Scrubbing Patents (Class 422/611)
  • Patent number: 11504675
    Abstract: A carbon molecular sieve (CMS) membrane having improved separation characteristics for separating olefins from their corresponding paraffins is comprised of carbon with at most trace amounts of sulfur and a group 13 metal. The CMS membrane may be made by pyrolyzing a precursor polymer devoid of sulfur in which the precursor polymer has had a group 13 metal incorporated into it, wherein the metal is in a reduced state. The pyrolyzing for the precursor having the group 13 metal incorporated into it is performed in a nonoxidizing atmosphere and at a heating rate and temperature such that the metal in a reduced state (e.g., covalently bonded to carbon or nitrogen or in the metal state).
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: November 22, 2022
    Assignees: Dow Global Technologies LLC, Georgia Tech Research Corporation
    Inventors: Yu-Han Chu, William J. Koros, Liren Xu, Mark K. Brayden, Marcos V. Martinez
  • Publication number: 20150139879
    Abstract: The invention relates to a method and a plant for removing the acid compounds contained in two gaseous effluents of different origins, comprising using a single amine-based absorbent solution circulating between a first absorber and a regenerator, and a second absorber and the same regenerator. The present invention advantageously applies for example to CO2 capture within a single plant intended for capture of the gaseous effluents produced upon hydrogen production through steam reforming of a gaseous hydrocarbon feed, such as combustion fumes and syngas.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 21, 2015
    Inventors: Fabrice GIROUDIERE, Adrien GOMEZ
  • Patent number: 8940262
    Abstract: The invention relates to a process for the removal of NO and NO2 from an oxygen-containing gas stream, which comprises a scrubbing step in which the gas stream is brought into contact with an ammonia-containing scrubbing solution, NO is oxidized to form NO2 by means of the oxygen present at a pressure of at least 2 bar and temperatures of from 15° C. to 60° C. and at least part of the NO2 present in the gas stream is converted by means of the ammonia-containing scrubbing solution into ammonium nitrite and a downstream decomposition step in which the ammonium nitrite present in the scrubbing solution is thermally decomposed into elemental nitrogen and water, where the decomposition step is carried out at temperatures of from 121° C. to 190° C. and a pressure of from 2 to 40 bar. The invention likewise relates to a plant for operation of the process of the invention.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: January 27, 2015
    Assignee: Linde Aktiengesellschaft
    Inventors: Nicole Schodel, Hans-Jorg Zander, Florian Winkler, Roland Ritter
  • Patent number: 8833279
    Abstract: A reactor (110) serves to combust residual carbon in fine particulate matter, remove a contaminant from fine particulate matter, or change the composition of fine particulate matter. The reactor output is processed by particle collection devices (115, 125, 140, 155, 175) and heat exchangers (135, 150, 165) to provide particle outputs (118, 124, 131, 144, 159) of different sizes. A contaminant, such as carbon or a metal, is combusted, vaporized, volatized, broken down, or substantially appears on one particle output (144) so that another particle output and the exhaust gas (142) are substantially contaminant-free. Different outputs can also be selectively mixed, as desired, to product a combined output (171). Fly ash and silica fume can be processed separately or together to reduce the amount of unburned carbon in both. Metals can also be removed from the fine particulate matter. Kaolin can also be processed to produce metakaolin.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: September 16, 2014
    Assignee: The SEFA Group Inc.
