Drawing Of Liquid Into Pipette By Capillary Action Patents (Class 422/520)
  • Patent number: 11408024
    Abstract: The invention generally relates to negative selection of nucleic acids. The invention provides methods and systems that remove unwanted segments of nucleic acid in a sample so that a target gene or region of interest may be analyzed without interference from the unwanted segments. A sample is obtained that includes single-stranded nucleic acid with one or more unwanted segments. Complementary nucleic acid is added to the single-stranded nucleic acid to create a double-stranded region that includes the unwanted segment. The double-stranded region is then digested, leaving single-stranded nucleic acid that includes the target gene or region of interest. This allows paralogs, pseudogenes, repetitive elements, and other segments of the genome that may be similar to the target gene or region of interest to be removed from the sample.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: August 9, 2022
    Assignee: Molecular Loop Biosciences, Inc.
    Inventors: Jeff Gole, Athurva Gore, Mark Umbarger
  • Patent number: 11253855
    Abstract: There is provided an arrangement in a capillary driven microfluidic system for dissolving a reagent in a fluid. The arrangement (200) comprises a channel (102) for receiving a fluid at a first end, a valve (105) arranged at a second end of the channel so as to control a flow of the fluid to stop as it reaches the second end of the channel, and an actuator (108) for opening the valve (105) a predetermined time after receipt of the fluid by the channel (102). The arrangement further comprises one or more structures (106) for holding a dried reagent. The one or more structures (106) each has a width (W2) which is larger than a width (W1) of the channel (102), and the one or more structures are coupled to a side wall of the channel such that the fluid is allowed to enter the one or more structures from the channel, dissolve the dried reagent held therein, and diffuse back into the channel.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: February 22, 2022
    Assignee: miDiagnostics NV
    Inventor: Lei Zhang
  • Patent number: 10627420
    Abstract: A sample loader for loading a liquid sample into a plurality of reaction sites within a substrate is provided. The sample loader includes a first blade, and a second blade coupled to the first blade. The sample loader further comprises a flow path between the first blade and second blade configured to dispense a liquid sample to a substrate including a plurality of reaction sites. Further, in various embodiments the liquid sample has an advancing contact angle of 85+/?15 degrees with the first and second blade. Furthermore, loading of the liquid sample dispensed from the flow path to the plurality of reaction sites may be based on capillary action.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 21, 2020
    Assignee: Life Technologies Corporation
    Inventors: Michael C. Pallas, James C. Nurse, Gary Lim, Theodore E. Straub, Evan W. Foster
  • Patent number: 10595762
    Abstract: A specimen transfer device adapted to receive a blood sample is disclosed. The specimen transfer device includes a housing and an actuation member. A deformable material is disposed within the housing and is deformable from an initial position in which the material is adapted to hold the sample to a deformed position in which at least a portion of the sample is released from the material. A viscoelastic member is disposed within the housing between the material and the housing and between the material and the actuation member. The viscoelastic member is engaged with the actuation member and the material such that movement of the actuation member from a first position to a second position deforms the material from the initial position to the deformed position.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: March 24, 2020
    Assignee: Becton, Dickinson and Company
    Inventors: Milan Ivosevic, Bradley M. Wilkinson, C. Mark Newby, Kishore K. Bokka Srinivasa Rao
  • Patent number: 10293336
    Abstract: A non-displasive pipette is provided. The non-displasive pipette is configured for connection to a tip having a fluid therein. The tip includes an orifice to allow for the discharge of the fluid therefrom. The non-displasive pipette includes a body defining a chamber therethrough and having first and second opposite ends. The second end of the body is configured for connection to the tip. A plunger is slidably received in the chamber at the first end of the body. The plunger is moveable in the chamber between an extended position and a discharge position wherein the fluid is urged from tip through the orifice. An air discharge arrangement is configured to allow air from the chamber to escape therefrom and to maintain the fluid in the tip in response to connection of the second end of the body to the tip.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 21, 2019
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: David J. Beebe, David J. Guckenberger, Jr.
