terumo Kabushiki Kaisha
    Inventors: Kazuhiko Takeuchi, Eisuke Sasaki
  • Patent number: 8911666
    Abstract: A filter member used in an oxygenator is constructed to provide improved contact with a hollow fiber membrane bundle and to capture bubbles contained in blood. The filter member possesses elasticity at least in the circumferential direction to allow the inner circumference of the filter member to be increased from a natural non-expanded state prior to placement on the hollow fiber membrane bundle to an expanded state in which the inner circumference of the filter member is increased when placed on the hollow fiber membrane bundle. The filter member is constructed to satisfy the condition 0.5?L2/L1<1, wherein L1 represents the outer circumference of the hollow fiber membrane bundle and L2 represents the inner circumference of the filter member in the natural non-expanded state.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: December 16, 2014
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Kazuhiro Mizoguchi, Eiji Kato
  • Publication number: 20140294672
    Abstract: An example of a nitric oxide delivery device includes a medium, a working electrode in contact with the medium, and a reference/counter electrode in contact with the medium and electrically isolated from the working electrode. The medium includes a source of nitrite ions and a Cu(II)-ligand complex. A nitric oxide permeable material separates the medium from an external environment that is to contain blood.
    Type: Application
    Filed: December 7, 2013
    Publication date: October 2, 2014
    Applicant: The Regents of the University of Michigan
    Inventors: Mark E. Meyerhoff, Lajos Hofler, Dipankar Koley, Hang Ren
  • Publication number: 20140255253
    Abstract: An artificial placenta oxygenating device for use with an infant is provided. The device comprises a first layer comprising a gas permeable membrane; and a second layer comprising a vascular network that permits circulation of fluid therethrough, wherein a portion of the gas permeable membrane is attached to and covers the vascular network, wherein the vascular network comprises an inlet that permits fluid flow into the vascular network and an outlet that permits fluid to flow out of the vascular network and wherein the inlet and outlet are positioned so that fluid flows through the vascular network and in contact with the gas permeable membrane to permit gas exchange to occur. Assemblies comprising a plurality of single artificial placenta devices is also provided.
    Type: Application
    Filed: August 23, 2012
    Publication date: September 11, 2014
    Inventors: Christoph Fusch, Leslie Berry, Anthony Chan, Niels Rochow, Ponnambalam (Ravi) Selvaganapathy, John Brash, Gerhard Fusch
  • Publication number: 20140227134
    Abstract: The invention relates to an arrangement (10, 100) for removing carbon dioxide from an extracorporeal flow of blood and/or for oxygenating the extracorporeal flow of blood. The arrangement (10, 100) comprises an oxygenator (12), a first gas storage tank (24) in which a first gas is contained and at least a second gas storage tank (24) in which a second gas is contained. Further the device (10, 100) has a gas mixing unit for mixing a purge gas from the first and the second gas and an electronic control unit (30) for controlling the gas mixing unit (50). The control unit (30) comprises an input unit (40) by means of which the content of the first gas in the purge gas is adjustable by an operator, wherein the control unit (30) controls the gas mixing unit (50) such that the purge gas has the adjusted content of the first gas.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 14, 2014
    Applicant: Maquet Vertrieb und Service Deutschland GmbH
    Inventors: Thilo Joost, Rainer Kobrich
  • Publication number: 20140216252
    Abstract: The invention relates to an arrangement (10, 100, 200) for removing carbon dioxide from an extracorporeal flow of blood. The arrangement (10, 100, 200) comprises a filter (12) which has a membrane (16) that separates a blood region (14) from a gas region (18). The extracorporeal flow of blood is passed through the blood region (14) of the filter (12). Likewise, a gas flow of a purge gas is passed through the gas region (18), the purge gas being an inert gas or a mixture of inert gases. Further, the invention relates to a method for removing carbon dioxide from an extracorporeal flow of blood in which likewise an inert gas or a mixture of inert gases is used as a purge gas.
    Type: Application
    Filed: July 27, 2012
    Publication date: August 7, 2014
    Applicant: MAQUET VERTRIEB UND SERVICE DEUTSCHLAND GMBH
    Inventors: Thilo Joost, Rainer Kobrich
  • Publication number: 20140193799
    Abstract: The invention provides systems and methods for exchanging gas in an oxygenator device, and methods for preparing and using such oxygenator devices. The systems and methods can be used to transfer oxygen to blood to assist lung function in a patient.