    Inventors: Jimmy C. Knowles, John M. Castleman, III
  • Patent number: 8758712
    Abstract: A wet scrubber (8) for cleaning a process gas containing sulphur dioxide comprises an absorption vessel (40) operative for bringing the process gas into contact with an absorption liquid to absorb sulphur dioxide from the process gas. The wet scrubber (8) further comprises an acidification system (90) operative for mixing absorption liquid that has absorbed sulphur dioxide from the process gas with a carbon dioxide containing gas, an absorbent dissolution tank (54) operative for adding an absorbent material to at least a portion of the absorption liquid, and a return pipe (104) operative for returning to the absorption vessel (40) at least a portion of the absorption liquid that has been mixed with the carbon dioxide containing gas.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: June 24, 2014
    Assignee: ALSTOM Technology Ltd
    Inventor: Stefan O. H. Åhman
  • Patent number: 8741225
    Abstract: A system and method is provided for capturing a carbonous gas and using the captured carbonous gas for cooling purposes. For example, a system may include a carbon capture system configured to collect a carbonous gas from a syngas, and a cooling system having a gas expander and a coolant circuit that receive the carbonous gas. The gas expander is configured to expand the carbonous gas to reduce a temperature of the carbonous gas to produce a reduced temperature carbonous gas, and the coolant circuit is configured to utilize the reduced temperature carbonous gas to cool at least one solvent of at least one gas purifier.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: June 3, 2014
    Assignee: General Electric Company
    Inventors: Judith Pauline Oppenheim, Anindra Mazumdar
  • Publication number: 20140127119
    Abstract: The present invention provides a carbon dioxide absorber capable of efficiently and stably removing carbon dioxide in a gas or solution. This carbon dioxide absorber contains an amine compound, a weakly acidic compound and water, the pKb value of the amine compound in an aqueous solution at 30° C. is 4.0 to 7.0, the pKa value of the weakly acidic compound in an aqueous solution at 30° C. is 7.0 to 10.0, and the weakly acidic compound is present in an amount within the range of 0.01 equivalents to 1.50 equivalents with respect to amino groups of the amine compound.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 8, 2014
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Norikazu Fujimoto, Kyouhei Hattori, Fumihiko Yamaguchi
  • Patent number: 8703075
    Abstract: A method of making acetic acid includes: (a) catalytically reacting methanol or a reactive derivative thereof with carbon monoxide in the presence of a homogeneous Group VIII metal catalyst and a methyl iodide promoter in a reactor vessel in a liquid reaction mixture including acetic acid, water, methyl acetate, methyl iodide and homogeneous catalyst, the reactor vessel being operated at a reactor pressure; (b) withdrawing reaction mixture from the reaction vessel and feeding the withdrawn reaction mixture along with additional carbon monoxide to a pre-flasher/post reactor vessel operated at a pressure below the reactor vessel pressure; (c) venting light ends in the pre-flasher vessel and concurrently consuming methyl acetate in the pre-flasher/post reactor vessel.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: April 22, 2014
    Assignee: Celawese International Corp.
    Inventor: Mark O. Scates
  • Publication number: 20130334463
    Abstract: A system includes a capture system, a storage system, and a return system. The capture system is configured to receive an outlet gas from a gasification system and to extract a component gas of the outlet gas using a regenerable material during a start-up operation of the gasification system. The storage system is coupled to the capture system and is configured to store the component gas extracted by the capture system. The return system is configured to return the component gas from the storage system to the gasification system during a normal operation of the gasification system.
    Type: Application
    Filed: June 18, 2012
    Publication date: December 19, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Judeth Brannon Corry, Raul Eduardo Ayala, Tiffany Elizabeth Pinard Westendorf
  • Publication number: 20130323614
    Abstract: Gas Stream Production The present invention provides a method for the production of carbon dioxide and/or hydrogen gas streams, the method comprising: (i) thermally treating a feedstock material to produce a syngas comprising carbon monoxide and hydrogen and plasma-treating the syngas in a plasma treatment unit; (ii) reacting the plasma-treated syngas with water in a further treatment unit, whereby at least some of the carbon monoxide is converted into carbon dioxide; and (iii) recovering hydrogen and/or, separately, carbon dioxide from the syngas.