  • Patent number: 10031100
    Abstract: Lateral flow assay devices for determining the concentration of a biomolecular analyte in a sample and methods for measuring analyte concentration in sample using such lateral flow assay devices.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 24, 2018
    Assignee: Robert Bosch GmbH
    Inventors: Christopher Johnson, Sam Kavusi, Habib Ahmad, Christoph Lang
  • Patent number: 9528987
    Abstract: The present technology describes various embodiments of devices for processing, analyzing, detecting, measuring, and separating fluids. The devices can be used to perform these processes on a microfluidic scale, and with control over fluid and reagent transport. In one embodiment, for example, a device for performing chemical processes can include a porous wick comprising a pathway defined by an input end, an output end, and a length between the input end and the output end. The pathway is configured to wick fluid from the input end to the output end by capillary action. The device can further include a reagent placed on the pathway. The reagent can be placed in a pattern configured to control a spatial or temporal distribution of the reagent along the pathway upon wetting of the pathway.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: December 27, 2016
    Assignee: University of Washington
    Inventors: Paul Yager, Barry R. Lutz, Elain S. Fu, Gina Fridley, Huy Quang Le, Peter C. Kauffman
  • Patent number: 9302262
    Abstract: Disclosed herein are fluid handling devices that include integrated card and pipette tip devices, for use with multichannel liquid dispensing devices.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: April 5, 2016
    Assignee: BIOTIX, INC.
    Inventors: Arta Motadel, Phillip Hairfield, Peter Paul Blaszcak
  • Patent number: 8961903
    Abstract: A microfluidic passive device and a method for determining clotting time are described, of a fluid medium such as blood, of low production cost which can therefore be disposable. When optimised to determine blood clotting time, it requires a minimal whole blood sample (<5 ?L) and it is particularly suited to INR or PT determination, which can be used autonomously by patient without venipuncture. Monitoring, and processing means to interpret the results are comprised in an external coagulometer device. A production method for the manufacture of the microfluidic device is also provided.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: February 24, 2015
    Assignee: Iline Microsystems, S.L.
    Inventors: Iñaki Sádaba Champetier De Ribes, Juan Antonio Peón Eguiguren
  • Patent number: 8940232
    Abstract: An automated assay system is described with stations for placement of materials to be used in an assay of materials inside capillaries and an automated gripper for manipulating capillaries. The system includes a separation and immobilization station where reactions inside the capillaries take place and a detector station where photoemissions from the capillary reactions are detected. The photoemissions from the capillaries may be displayed as line graphs or in columns of a pseudo-gel image resembling the familiar Western gel blot. An automated control system has a user interface by which an operator can select a run protocol and define the locations of samples and reagents to be used in the protocol run: Following the setup the control system will cause the automated system to execute the protocol, then display the results in a selected display format.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: January 27, 2015
    Assignee: ProteinSimple
    Inventors: David J. Roach, Tom W. Yang, Roger A. O'Neill, Robert T. Loder, Jr.
  • Patent number: 8936753
    Abstract: A blood coagulation analyzer includes a detector and a controller. The detector includes a light source for emitting light to a prepared measurement sample and a light-receiving section for receiving light transmitted through the measurement sample. The controller is configured to performs operations comprising acquiring, based on the light detected by the detector, ratio information reflecting a ratio between a first value reflecting the intensity of the light transmitted through the measurement sample of a clotting reaction starting stage and a second value reflecting the intensity of the light transmitted through the measurement sample of a clotting reacting ending stage, and acquiring, based on the ratio information, a fibrinogen concentration in the blood sample.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: January 20, 2015
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Hiroyuki Fujino, Takamichi Naito, Naohiko Matsuo, Susumu Hoshiko
  • Patent number: 8920747
    Abstract: A biosensor manufacturing method including a sheet material forming process and a dicing process. In the sheet material forming process a sheet material with plural biosensor forming sections is formed. Each of the biosensor forming sections includes a first base plate, a second base plate stacked on the first base plate and forming a capillary between the second base plate and the leading end portion of the first base plate for sucking in sample liquid, and a hydrophilic layer formed on the second base plate at least in a region facing the capillary. In the dicing process plural biosensors are obtained by dicing the sheet material with a blade from the first base plate side at the leading end of each of the biosensor forming sections, such that the leading end of the capillary opens onto the leading end face of the first base plate and the second base plate.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: December 30, 2014
    Assignee: ARKRAY, Inc.
