Including Product Separation Or Purification Means Patents (Class 422/618)
  • Patent number: 10300449
    Abstract: The invention relates to a neutralization plant (100) comprising at least one reaction chamber (102) having a first feed (114) for an acid-containing product and at least one further feed (116) for a base-containing product, wherein at least one of the feeds (114, 116) comprises at least one valve means (118, 120) for controlling the inflow amount into the reaction chamber (102), wherein the ion controller apparatus (104, 204, 205) comprises at least one evaluation device (106, 206) set up for determining at least one actual ion concentration based on an actual pH of the mixture (122) present in the reaction chamber (102) and wherein the ion controller apparatus (104, 204) comprises at least one ion controller device (108, 208) comprising at least one ion controller (110, 210.1, 210.2, 211) set up for controlling the valve means (118, 120) according to the actual ion concentration and a target ion concentration.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: May 28, 2019
    Assignee: BAYER AKTIENGESELLSCHAFT
    Inventor: Achim Küpper
  • Patent number: 9982947
    Abstract: A rotary kiln for reducing phosphate ore in kiln phosphoric acid process, comprising a kiln body, a kiln head box, a kiln tail box and a driving device for driving the rotation of the kiln body, wherein a fuel burner is provided at the kiln head, a feed pipe and an outlet flue connected to an external hydration tower are provided at the kiln tail box, the upper part of the kiln body is provided with no air pipe, the outlet flue is provided in the radius range of the kiln body with the axis of the rotary kiln as a center, and the fume conveying direction in the outlet flue is substantially parallel to the axis direction of the rotary kiln or has an included angle of less than 45° thereto. The rotary kiln can effectively mitigate the phenomenon of ring forming in the kiln tail of the rotary kiln.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: May 29, 2018
    Assignee: SICHUAN KO CHANG TECHNOLOGY CO., LTD.
    Inventors: Yonghe Hou, Shifa Wei, Pengsheng Wang, Jiabin Wang
  • Patent number: 9827547
    Abstract: A method is disclosed for controlling retention time in a reactor, such as an autoclave, having a plurality of compartments separated by dividers with underflow openings. A retention time of the reaction mixture is calculated and compared with an optimal retention time, and the volumes of the reaction mixture in the compartments are adjusted while maintaining the flow rate of the reaction mixture, so as to change the retention time to a value which is closer to the optimal retention time. The reactor may include a level sensor in the last compartment for generating volume data; a control valve for controlling the liquid level in the last compartment; and a controller which receives volume data from the level sensor and controls operation of the control valve.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: November 28, 2017
    Assignee: HATCH LTD.
    Inventors: Kevin S. Fraser, Murray S. Pearson, William E. McCombe
  • Patent number: 9695044
    Abstract: An apparatus for starting up and/or shutting down a plant for preparing nitric acid from ammonia and oxygenous gas may include at least one air compressor, at least one process gas cooler, at least one feed water preheater, and at least one residual gas turbine. The at least one process gas cooler and the at least one feed water preheater may include pipe coils, at least one of which is connected to a source for a heating medium such that the at least one pipe coil in the process gas cooler and/or the feed water preheater can be charged during startup and/or shutdown of the apparatus with the heating medium for heating the process gas flowing through the process gas cooler and feed water preheater. The apparatus may further include a heat exchanger downstream of the process gas cooler and/or the feed water preheater for transferring thermal energy from the heated process gas to the residual gas supplied to the residual gas turbine. Corresponding methods are also disclosed.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: July 4, 2017