    Type: Application
    Filed: February 11, 2014
    Publication date: July 10, 2014
    Applicant: The Charles Start Draper Laboratory, Inc.
    Inventors: Jeffrey T. Borenstein, Joseph L. Charest, James Ching-Ming Hsiao, Tatiana Kniazeva
  • Publication number: 20140154137
    Abstract: The invention relates to an apparatus and a process for mass- and/or energy-transfer between two media, in particular between blood and a gas/gas mixture, having a chamber (1) through which a first medium, in particular blood, flows and in which a bundle of mass- and/or energy-permeable hollow fibres through which the second medium can flow and around which the first medium can flow is arranged transverse to the flow direction of the first medium, in which the chamber (1) is configured as an elastic shell (3) at least in a region which completely surrounds the bundle, where a rigid housing (6) is arranged around the elastic shell (3) and the inner wall of the housing contacts the shell (3) in a plurality of first regions (9) and the inner wall of the housing is not in contact with and is in particular at a spacing from the shell (3) in at least one second region (10), preferably a plurality of second regions (10) in the direction of the extension of the hollow fibres, where the one hollow space or at least on
    Type: Application
    Filed: May 31, 2011
    Publication date: June 5, 2014
    Inventor: Ahmad Ali Kashefi Khorasani
  • Patent number: 8728214
    Abstract: The invention relates to a gas transfer device comprising at least two chambers and at least one gas-permeable and liquid-impermeable membrane, wherein the chambers are separated from one another by the membrane(s), and wherein the membrane(s) is/are structured on at least one side and channels and/or branching structures, in particular branched pathways, are formed on the membrane by this structure, the walls of which have a spacing of ?500 ?m, preferably of ?350 ?m, and more preferably of ?150 ?m, and the proportion of the membrane surface area which comprises channels and/or branching structures having this spacing constitutes at least 50% of the total surface area of the membrane.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: May 20, 2014
    Assignee: Novalung GmbH
    Inventor: Andreas Maurer
  • Patent number: 8696626
    Abstract: A device for removal of a gas from a liquid in a medical infusion line has a housing containing a plurality of hollow fiber membranes. Preferably liquid passes on the exterior of the membranes and gas bubbles in the liquid pass into the lumens of the hollow fiber membranes. This is for removal by a vacuum. The device can include its own vacuum chamber. When the device has its own vacuum chamber, it can include a warning system to alert a user to replace the device when the provided vacuum is no longer sufficient.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: April 15, 2014
    Inventor: Claudia F. E. Kirsch
  • Publication number: 20140065016
    Abstract: A paracorporeal respiratory assist lung is configured with an annular cylindrical hollow fiber membrane (fiber bundle) that is rotated at rapidly varying speeds. Fluid (for example, blood) is introduced to the center of the device and is passed radially through the fiber bundle. The bundle is rotated at rapidly changing velocities with a rotational actuator (for example, a motor or magnetic coupling). The rotation of the fiber bundle provides centrifugal kinetic energy to the fluid giving the device pumping capabilities and may create Taylor vortexes to increase mass transfer. Rotation of the fiber bundle increases the relative velocity between the fluid and the hollow fibers and increases the mass transfer. The porosity of the fiber bundle may be varied to enhance gas exchange with the blood. Alternatively, a rotating core may be used with a stationary fiber bundle.