    Inventors: Yoshimitsu Matsuura, Shuzo Kanda
  • Patent number: 8911669
    Abstract: A hematology analyzer is provided. In certain embodiments, the hematology analyzer comprises: a) a flow cell; b) a light source for directing light to the flow cell; c) a plurality of detectors for detecting a plurality of optical characteristics of a blood cell passing through the flow cell; and d) a data analysis workstation programmed to: i. enumerate test blood cells passing through the flow cell; and ii. flag a blood sample as containing lysis-resistant red blood cells or fragile white blood cells.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: December 16, 2014
    Assignee: Abbott Laboratories
    Inventors: Martin Krockenberger, Richard B. Bordenkircher, Diana G. Garrett, John G. Glazier, James C. Bearden, Bodo Roemer, Giacomo Vacca
  • Patent number: 8900515
    Abstract: The present invention provides a biosensing device, comprising an input unit, an analysis unit, a process unit, and a set unit for storing resulting data values as the basis for calibrating the biosensing device, to set up the calibration parameters of a strip of the biosensing device.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: December 2, 2014
    Assignee: Health & Life Co., Ltd.
    Inventor: Meng Yi Lin
  • Publication number: 20140302611
    Abstract: An assay cartridge has a base member (26) that defines at least two wells (30, 32, 34, 36, 38), a pipette (108, 110) positionable in at least one of the wells and a cap member (86) arranged to carry the pipette. The cap member can be releasably fastened to the base member. An extension member (28) defines at least one further well (40, 42, 44) and can be fastened to the base member such that the pipette is then positionable in at least one of the wells of the base and in the further well of the extension member.
    Type: Application
    Filed: November 9, 2012
    Publication date: October 9, 2014
    Inventors: Lars Ørning, Frank Frantzen, Andrew Thomas Campbell, Arve Strømsheim
  • Patent number: 8821796
    Abstract: A mechanism is provided for sensing molecules. A twin-nanopore probe includes a first channel and a second channel. A first pressure-controlled reservoir is connected to the first channel to generate a positive pressure. A second pressure-controlled reservoir is connected to the second channel to generate a negative pressure. A container includes ionic solvent with molecules, and a tip of the twin-nanopore probe is submerged in the container of the ionic fluid with the molecules. The first channel, the second channel, the first pressure-controlled reservoir, and the second pressure-controlled reservoir are filled with the ionic fluid. The first pressure-controlled reservoir drives the ionic fluid out of the first channel and the second pressure-controlled reservoir draws in the ionic fluid with the molecules and solvent through the second channel. A flow of ionic current in the twin-nanopore probe is measured to differentiate the molecules that flow through the second channel.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: September 2, 2014
    Assignee: International Business Machines Corporation
    Inventor: Hongbo Peng
  • Patent number: 8808625
    Abstract: In a dispensing apparatus for dispensing a liquid, such as a sample solution, on a substrate, such as a glass slide, the dispensing apparatus includes a capillary provided with a distal end and a proximal end, a pump unit configured to pump an operating liquid into the capillary and to pump the operating liquid out of the capillary, and a controller configured to control the pump unit so as to change a position of a liquid surface of the operating liquid in the capillary so that a predetermined volume of liquid is suctioned from the distal end into the capillary and the liquid suctioned in the capillary is discharged from the distal end. As a result, it is possible to precisely dispense extremely small volume amounts of liquids such as a nanoliter.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: August 19, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Aoki, Hiroaki Tao, Masaki Torimura, Takashi Ikeda
  • Patent number: 8802030
    Abstract: A capillary dispenser includes at least one plunger-cylinder unit having a cylinder module and a plunger module disposed together on an axis. The cylinder module has an inner cylinder that is pneumatically connected to at least one capillary. The plunger module includes a hollow plunger that is closable on one side and is movable in the inner cylinder along the axis between an upper end position and a lower end position of the plunger module.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: August 12, 2014
    Assignee: Cybio AG
    Inventor: Adrian Siemers
  • Publication number: 20140186235
    Abstract: A pipette for delivering a measured volume of liquid having an elongated hollow tubular body (or capillary tube) (2) configured to draw liquid by capillary action, the hollow tubular body having a lower open end and an upper open end; and a chamber (3) structurally connected to the upper end of the tubular body (2), the chamber having an orifice (4) in the upper portion of the chamber.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 3, 2014
    Applicant: Access Bio, Inc.