    Assignee: THYSSENKRUPP INDUSTRIAL SOLUTIONS AG
    Inventor: Daniel Birke
  • Patent number: 9624141
    Abstract: A process for producing short-chain olefins by conversion of oxygenates in a multi-stage fixed-bed reactor, in which the individual stages for reaction zones are covered with beds of a granular, form-selective zeolite catalyst and the feed mixture containing oxygenates is added distributed over the reaction stages. An increase of the availability of the fixed-bed reactor for the olefin production with the same or an increased yield of short-chain olefins is achieved in that one or more reaction zones are charged with a distinctly reduced mass flow of the feed mixture containing oxygenates, wherein the reduced mass flow fraction is distributed over other reaction zones.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: April 18, 2017
    Assignee: L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Thomas Renner, Frank Castillo-Welter, Stephane Haag, Martin Gorny, Theis Ohlhaver, Roberta Olindo
  • Patent number: 9573863
    Abstract: In the production of low-molecular olefins, in particular of ethylene and propylene, an educt stream (O) containing at least one oxygenate and an educt stream (C) containing at least one C4+olefin are simultaneously converted in at least one identical reactor on an identical catalyst to obtain a product mixture (P) comprising low-molecular olefins and gasoline hydrocarbons. The ratio (V) of oxygenates in the educt stream (O) to C4+ olefins in the educt stream (C) here is 0.05 to 0.5 and is calculated according to the following formula: V = ? j ? k oxygenate - j * n oxygenate - j ? i ? k olefin - i * n olefin - i + ? j ? k oxygenate - j * n oxygenate - j with: koxygenate-j: carbon number of the oxygenate j noxygenate-j: molar flow rate of the oxygenate j kolefin-i: carbon number of the olefin i nolefin-i: molar flow rate of the olefin i.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: February 21, 2017
    Assignee: Lurgi GmbH
    Inventors: Gerhard Birke, Hermann Bach
  • Patent number: 9464009
    Abstract: The invention relates to a method for recovery of urea dust and ammonia from a gas stream by contacting said gas stream with an aqueous sulphuric acid solution, thus forming an acid solution of ammonium sulphate and urea, characterized in that the acid solution is concentrated to a melt comprising less than 5 wt % of water, which melt is subsequently transferred into solid particles comprising urea and ammonium sulphate.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: October 11, 2016
    Assignee: Stamicarbon B.V.
    Inventors: Jozef Hubert Meessen, Pantelis Orfanidis
  • Patent number: 9024095
    Abstract: A method for preparing fuel components from crude tall oil. Feedstock containing tall oil including unsaturated fatty acids is introduced to a catalytic hydrodeoxygenation to convert unsaturated fatty acids, rosin acids and sterols to fuel components. Crude tall oil is purified in a purification by washing the crude tall oil with washing liquid and separating the purified crude tall oil from the washing liquid. The purified crude tall oil is introduced directly to the catalytic hydrodeoxygenation as a purified crude tall oil feedstock. An additional feedstock may be supplied to the catalytic hydrodeoxygenation.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: May 5, 2015
    Assignee: UPM-Kymmene Corporation
    Inventors: Pekka Knuuttila, Petri Kukkonen, Ulf Hotanen
  • Patent number: 9017428
    Abstract: A two-stage reactor is disclosed for the conversion of solid particulate biomass material. The reactor is designed to maximize conversion of the solid biomass material, while limiting excess cracking of primary reaction products. The two-stage reactor comprises a first stage reactor, in which solid biomass material is thermally pyrolyzed to primary reaction products. The primary reaction products are catalytically converted in a second stage reactor.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: April 28, 2015
    Assignee: KiOR, Inc.