    Type: Application
    Filed: January 6, 2012
    Publication date: December 5, 2013
    Applicant: ADVANCED PLASMA POWER LIMITED
    Inventors: Chris Chapman, Rolf Stein, Martin Brooks, Edward S. Manukian, Robert M. Clark
  • Patent number: 8535613
    Abstract: A method and an apparatus for separating acidic gases from syngas are capable of reducing the necessary power and are capable of obtaining high-purity CO2 at a high recovery ratio. A purification method and a purification system of coal gasification gas using the method and the apparatus are also provided. An apparatus for separating acidic gases from syngas containing acidic gases of C02 and H2S, in order, converts CO in the syngas into C02, removes H2S contained in the syngas by using a solvent for physical absorption, removes physical solvent from the syngas followed by heating in a heat exchanger using the converted syngas heat, and removes C02 from the heated syngas by using a solvent for chemical absorption.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 17, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shinji Ogino, Fumiaki Sato, Yudai Kato, Motonari Aihara, Kazuo Ishida, Seiji Kakesako
  • Publication number: 20130172614
    Abstract: A process for producing acetic acid comprising the steps of reacting carbon monoxide and at least one of methanol and a methanol derivative in a first reactor under conditions effective to produce a crude acetic acid product; separating the crude acetic acid product into at least one derivative stream, at least one of the at least one derivative stream comprising residual carbon monoxide; and reacting at least a portion of the residual carbon monoxide with at least one of methanol and a methanol derivative over a metal catalyst in a second reactor to produce additional acetic acid.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 4, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventor: Celanese International Corporation
  • Publication number: 20130142717
    Abstract: A process for the selective absorption of normally gaseous acid components from hydrocarbon gas mixtures containing both the acidic components and gaseous non-acidic components which is carried out in a gas separation unit located at an offshore marine production installation. The sorbent used in the process comprises a severely sterically hindered amino ether. The process is capable of selectively removing H2S from gas mixtures which also contain CO2 in addition to the hydrocarbon components.
    Type: Application
    Filed: November 28, 2012
    Publication date: June 6, 2013
    Inventors: Michael SISKIN, Robert A. FEDICH, Michel A. DAAGE, Thomas F. PARKERTON, Richard A. DAVI
  • Patent number: 8377156
    Abstract: The present subject matter is directed to a method for operating a fuel reformer. The method may generally include directing a fluid stream around a reactor assembly of the fuel reformer to cool the reactor assembly, and mixing a heated reformate stream produced by the reactor assembly with the fluid stream to cool the heated reformate stream.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan
  • Patent number: 8343445
    Abstract: A solvent based flue gas processing system for removing CO2 from a flue gas stream is provided in which a catalyst coated on a support structure is provided. The catalyst selected is capable of retaining CO2, at least for a period of time, thereby increasing the residence time of CO2 and solvent.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 1, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Zheng Liu, Naresh B. Handagama
  • Patent number: 8337763
    Abstract: A system for removing unwanted contaminates from fluid using a scrubber, which comprises a housing, a reaction chamber having a liquid level, and an inlet connected to a source containing fluid to be scrubbed with a contamination concentration greater than zero ppb to saturation. An exit port connected to the housing used for evacuating scrubbed fluid and a sintered permeable membrane disposed across the reaction chamber, which provides a reaction zone in the plurality of pores when fluid to be scrubbed is introduced to the membrane on a first side while the membrane is immersed in the biodiesel or biomass and a cleaned fluid on a second side wherein the clean fluid initially has a drop in contamination concentration of at least 99 percent and gradually decreasing to 70 percent as additional fluid to be scrubbed is introduced to the plurality of pores without replacing the biodiesel or biomass.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: December 25, 2012
    Assignee: Vapor Point, LLC
    Inventors: Jefferey St. Amant, Kenneth R. Matheson, Keith Nathan
  • Patent number: 8252251
    Abstract: The present subject matter discloses a fluid cooled reformer for gas turbine systems and a method for cooling both a fuel reformer and a heated reformate stream produced by such fuel reformer. The fluid cooled reformer may include a pressure vessel and a reactor assembly disposed within the pressure vessel. The reactor assembly may include a reactor and may be configured to receive and reform an oxygen/fuel mixture to produce a heated reformate stream. Additionally, the fluid cooled reformer may include an inlet configured to direct a fluid stream into the pressure vessel. At least a portion of the fluid stream may be used to cool the reactor assembly. A reformate cooling section may be disposed downstream of the reactor of the reactor assembly and may be configured to cool the heated reformate stream.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 28, 2012
    Assignee: General Electric Company
    Inventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan
  • Patent number: 8216345
    Abstract: A gasification system is disclosed having a combustion or reaction vessel, a scrubber housing, and a filter housing. A carbonaceous fuel is partially combusted in the reaction vessel to generate a combustible gas. An improved ash support and removal system reduces clogging and other problems in the reaction vessel. The combustible gas passes through the scrubber housing to remove matter such as tar and oil, and the scrubbed gas passes through a hybrid blower to the filter housing. Wood chips are used in the filter housing to provide a relatively clean, dry gas. Wastewater and other waste products from the scrubber housing and filter housing are captured and returned to the reaction vessel.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: July 10, 2012
    Assignee: Verde Reformation, Inc.