    Inventors: Joon Hyeok Kwak, Tae-Hee Koo, Hyeonsuk Kim, Young Ho Choi
  • Patent number: 8765078
    Abstract: There is provided a biochip stamping device. The biochip stamping device includes a stamping jig in which a first biochip is aligned; an inverting mechanism vertically inverting a second biochip; and a movement mechanism transferring the vertically inverted second biochip on the stamping jig to combine the first biochip and the second biochip.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: July 1, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sang Youl Jeon, Bo Sung Ku, Hee Ju Son
  • Publication number: 20140065646
    Abstract: An assay apparatus comprising: i) an assay cartridge (52, 53) comprising at least one well (57-62) and a pipette (50) positionable in at least one said well; ii) a holder arranged to received said cartridge; iii) drive means operable to position said pipette in selected wells of said cartridge; iv) a gas pressure applicator couplable to said pipette whereby to cause liquid flow through said membrane; and v) a radiation detector operable to detect radiation from a well of said cartridge of said cartridge or from said pipette.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 6, 2014
    Applicant: Axis-Shield AS
    Inventors: Jostein HOLTLUND, Stig Morten BORCH, Thorstein SEIM, Tore JANSON, Hege TON, Jan Roger KARLSON, Inger Lise LAUVSTAD
  • Patent number: 8632735
    Abstract: A system for titrating liquids, with a syringe or tip, comprising a holding device and at least one tag and a metering equipment, comprising an additional holding device for holding the syringe or tip on the holding device, a reading device for reading the tag of the syringe or tip held by the additional holding device, a driving device having a motor, which is detachably coupled with a plunger of the syringe when the same is held by the additional holding device, or which is coupled with a plunger which is arranged in a cylinder which is coupled with the tip via a fluid conduit, when the same is held by the additional holding device, an operating device for operating the metering equipment and a control device, connected with the operating device, the reading device and the driving device, which controls the movement of the plunger depending of the tag of the inserted syringe or tip.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: January 21, 2014
    Assignee: Eppendorf AG
    Inventors: Heinz-Gerhard Kohn, Karl-Friedrich Andres
  • Patent number: 8623297
    Abstract: The present invention relates to a device, to a system, and to a method for the preparation and fractioned dispensing of samples of a fluid. The device of the invention comprises a body having formed therein guide means suitable for receiving a sample-taker member and for guiding it in translation through the device, and at least one preparation chamber enabling an aliquot of a fluid sample dispensed into the chamber by a said sample-taker member to be prepared in a stream of a suitable reagent. The guide means pass through the preparation chamber and communicate therewith to enable an aliquot of fluid to be dispensed into the chamber in a determined position of the sample-taker member in the guide means. The preparation chamber has an introduction orifice for introducing at least one reagent into the chamber for mixing the reagent with an aliquot, and at least one dispensing orifice for dispensing the mixture formed by said aliquot and said reagent to recovery and/or analysis means.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: January 7, 2014
    Assignee: Horiba ABX SAS
    Inventors: Roger Le Comte, Guilhem Couderc, Paul Moreno
  • Publication number: 20130344617
    Abstract: A sample metering device for a liquid sample comprises at least one capillary passage with an inlet and an outlet; a side passage extending from the capillary passage part way along the length thereof and leading to an outlet; a fluid application region for receiving a liquid sample to be tested, for entry to the capillary passage via the inlet; first sealing means operable releasably to seal the outlet of the capillary passage; and second sealing means operable releasably to seal the outlet of the side passage.