    Inventors: Michael Brady, Ronald Lee Cordle, Peter Loezos, Dennis Stamires
  • Publication number: 20150104362
    Abstract: A method of recovering molybdenum includes introducing resin comprising molybdenum anions into an elution vessel and eluting (separating) the molybdenum anions from the resin to form a molybdenum rich eluent. Small amounts of uranium within the eluent is precipitated into sodium diuranate and removed. A further precipitation process is performed to form ferrimolybdate from the molybdenum rich eluent, thus recovering molybdenum. The resin comprising the molybdenum anions may be generated by (1) moving a pregnant lixiviant (containing uranium and molybdenum) through a first extraction apparatus to capture uranium anions in resin and producing a barren lixiviant (containing mostly molybdenum, with small amount of uranium), and (2) moving the barren lixiviant through a second extraction apparatus to capture mostly molybdenum anions in resin.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 16, 2015
    Inventor: Pablo Avila
  • Patent number: 8986405
    Abstract: A gas generator and process for converting a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas. The gas generator is preferably used for generating protection gas or reducing gas for start up, shut down or emergency shut down of a SOFC or SOEC. The process for converting fuel into oxygen-depleted gas and/or a hydrogen-enriched gas includes combusting the fuel in a primary catalytic burner with an oxygen-containing gas to produce a flue gas with oxygen, combusting or partially oxidizing the flue gas comprising oxygen with excess fuel in a secondary catalytic burner to produce a gas with hydrogen and carbon monoxide, and reducing the trace amounts of oxygen from the gas comprising traces of oxygen and obtaining an oxygen-depleted gas, or reducing the carbon monoxide present in the gas by conversion to carbon dioxide or methane to obtain a hydrogen-enriched gas.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: March 24, 2015
    Assignee: Topsoe Fuel Cell A/S
    Inventor: Hassan Modarresi
  • Patent number: 8980143
    Abstract: A method for transforming a selected polymeric material into a plurality of reaction products via supercritical water is disclosed. The method comprises: conveying the selected polymeric material through an extruder, wherein the extruder is configured to continuously convey the selected polymeric material to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected polymeric material into the supercritical fluid reaction zone so as to yield a mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield the plurality of reaction products. The reaction zone may be characterized by a tubular reactor having an adjustably positionable inner tubular spear, wherein the tubular reactor and the inner tubular spear further define an annular space within the reaction zone, and wherein the mixture flows through the annular space and into a reaction products chamber.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: March 17, 2015
    Inventors: Thomas E. Loop, James D. Flynn, Graham Allan, Steven C. Van Swearingen, Kevin O. Gaw
  • Publication number: 20150072253
    Abstract: A hydrogen generator comprises a reformer configured to generate a hydrogen-containing gas through a reforming reaction using a raw material; a hydrodesulfurization unit configured to remove a sulfur compound from the raw material; a recycle passage configured to flow therethrough the hydrogen-containing gas to be added to the raw material in a state before the raw material flows into the hydrodesulfurization unit, the recycle passage having a downward slope; and a water drain passage configured to discharge condensed water generated in the downward slope of the recycle passage.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 12, 2015
    Inventors: Akihisa Yoshimura, Koichi Kusumura, Hirofumi Kokubu, Yoshio Tamura
  • Publication number: 20150044583
    Abstract: A hydrogen purifier includes: a CO remover configured to reduce carbon monoxide in a hydrogen-containing gas through an oxidation reaction, the hydrogen-containing gas containing ammonia and carbon monoxide; and an ammonia remover provided upstream from the CO remover, the ammonia remover being configured to cause a reaction between ammonia in the hydrogen-containing gas and oxygen by using a catalyst to decompose the ammonia.
    Type: Application
    Filed: March 7, 2013
    Publication date: February 12, 2015
    Inventors: Takahiro Kusuyama, Hidenobu Wakita, Chie Harada, Seiji Fujihara, Tomoyuki Nakajima
  • Patent number: 8852537
    Abstract: A method of adapting an axial flow reaction vessel having opposed ports to an opposed axial flow reaction vessel includes installing a process fluid collection system within the body of the vessel in fluid communication with one or more of the ports; providing the vessel with a bed of particulate catalyst or sorbent containing a layer of inert particulate material around the process fluid collection system; and adapting the feed to the vessel through one or more of the ports such that a process fluid fed to the vessel is passed axially and in the opposite direction through the fixed bed of catalyst or sorbent and is collected by the process fluid collection system disposed centrally within the bed and in fluid communication with one or more of the ports.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: October 7, 2014
    Assignee: Johnson Matthey PLC
    Inventors: Charles William Hooper, Michael Peter Roberts
  • Patent number: 8772555
    Abstract: The present invention is directed to methods (processes) and systems for processing triglyceride-containing, biologically-derived oils to provide for base oils and transportation fuels, wherein partial oligomerization of fatty acids contained therein provide for an oligomerized mixture from which the base oils and transportation fuels can be extracted. Such methods and systems can involve an initial hydrotreating step or a direct isomerization of the oligomerized mixture.