    Type: Application
    Filed: April 11, 2011
    Publication date: March 6, 2014
    Applicant: UNIVERSITY OF PITTSBURGH-OF THE COMMONWEALTH SYSTEM OF HIGHER EDUCATION
    Inventors: William J. FEDERSPIEL, Brian J. FRANKOWSKI, Brendan C. MACK, Scott W. MORLEY, Meir ROSENBERG, Robert G. SVITEK
  • Publication number: 20140050618
    Abstract: The present invention relates to an apparatus for making extracorporeal blood circulation available, in particular a heart-lung machine, comprising a venous connection and an arterial connection, between which a blood reservoir, a blood pump and a bubble detector for the detection of air bubbles are provided, with, downstream of the bubble detector, an arterial line leading to the arterial connection via an arterial clamp and a bypass leading via a bypass clamp back into the blood reservoir which is connected to a pump extracting air from the blood reservoir. In addition, the present invention relates to a method of operating such an apparatus.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Inventors: Gerhard Breiske, Michael Brieske
  • Patent number: 8647569
    Abstract: A paracorporeal respiratory assist lung is configured with an annular cylindrical hollow fiber membrane (fiber bundle) that is rotated at rapidly varying speeds. Fluid (for example, blood) is introduced to the center of the device and is passed radially through the fiber bundle. The bundle is rotated at rapidly changing velocities with a rotational actuator (for example, a motor or magnetic coupling). The rotation of the fiber bundle provides centrifugal kinetic energy to the fluid giving the device pumping capabilities and may create Taylor vortexes to increase mass transfer. Rotation of the fiber bundle increases the relative velocity between the fluid and the hollow fibers and increases the mass transfer. The porosity of the fiber bundle may be varied to enhance gas exchange with the blood. Alternatively, a rotating core may be used with a stationary fiber bundle.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: February 11, 2014
    Assignee: ALung Technologies, Inc
    Inventors: William J. Federspiel, Brian J. Frankowski, Brendan C. Mack, Scott W. Morley, Meir Rosenberg, Robert G. Svitek
  • Publication number: 20140037500
    Abstract: An integrated centrifugal blood pump-oxygenator (1) which has a housing (2) with a top (3) having a blood inlet (4), a blood outlet (5) and a gas inlet (6), and a bottom (7) having a rotational body (8) being rotatably arranged in a rotor-housing (9) of the bottom (7). The integrated centrifugal blood pump-oxygenator (1) further has an oxygenator membrane (10) provided in an interior (11) of the housing (2), wherein in the operation state oxygen (12) is transferred from the gas inlet (6) through the oxygenator membrane (10) to a gas outlet (13) and blood (14) is brought in direct contact with the oxygenator membrane (10) by pumping the blood (14) with the rotational body (8) from the blood inlet (4) to the blood outlet (5). The rotational body (8) is magnetically journalled in a contact-free manner with respect to the rotor-housing (9). There is an extracorporeal life support system (1000), and a method of de-bubbling and priming a extracorporeal life support system (1000).
    Type: Application
    Filed: June 26, 2013
    Publication date: February 6, 2014
    Applicant: Thoratec LLC
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Publication number: 20140030146
    Abstract: An oxygenator includes a housing; a hollow fiber membrane layer that is stored in the housing and has multiple integrated hollow fiber membranes with a gas exchange function; a gas inlet portion and a gas outlet portion that are provided on the upstream and downstream of gas passages in lumens of the hollow fiber membranes, respectively; and a blood inlet portion and a blood outlet portion that are provided on the upstream and downstream of blood passages outsides of the hollow fiber membranes, respectively. The hollow fiber membranes in the hollow fiber membrane layer are fixed relative to each other at one end portion and the other end portion thereof. Conditions 30??60 and OD?4.5×? are met where ? [?m] is an average separation distance between the adjacent hollow fiber membranes at a fixed portion of the hollow fiber membrane layer and OD [?m] is the outer diameter of the hollow fiber membrane.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: TERUMO KABUSHIKI KAISHA
    Inventor: Kazuhiko TAKEUCHI
  • Publication number: 20140030149
    Abstract: An oxygenator includes: a housing; a hollow fiber membrane bundle stored in the housing and having multiple integrated hollow fiber membranes with a gas exchange function; a gas inlet portion and a gas outlet portion provided on the upstream and downstream of gas passages in lumens of the hollow fiber membranes, respectively; a blood inlet portion and a blood outlet portion provided on the upstream and downstream of blood passages outside the hollow fiber membranes, respectively; a first filter member provided on the hollow fiber membrane bundle in contact with a blood outlet portion side surface so as to cover substantially the entire surface and has a function to catch bubbles in blood; and a second filter member that is separated from the first filter member, positioned between the first filter member and the blood outlet portion, and has a function to catch bubbles in blood.