    Type: Application
    Filed: March 15, 2012
    Publication date: December 26, 2013
    Applicant: Carclo Technical Plastics Lmited
    Inventors: Philip Robertson, Richard Swainson, Patrick Ward
  • Patent number: 8597595
    Abstract: Systems and apparatus for mixing, cooling, and distributing multiphase fluid mixtures within a reactor, wherein reactor internal apparatus of the present invention provides not only improved fluid mixing and distribution to each underlying catalyst bed surface, but also offers other advantages including: decreased mixing tray height; easier maintenance, assembly and disassembly; and decreased amounts of fabrication material. In an embodiment, fluid may be evenly distributed to a catalyst bed from a fluid distribution unit comprising a nozzle tray including a plurality of nozzles, wherein the nozzles include at least one liquid inlet disposed tangentially to an inner surface of the nozzle.
    Type: Grant
    Filed: November 27, 2012
    Date of Patent: December 3, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Zackory S. Akin, Craig R. Boyak, Abdenour Kemoun, Ralph Evan Killen, Krishniah Parimi, Steven Xuqi Song, Steven Alden Souers
  • Publication number: 20130309136
    Abstract: Sample processing methods and systems to collect and dilute a biological sample. A device collects a predetermined volume of sample in one chamber, seals the chamber upon activation, and mixes the sample with a predetermined volume of reagent.
    Type: Application
    Filed: April 1, 2013
    Publication date: November 21, 2013
    Applicant: Boston Microfluidics
    Inventors: Brandon T. Johnson, Kate E. Christian, Glen H. Verner, Daniel Morgan
  • Patent number: 8585984
    Abstract: A proboscis for use with a diagnostic instrument includes an elongated main body having a proximal end and an opposite distal end, and a lumen extending between the proximal and distal ends. The distal end includes an orifice which is in fluid communication with the lumen. A fluid splash guard is affixed to the main body at the distal end, and provides protection for the orifice and lumen from being clogged with a sample fluid.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: November 19, 2013
    Assignee: IDEXX Laboratories, Inc.
    Inventor: Michael Andrew Brookmire
  • Patent number: 8580201
    Abstract: Embodiments of the present invention include processing steps and subsystems, within automated-biopolymer-synthesis systems and within other automated systems for organic-chemistry-based processing, for removing reagent solutions and solvents from reaction chambers following various synthetic reaction steps and washing steps undertaken during biopolymer synthesis. Embodiments of the present invention employ any of various different types of liquid-absorbing materials to wick, or remove by capillary action, liquids from reaction chambers. Wicking-based methods and subcomponents of the present invention remove significantly greater fractions of solutions from reaction chambers than conventional methods and subsystems and, in addition, are mechanically simpler and produce fewer deleterious side effects than currently used methods and subsystems.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: November 12, 2013
    Assignee: OligoCo, Inc.