    Type: Grant
    Filed: August 30, 2010
    Date of Patent: July 8, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: Stephen J. Miller
  • Patent number: 8771616
    Abstract: A carbonylation process for producing acetic acid including: (a) carbonylating methanol or its reactive derivatives in the presence of a Group VIII metal catalyst and methyl iodide promoter to produce a liquid reaction mixture including acetic acid, water, methyl acetate and methyl iodide; (b) feeding the liquid reaction mixture at a feed temperature to a flash vessel which is maintained at a reduced pressure; (c) heating the flash vessel while concurrently flashing the reaction mixture to produce a crude product vapor stream, wherein the reaction mixture is selected and the flow rate of the reaction mixture fed to the flash vessel as well as the amount of heat supplied to the flash vessel is controlled such that the temperature of the crude product vapor stream is maintained at a temperature less than 90° F.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: July 8, 2014
    Assignee: Celanese International Corporation
    Inventor: Jeremy J. Patt
  • Patent number: 8690972
    Abstract: A hydrogen production system (X1) according to the present invention includes a reforming apparatus (Y1) having a vaporizer (1) and a reforming reactor (2), and a PSA apparatus (5). In the vaporizer (1) a mixed material (hydrocarbon-based material, water, and oxygen) is heated and vaporized. In the reforming reactor (2), steam reforming reaction and partial oxidation reaction of the hydrocarbon-based material take place at a time, so that reformed gas (containing hydrogen) is led out from the vaporized mixed material. In the PSA apparatus (5), the reformed gas is introduced into an adsorption tower loaded with an adsorbing agent, so that an unnecessary component in the gas is adsorbed by the adsorbing agent and hence hydrogen-rich gas is led out of the tower, while the unnecessary component is desorbed from the adsorbing agent, so that hydrogen-containing desorbed gas that contains the unnecessary component and hydrogen remaining in the tower is discharged out of the tower.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: April 8, 2014
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Yoshinori Takata, Masanori Miyake, Toshihiko Sumida
  • Publication number: 20140030171
    Abstract: The invention related to a nano-structured catalyst system for removing mercaptans and/or H2S from hydrocarbonous gas mixtures and an apparatus for removing mercaptans and H2S from gas streams utilizing the catalyst system.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Applicant: RIPI
    Inventors: Ali Mohamadalizadeh, Alimorad Rashidi, Jafar Towfighi, Ali Mohajeri, Morteza Rezapour, Kheirollah Jafarijozani, Mehdi Vahidi
  • Patent number: 8617492
    Abstract: A system for making low volatile carbonaceous material including a digestion vessel in communication with a carbonaceous material feedstock unit for producing a digested carbonaceous material; an extraction vessel in communication with the digestion vessel, the extraction vessel containing supercritical carbon dioxide fluid for extracting hydrocarbons from the digested carbonaceous material to produce an extract solvent and the low volatile carbonaceous material; and at least one separation vessel in communication with the extraction vessel for separating the extract solvent to a carbon dioxide gas and a stream of extracted hydrocarbons.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: December 31, 2013
    Assignee: Carbonxt Group Limited
    Inventors: Randall J. Harris, Damian Wales
  • Patent number: 8586779