    Type: Application
    Filed: September 30, 2013
    Publication date: January 30, 2014
    Applicant: TERUMO KABUSHIKI KAISHA
    Inventor: Kazuhiko TAKEUCHI
  • Publication number: 20140030148
    Abstract: An extracorporeal circuit for removing CO2 from blood comprising a blood taking line for taking blood from the patient, an oxygenation assembly and a blood re-introduction line for re-introducing blood into the patient. The oxygenation assembly comprises a first dialyzer connected to a circulation circuit for the circulation of a dialyzer bath, an oxygenator which is arranged on the circulation circuit, an acidifier, which is suited to introduce an acid substance into the circulation circuit upstream of the oxygenator, and basic neutralization means which are arranged downstream of the dialyzer.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 30, 2014
    Inventors: Nicolo Antonino PATRONITI, Antonio PESENTI
  • Publication number: 20140030147
    Abstract: An extracorporeal circuit for removing CO2 from blood comprising a blood taking line for taking blood from the patient, an oxygenation assembly and a blood re-introduction line for re-introducing blood into the patient. The oxygenation assembly comprises an oxygenator, a dialyzer arranged upstream of the oxygenator, a circulation circuit for the circulation of a dialyzer bath connected to the dialyzer and an acidifier arranged to introduce an acid substance into the circulation circuit for circulation of the dialyzer bath.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 30, 2014
    Inventors: Nicolo Antonino PATRONITI, Antonio PESENTI
  • Publication number: 20130343954
    Abstract: An integrated blood pump oxygenator comprises an an impeller housing supporting an impeller; with an annular hydrogel impeller packing material adjacent the bearings and around the shaft of the impeller. The oxygenator including a rollover outlet in the form of an annular chamber extending around a center pump housing member; and further including an annular chamber within an annular array of hollow fiber membranes in fluid communication with the annular chamber extending from the impeller around the center pump housing; wherein the annular chamber provides substantially perpendicular radial outward cross flow across the membranes.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 26, 2013
    Inventors: Mark J. Gartner, Brian J. Fill, Patrick Cahalan, Linda Cahalan
  • Publication number: 20130343953
    Abstract: Provided are devices, device systems, and methods to intercept and kill fluid borne cancer cells to slow or prevent metastases.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Eric V. Kline
  • Patent number: 8608953
    Abstract: An extracorporeal filtration and detoxification system and method generally comprise separating ultrafiltrate from cellular components of blood, treating the ultrafiltrate independently of the cellular components in a recirculation circuit, recombining treated ultrafiltrate and the cellular components, and returning whole blood to the patient. A recirculation circuit generally comprises an active cartridge including active cells operative to effectuate a selected treatment; in some embodiments, the active cells are the C3A cell line.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: December 17, 2013
    Assignee: Vital Therapies, Inc.
    Inventors: John D. Brotherton, Dar He
  • Patent number: 8555709
    Abstract: A liquid chromatographic system includes columns, column mounting fixtures to which the columns are mounted, a detector, a collector, a controller and a plurality of RFIDs. A first RFID communicates with the controller and cooperating RFIDs mounted to other components provide information such as the history of components, parameters and the like. They also receive information from sensors relating to the operation of the liquid chromatograph, store the information and transmit it. Moreover, the RFIDs may substitute for hard wiring in many applications and may enable a central computer to control several liquid chromatographic system.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: October 15, 2013
    Assignee: Teledyne Instruments, Inc.
    Inventors: Dale A. Davison, Dale L. Meyer, Daniel G. Jameson, Jack E. Silver, Jon L. Curran, Ruth A. Pipes
  • Patent number: 8551770
    Abstract: Provided is a cell culture apparatus for culturing cells, that provides enhanced oxygen delivery and supply to cells without the need for stirring or sparging. Oxygen diffusion occurs on both sides of the culture vessel, top and bottom. A gas-permeable membrane that includes perfluorocarbons in its composition allows for the rapid, enhanced and uniform transfer of oxygen between the environment of cells or tissues contained in the cell culture container apparatus and the atmosphere of the incubator in which the cell culture apparatus is incubated.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: October 8, 2013
    Assignee: University of Miami
    Inventors: Christopher A. Fraker, Juan Dominguez-Bendala, Ricordi Camillo, Luca Inverardi
  • Patent number: 8545754
    Abstract: Disclosed is an apparatus for oxygenating and controlling the temperature of blood in an extracorporeal circuit. The apparatus has an inlet and an outlet that is located radially outward from the inlet in order to define a flowpath through the apparatus. The apparatus comprises: a core that is substantially centrally located in the apparatus and to which blood from a patient can be supplied through the inlet; a heat exchanger comprising a plurality of heat transfer elements that are arranged around the core and between which blood from the core can move radially outward; and an oxygenator comprising a plurality of gas exchange elements that are arranged around the heat exchanger and between which blood from the heat exchanger can move radially outward before exiting the apparatus through the outlet.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Medtronic, Inc.