    Inventors: Jackie W. Rogers, Michael W. Rogers
  • Patent number: 8178061
    Abstract: Processes and systems are disclosed that relate to the removal of impurities and separation the light olefins from an MTO product vapor stream. Specifically, the processes and systems relate to recovery of light olefins during regeneration of an adsorber in an oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can include recycling residual effluent stream to an upstream operation unit upstream of the oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can also include recycling residual effluent gas produced by depressurizing residual effluent in the first adsorber, as well as preferably venting an effluent gas from the first adsorber to a compressor upstream of the oxygenate removal unit.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 15, 2012
    Assignee: UOP LLC
    Inventor: Jason T. Corradi
  • Patent number: 8158086
    Abstract: A gas treatment apparatus for treating a gas by bringing the gas into contact with a treatment liquid. The gas treatment apparatus includes a gas-liquid contact chamber for a gas-liquid contact of the gas with the treatment liquid, a storage chamber, located over the gas-liquid contact chamber, for storing the treatment liquid, and a treatment liquid supplying unit for supplying the treatment liquid stored in the storage chamber to an inside of the gas-liquid contact chamber with a gravity-drop.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: April 17, 2012
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kouichirou Terada, Takashi Yamaguchi, Takuya Saeki
  • Patent number: 8147787
    Abstract: Refinery off gases are treated in a plant in two processing steps, wherein the off gases are first scrubbed in a wash column using lean oils for removal of heavy mercaptans and C5+ hydrocarbons, and wherein a hydrotreater is then used for saturating olefinic hydrocarbons and reducing sulfurous compounds. Most preferably, lean recycle oil is used for temperature control of the hydrotreater reactor(s) in configurations where the lean oil from a hydrotreater reactor outlet separator is mixed with the reactor feed to so cool the hydrotreater reactor via evaporation.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: April 3, 2012
    Assignee: Fluor Technologies Corporation
    Inventors: John Mak, Robert Henderson
  • Publication number: 20120078012
    Abstract: A process for producing acetic acid comprising the steps of reacting carbon monoxide and at least one of methanol and a methanol derivative in a first reactor under conditions effective to produce a crude acetic acid product; separating the crude acetic acid product into at least one derivative stream, at least one of the at least one derivative stream comprising residual carbon monoxide; and reacting at least a portion of the residual carbon monoxide with at least one of methanol and a methanol derivative over a metal catalyst in a second reactor to produce additional acetic acid.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: Celanese International Corporation
    Inventors: G. Paull Torrence, Brian W. Hokkanen, Michael O. Nutt, Tianshu Pan, Ronald David Shaver
  • Publication number: 20110118366
    Abstract: The invention relates to a method and a system for operating a Fischer-Tropsch synthesis, wherein a feed gas comprising CO and H2 from coal gasification (1) is desulfurized and subsequently fed into a Fischer-Tropsch synthesis as an input gas, wherein hydrocarbons are formed from carbonic oxides and hydrogen by catalytic reactions. The hydrocarbons are separated as liquid products (4), and a gas flow comprising CO and CO2 exiting the Fischer-Tropsch synthesis unit (3) is compressed and fed into a conversion stage, wherein CO and steam are transformed into H2 and CO2. In the method according to the invention, the gas exiting the conversion stage is fed back into the Fischer-Tropsch synthesis unit as a gas rich in H2, together with the desulfurized input gas, after the gas is prepared in that CO2 and/or further components other than H2 are removed.