    Inventors: Hsing-Yeh Parker, John C. Tabone, John Mulligan
  • Patent number: 8557197
    Abstract: The invention relates to a radial sliding seal component (10), particularly for use in metering devices, such as syringes, pipetting piston-cylinder arrangements, and the like, comprising a sealing component (12) working together with at least one pretensioning component (14), wherein the sealing component (12) comprises a sealing segment (16) extending in the axial direction and in the circumferential direction, preferably running in the circumferential direction, on which a sealing surface (18) facing in a first radial direction for sealing and sliding contact in at least the axial direction is formed on a working surface extending in the axial direction and in the circumferential direction, preferably running in the circumferential direction, and on which a pretensioning surface (20) extending in a second radial direction opposite to the first is formed for engaging with the pretensioning component (14) for transferring the radial pretensioning force, wherein the pretensioning component (14) comprises a sp
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: October 15, 2013
    Assignee: Hamilton Bonaduz AG
    Inventor: Klaus Leckebusch
  • Patent number: 8470260
    Abstract: A light beam guided liquid delivery device for tracking the placement of a sample by a liquid delivery device into a receptacle like a milliliter or microliter scale tube, or a microtiter plate, includes a liquid delivery device and a light beam generator. The light beam generator may be positioned on the outside or inside of the liquid delivery device. The light beam generator may be adapted to shoot a light beam below the tip of the liquid delivery device, whereby, a user may track the placement of the tip of the liquid delivery device via the light beam.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: June 25, 2013
    Assignee: University of North Carolina at Charlotte
    Inventors: David Andrew Carr, Jennifer W. Weller
  • Patent number: 8372354
    Abstract: Systems and apparatus for mixing, cooling, and distributing multiphase fluid mixtures within a reactor, wherein reactor internal apparatus of the present invention provides not only improved fluid mixing and distribution to each underlying catalyst bed surface, but also offers other advantages including: decreased mixing tray height; easier maintenance, assembly and disassembly; and decreased amounts of fabrication material. In an embodiment, fluid may be evenly distributed to a catalyst bed from a fluid distribution unit comprising a nozzle tray including a plurality of nozzles, wherein the nozzles include at least one liquid inlet disposed tangentially to an inner surface of the nozzle.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: February 12, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Ralph E. Killen, Craig Boyak, Steven X. Song, Abdenour Kemoun, Steve Souers, Krishniah Parimi, Zackory Akin
  • Patent number: 8337779
    Abstract: A reagent open mechanism of the luminescence measurement system comprises a triaxial actuator and a reagent dispensing nozzle which is driven by the triaxial actuator. A reagent cartridge where a reagent to be divided by the reagent dispensing nozzle is filled in a concave and the opening of the concave is sealed by an aluminum sheet can be set in. This reagent open mechanism comprises an open needle which is driven by the triaxial actuator and makes a hole in the aluminum sheet and a fixation block between the reagent dispensing nozzle and the open needle which arranges the reagent dispensing nozzle and the open needle in such location that the reagent dispensing nozzle or the open needle does not contact with a structure including the reagent cartridge in a Z-axis operation during opening time or reagent dividing and dispensing time.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: December 25, 2012
    Assignee: Hitachi Plant Technologies, Ltd.
    Inventor: Noe Miyashita
  • Patent number: 8273307
    Abstract: The invention relates to a microdispenser (1) for dispensing a liquid sample in a dispensing device, with a sample container (2) for receiving the liquid sample, and with a nozzle (7) for dispensing the sample located in the sample container (2). The microdispenser (1) with the filled sample container (2) can in this case be stored independently of and fluidically separately from the dispensing device, without the sample escaping from the sample container (2) during storage.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: September 25, 2012
    Assignee: Scienion AG
    Inventors: Holger Eickhoff, Christian Wurzel
  • Patent number: 8273295
    Abstract: A blood glucose meter having a compact housing, a display unit disposed on the housing, the display unit including a display light source to illuminate the display unit, an input unit disposed on the housing, the input unit configured to provide input functions for the blood glucose meter, and a power source provided within the housing for providing power to the blood glucose meter, where the housing includes a port integrated on said housing configured to receive a blood glucose test strip, and corresponding methods of measuring blood glucose meter is provided.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: September 25, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Tae Wan Andrews, Stephen C. Bubrick, Sheilah S. Estoesta, Brad D. Etter, Hyoung Yoon Park, Gene Ming Pon, Christopher V. Reggiardo, Heber Saravia
  • Patent number: 8268261
    Abstract: A pipette core member is used in a pipette for sampling a sample. This pipette core member includes: a pump body including a reservoir communicated with one suction/discharge port of an electroosmotic flow pump, the electroosmotic flow pump and the reservoir being integrally formed; and a capillary connected to the electroosmotic flow pump and communicated with the other suction/discharge port of the electroosmotic flow pump. The capillary is secured to the pump body.