    Inventors: Walt L. Carpenter, Robert W. Olsen, Michael J. Hobday, Alford L. McLevish, Christopher J. Plott, Roderick E. Briscoe, Patrick J. Cloutier, Anil Thapa, Ming Li, Kevin McIntosh, Ken Merte
  • Patent number: 8529834
    Abstract: There is provided a mass exchange apparatus (114) for use in blood/air mass exchange comprising plural blood flow conduits for defining a blood flow from a blood flow inlet provided thereto; and plural air flow conduits for defining an air flow from an air flow inlet provided thereto. The plural air flow conduits and plural blood flow conduits at least partially comprise gas-permeable membrane material, and the conduits are arranged relative to each other such as to enable transfer of oxygen from the air flow to the blood flow and transfer of carbon dioxide from the blood flow to the air flow through the membrane material.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: September 10, 2013
    Assignee: Haemair Ltd.
    Inventor: Richard William Johns
  • Patent number: 8518259
    Abstract: An apparatus for de-aering, oxygenating and controlling a temperature of blood in an extracorporeal blood circuit. The apparatus includes a housing, a manifold body, a heat exchanger, and an oxygenator. A blood inlet tangentially directs blood into a first chamber of the housing. The manifold body is disposed in a second chamber, and includes a core and a plurality of vanes that define channels. The heat exchanger is arranged around the manifold body, and the oxygenator around the heat exchanger. The channels are open to the heat exchanger. An established blood flow path includes rotational flow within the first chamber to separate air from the blood, generally longitudinal flow from the first chamber and along the channels, and generally radial flow through the heat exchanger and the oxygenator. With this construction, gross air removal occurs prior to the blood passing through the heat exchanger and oxygenator.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: August 27, 2013
    Assignee: Medtronic, Inc.
    Inventors: Patrick Cloutier, Robert Olsen, Stephen Roller, Chris Plott, Al McLevish, Ming Li, Michael Laxen, John Knoll, Gregory Hake
  • Patent number: 8518326
    Abstract: A method may include obtaining information representing at least one of a concentration of carbon dioxide in a patient's blood, a concentration of oxygen in the patient's blood or a pH value of the patient's blood. The method may also include setting an initial carbon dioxide tension in a membrane oxygenator of an extra-corporeal membrane oxygenation (ECMO) system based on the obtained information.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: August 27, 2013
    Inventors: Ken M. Brady, Robert A. Baruch
  • Publication number: 20130197420
    Abstract: One aspect of the present invention relates to a silicon nanoporous membrane for oxygenating blood. The nanoporous membrane includes a first major surface, a second major surface, and a plurality of pores extending between the first and second major surfaces. The first major surface is for contacting a gas. The second major surface is for contacting blood and is oppositely disposed from said first major surface. The first and second major surfaces define a membrane thickness. Each of the pores is defined by a length, a width, and a height. Each of the pores is separated by a uniform interpore distance.
    Type: Application
    Filed: January 19, 2011
    Publication date: August 1, 2013
    Inventors: William H. Fissell, IV, Harihara Baskaran, Shuvo Roy, Ken Goldman
  • Patent number: 8496874
    Abstract: An integrated centrifugal blood pump-oxygenator (1) which has a housing (2) with a top (3) having a blood inlet (4), a blood outlet (5) and a gas inlet (6), and a bottom (7) having a rotational body (8) being rotatably arranged in a rotor-housing (9) of the bottom (7). The integrated centrifugal blood pump-oxygenator (1) further has an oxygenator membrane (10) provided in an interior (11) of the housing (2), wherein in the operation state oxygen (12) is transferred from the gas inlet (6) through the oxygenator membrane (10) to a gas outlet (13) and blood (14) is brought in direct contact with the oxygenator membrane (10) by pumping the blood (14) with the rotational body (8) from the blood inlet (4) to the blood outlet (5). The rotational body (8) is magnetically journalled in a contact-free manner with respect to the rotor-housing (9). There is an extracorporeal life support system (1000), and a method of de-bubbling and priming a extracorporeal life support system (1000).