    Type: Application
    Filed: May 7, 2009
    Publication date: May 19, 2011
    Inventor: Johannes Menzel
  • Publication number: 20110015454
    Abstract: A biocomponent feedstock can be hydroprocessed using an FCC off-gas as a hydrogen source. A relatively low cost catalyst, such as a water gas shift catalyst and/or spent hydrotreating catalyst, can be used as a hydrogenation catalyst for the process. The hydroprocessing can allow for olefin saturation and/or deoxygenation of the biocomponent feed by using a relatively low value refinery stream.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 20, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Patrick L. Hanks
  • Publication number: 20110009665
    Abstract: A method of making acetic acid includes: (a) catalytically reacting methanol or a reactive derivative thereof with carbon monoxide in the presence of a homogeneous Group VIII metal catalyst and a methyl iodide promoter in a reactor vessel in a liquid reaction mixture including acetic acid, water, methyl acetate, methyl iodide and homogeneous catalyst, the reactor vessel being operated at a reactor pressure; (b) withdrawing reaction mixture from the reaction vessel and feeding the withdrawn reaction mixture along with additional carbon monoxide to a pre-flasher/post reactor vessel operated at a pressure below the reactor vessel pressure; (c) venting light ends in the pre-flasher vessel and concurrently consuming methyl acetate in the pre-flasher/post reactor vessel.
    Type: Application
    Filed: July 7, 2009
    Publication date: January 13, 2011
    Inventor: Mark O. Scates
  • Publication number: 20100329963
    Abstract: A system and method for calcination/carbonation cycle processing. The system comprises a calciner reactor for receiving partially carbonated mineral sorbent granules; a heat exchange structure for transferring heat through a wall of the calciner reactor to a granular flow of the sorbent granules for facilitating a calcination reaction of the sorbent granules to regenerate the sorbent granules; a gas extraction unit for removing gas products from the calciner, wherein the gas products comprise carbon dioxide from the calcination reaction; a carbonator reactor for receiving the regenerated sorbent granules from the calciner reactor and for receiving a cold flue gas, such that the regenerated sorbent granules are partially carbonised while the flue gas is scrubbed and the partially carbonated sorbent granules and the scrubbed flue gas exit the carbonator reactor as respective hot materials; and a riser unit for cycling the partially carbonated sorbent granules from the carbo?ator reactor to the calciner reactor.
    Type: Application
    Filed: October 23, 2006
    Publication date: December 30, 2010
    Applicant: Calix Pty Ltd.
    Inventors: Mark Geoffrey Sceats, Connor James Horley
  • Publication number: 20100317905
    Abstract: The invention relates to the use of biomethanol from the pulp industry in the production of biohydrogen. The preferred biomethanol comprises purified biomethanol derived from black liquor. The invention also relates to a process for the production of biohydrogen from crude biomethanol recovered from black liquor and to a process for producing hydrocarbon biofuel using such biohydrogen as a hydrogen source. The invention further relates to a biofuel production facility for producing fuel from biohydrogen and biohydrocarbon, and to biofuel so produced. The invention makes it possible to produce a biofuel, wherein 100% of the raw material stems from non-fossil sources.
    Type: Application
    Filed: October 29, 2008
    Publication date: December 16, 2010
    Applicant: UPM-KYMMENE OYJ
    Inventors: Petri Kukkonen, Pekka Knuuttila, Pekka Jokela