    Type: Grant
    Filed: November 22, 2007
    Date of Patent: September 18, 2012
    Assignees: Altair Corporation, Nano Fusion Technologies, Inc., Kazusa DNA Research Institute
    Inventors: Mamoru Hirafuji, Ichiro Tominaga, Shigeto Eda, Ichiro Yanagisawa, Osamu Ohara
  • Patent number: 8232111
    Abstract: There is provided a micropipette, a micropipette system, and a method for using a micropipette system capable of accurately sucking a desired quantitative volume of liquid for measurement. A micropipette system comprises a micropipette 1 including a liquid-holding chamber 12 that holds a liquid for measurement sucked in by capillary action through an opening 11 provided at an end of the liquid-holding chamber 12, the liquid-holding chamber 12 having an inner surface on which a photocatalyst layer 13 exhibiting a hydrophilic property at the time of light irradiation is formed, irradiation means 2 for emitting light toward the photocatalyst layer 13, and control means 3 for controlling the range of the area irradiated with the light from the irradiation means 2 in accordance with a desired quantitative volume of the liquid for measurement.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: July 31, 2012
    Assignee: Empire Technology Development LLC
    Inventor: Takahisa Kusuura
  • Patent number: 8080218
    Abstract: A device and method of metering and mixing a dose of a sample liquid with a diluent liquid includes introducing a sample liquid into a channel defined in a housing. The housing defines a pocket open to the channel and sized to both collect a metered dose of the sample liquid, and to retain the collected dose by capillary force when the channel is emptied. The sample liquid is then removed from the channel under conditions that enable retention of the collected, metered dose of the sample liquid in the pocket. Following a cleaning step, a volume of diluent liquid is introduced into the channel to induce diffusion and mixing of the diluent liquid with the dose of sample liquid to form a mixture.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: December 20, 2011
    Assignee: Molecular Bio-Products, Inc.
    Inventors: Jeffrey A. Karg, Douglas W. Kroncke
  • Publication number: 20110206577
    Abstract: The invention relates to a radial sliding seal component (10), particularly for use in metering devices, such as syringes, pipetting piston-cylinder arrangements, and the like, comprising a sealing component (12) working together with at least one pretensioning component (14), wherein the sealing component (12) comprises a sealing segment (16) extending in the axial direction and in the circumferential direction, preferably running in the circumferential direction, on which a sealing surface (18) facing in a first radial direction for sealing and sliding contact in at least the axial direction is formed on a working surface extending in the axial direction and in the circumferential direction, preferably running in the circumferential direction, and on which a pretensioning surface (20) extending in a second radial direction opposite to the first is formed for engaging with the pretensioning component (14) for transferring the radial pretensioning force, wherein the pretensioning component (14) comprises a sp
    Type: Application
    Filed: November 5, 2008
    Publication date: August 25, 2011
    Applicant: HAMILTON BONADUZ AG
    Inventor: Klaus Leckebusch
  • Patent number: 6165625
    Abstract: Improved instrument pad surgical drape for use during surgical procedures is disclosed which is resistant to melting caused by high intensity light generated from sources such as fiberoptic illumination systems. The instrument pad and drape comprise an infrared energy reflective film/foam laminate that may also have a high coefficient of friction which is useful for retaining surgical instruments in place and preventing them from slipping off the pad during a surgical procedure.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: December 26, 2000
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jay R. Sommers, Richard C. Dowdy, Hilary Walker, D. Mark Foreste