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: July 30, 2013
    Assignee: Thoratec LLC
    Inventors: Barry N. Gellman, Andrew Koert, Zhongjun Wu, Juntao Zhang, Bartley P. Griffith
  • Patent number: 8475398
    Abstract: An extracorporeal blood processing method using a blood circuit comprising a pair of blood passages attached to opposite flow ends of a blood treatment device and said blood circuit is mounted on a blood pump console, the method includes: withdrawing blood from a vascular system of a human patient and drawing the blood into the blood circuit; pumping the withdrawn blood through one of the pair of blood passages using a first blood pump of the console and into the blood treatment device; pumping the treated blood from the treatment device through the other of the pair of blood passages using a second blood pump of the console; infusing the treated blood from the other blood passage and into the vascular system of the patient, and periodically reversing a flow direction of blood through the pair of blood passages and blood treatment device.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: July 2, 2013
    Assignee: Gambro uf Solutions, Inc.
    Inventor: John O'Mahony
  • Publication number: 20130144266
    Abstract: A device and method for oxygenating blood is disclosed herein. The device includes a plurality of passive mixing elements that causes a fluid to mix as it flows through the device. The passive mixing elements continually expose new red blood cells to the portion of the flow channel where oxygenation can occur. Accordingly, in some implementations, the device and method uses less blood to prime the device and allows for the oxygenation of blood with a substantial shorter flow channel when compared to conventional oxygenation methods and devices.
    Type: Application
    Filed: December 5, 2012
    Publication date: June 6, 2013
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventor: The Charles Stark Draper Laboratory, Inc.
  • Patent number: 8444586
    Abstract: A device for degassing gas bubbles out of a liquid comprises a housing having a liquid inlet, a liquid outlet and a gas bubble outlet. The housing includes a spiral wall defining a spiral flow path for the liquid and a hydrophobic membrane above the spiral wall and between the spiral wall and the gas bubble outlet. The spiral wall forces inward liquid entering the housing through the inlet into a spiral flow along the spiral flow path, and causes an upward flow of the gas bubbles toward the hydrophobic membrane. A method for degassing gas bubbles out of a liquid, e.g., blood, e.g., during hemodialysis, hemofiltration and hemodiafiltration, and use of such a degassing device in an extracorporeal circuit for degassing gas bubbles out of liquid, e.g., blood, e.g., during hemodialysis, hemofiltration and hemodiafiltration, are disclosed.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: May 21, 2013
    Assignee: Gambro Lundia AB
    Inventor: Christof Beck
  • Publication number: 20130101465
    Abstract: A device for oxygenating blood during extracorporeal circulation includes a box-like body having a first end and a second end opposite thereto and defining therebetween a treatment chamber with an inner surface. The device further includes, in the treatment chamber, at least one exchange unit having at least one flat diaphragm that is impervious to blood and has a major axis and a minor axis. The diaphragm has a winding of hollow microporous fibers. The device further includes an inlet port and an outlet port axially aligned with one another in an alignment direction. A compartment is provided for accumulation and delivery of blood to be treated, another compartment for collecting treated blood, the compartments being located downstream of the inlet port and upstream of the outlet port, between the exchange unit and the inner surface of the treatment chamber. The diaphragm is disposed with the major axis parallel to the alignment direction.
    Type: Application
    Filed: June 28, 2011
    Publication date: April 25, 2013
    Applicant: RAND, S.R.L.
    Inventor: Daniele Galavotti
  • Patent number: 8425838
    Abstract: A filter member used in an oxygenator is constructed to provide improved contact with a hollow fiber membrane bundle and to capture bubbles contained in blood. The filter member possesses elasticity at least in the circumferential direction to allow the inner circumference of the filter member to be increased from a natural non-expanded state prior to placement on the hollow fiber membrane bundle to an expanded state in which the inner circumference of the filter member is increased when placed on the hollow fiber membrane bundle. The filter member is constructed to satisfy the condition 0.5?L2/L1<1, wherein L1 represents the outer circumference of the hollow fiber membrane bundle and L2 represents the inner circumference of the filter member in the natural non-expanded state.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: April 23, 2013
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Kazuhiro Mizoguchi, Eiji Kato
  • Publication number: 20130094997
    Abstract: A blood oxygenator includes an integral pneumatic pump disposed substantially within a housing thereof, an inlet blood flow redirector, and an outflow blood collector. An atrium provided at an inlet of the oxygenator promotes even delivery of blood to the oxygenator. In use, the oxygenator provides an even dispersion of blood therethrough, establishing even perfusion and reducing areas of stagnant blood flow.
    Type: Application
    Filed: August 13, 2012
    Publication date: April 18, 2013
    Applicant: The University of Kentucky Research Foundation
    Inventors: Dongfang Wang, Joseph B. Zwischenberger
  • Publication number: 20130004369
    Abstract: The invention relates to an arrangement having a blood pump and a gas exchanger for extracorporeal membrane oxygenation. According to the invention, the blood pump is designed as a pulsatile blood pump and is arranged with the gas exchanger in the same housing. The pulsatile blood pump and the gas exchanger are preferably connected to the same gas source so that the blood pump can be pneumatically driven. The novel ECMO system has a simple design, is flexible, and in particular can be used directly on the patient.
    Type: Application
    Filed: January 10, 2011
    Publication date: January 3, 2013
    Inventor: Oliver Marseille
  • Patent number: 8318092
    Abstract: An oxygenator combines, in a single structure, a heat exchanger, a gas exchanger and an arterial filter. Such an oxygenator permits fewer fluid connections and thus may simplify an extracorporeal blood circuit, including a heart-lung machine and a blood reservoir, in which it is used. In some cases, the oxygenator may be configured to include multiple purge ports for purging bubbles both before and after filtering the blood.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: November 27, 2012
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Stefano Reggiani, Claudio Silvestri, Alberto Giri
  • Publication number: 20120277654
    Abstract: A combination oxygenator and arterial filter device for treating blood in an extracorporeal circuit includes a housing, an oxygenator, and a depth filter. The oxygenator includes a hollow fiber bundle forming an oxygenator exterior face. The depth filter is disposed (e.g., wound) directly over the exterior face, and includes a plurality of filaments arranged to define filter layers of level wound filaments. A first layer directly abuts the oxygenator exterior face. The oxygenator bundle differs from the depth filter in terms of: fiber and filament materials, construction of the fibers and filaments, and/or minimum gap spacings between axially adjacent ones of the fibers and the filaments. An oxygenator with integrated arterial filtering capability is provided that minimally impacts the extracorporeal blood circuit prime volume.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: Medtronic, Inc.
    Inventors: Robert Olson, John L. Knoll
  • Publication number: 20120277653
    Abstract: A combination oxygenator and arterial filter device for treating blood in an extracorporeal blood circuit. The device includes a housing maintaining a core and a fiber bundle. The fiber bundle is formed by a plurality of hollow fibers continuously helically wound about the core to form layers of level wound fibers. The layers combine to define an oxygenator region and a radially outward depth filter region. A minimum gap spacing between fibers of the oxygenator region layers is greater than a minimum gap spacing of the depth filter region layers. The fiber bundle can function as a blood oxygenator and exhibits a filtration efficiency of not less than 92% in filtering particles having a particle size of about 45 microns. An oxygenator with integrated arterial filtering capability is provided that minimally impacts the extracorporeal blood circuit prime volume.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: Medtronic, Inc.
    Inventors: Robert Olsen, John L. Knoll
  • Patent number: 8292839
    Abstract: A switch comprises a rotating switch member which provides fluid communication in three modes; infusion, recirculation and priming The switch is located between the oxygenator and drug bag and the cardioplegia pump raceway. The switch has three channels molded into the rotating manifold which either direct blood and cardioplegia into the coronary arteries of the patient or into a recirculation line. When the switch is rotated into the recirculation line, a hose is in fluid connection through the switch and connects the recirculation line with the pump blood and drug inlet lines thereby allowing cooling of the cardioplegic mixture during the time between infusions.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 23, 2012
    Inventor: William G. O'Neill