    Abstract: The present invention relates in general terms to a process for preparing alkyl methacrylates, comprising as steps: providing an acetone cyanohydrin by a process according to one of the preceding claims; contacting the acetone cyanohydrin with an inorganic acid to obtain a methacrylamide; contacting the methacrylamide with an alcohol in the presence of an inorganic acid in a reactor to obtain an alkyl methacrylate; continuously discharging at least a portion of the alkyl methacrylate from the reactor into a distillation column as a vapor stream; the discharge being effected by feeding a discharge stream comprising steam into the reactor, to an apparatus for preparing alkyl methacrylates, to a process for preparing polymers based at least partly on alkyl methacrylates, to the use of the alkyl methacrylates obtainable by the process according to the invention in chemical products, and to chemical products based on alkyl methacrylates obtainable by the process according to the invention.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: November 19, 2013
    Assignee: Evonik Röhm GmbH
    Inventors: Udo Gropp, Robert Weber, Thomas Schaefer, Andreas Perl, Rudolf Sing, Thomas Mertz
  • Patent number: 8551295
    Abstract: A reactive distillation apparatus for multistage counter-current rotating bed includes a closed shell, in the center of which a revolving shaft linking each shell section is set, the shaft is provided with two or more rotors in series connection, a feeding inlet, a reflux inlet and an outlet of the gas phase are mounted on the top end face of the shell while a waste liquid outlet and an inlet of the gas phase are set on the bottom end face of the shell, a group of concentric dynamic filler rings with different diameters are installed at intervals along the radial direction, wherein the wall of the dynamic filler rings is holed, and the ring clearance between the dynamic filler rings is configured with static rings fastened on the static disc; a feeding inlet is arranged on the top cover of the shell corresponding to the spray nozzle of raw material liquid; a rotating liquid distributor is arranged on the inner side of the innermost dynamic filler ring of the said lower rotor.
    Type: Grant
    Filed: June 12, 2010
    Date of Patent: October 8, 2013
    Assignee: Beijing University of Chemical Technology
    Inventors: Jian-Feng Chen, Peng-Yuan Zhang, Guang-Wen Chu, Hai-Kui Zou, Wei Wu, Qin Shi
  • Publication number: 20130243675
    Abstract: A reactor for adsorbing CO2 from a fluid stream includes a reactor housing having a fluid inlet and a fluid outlet. The reactor also includes an inlet ceramic honeycomb structure and an outlet ceramic honeycomb structure positioned inside the reactor housing. The inlet and outlet ceramic honeycomb structures have a plurality of partition walls extending in an axial direction thereby forming a plurality of flow channels and comprises a material that forms bonds with CO2 to adsorb the CO2. The inlet ceramic honeycomb structure is capable of adsorbing an inlet quantity of CO2 and the outlet ceramic honeycomb structure is capable of adsorbing an outlet quantity of CO2. The inlet quantity of CO2 is greater than the outlet quantity of CO2.
    Type: Application
    Filed: March 14, 2012
    Publication date: September 19, 2013
    Inventors: Amit Halder, Steven Bolaji Ogunwumi
  • Patent number: 8501123
    Abstract: An improved process for removing polymeric by-product (ASO) from the HF alkylation acid in an HF alkylation unit used for the production of gasoline boiling range alkylate product by olefin/iso-paraffin alkylation, comprises fractionating a portion of the circulating HF alkylation acid inventory of the unit with a portion of hot alkylate product in a fractionation zone to from an overhead product comprising HF alkylation acid and water and a bottoms fraction comprising the polymeric by-product and alkylate. The bottoms fraction is sent to the isoparaffin stripper of the unit to remove trace HF alkylation acid as overhead and form a product stream of hot alkylate as a bottoms fraction.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: August 6, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: D'Arcy H. J. Blais, Doug F. Bodeux, Steve L. Burgwin, Alexander D. Chan, Gary S. Locke, Jerry H. Squires, Sarah J. Virtue
  • Publication number: 20130172614
    Abstract: A process for producing acetic acid comprising the steps of reacting carbon monoxide and at least one of methanol and a methanol derivative in a first reactor under conditions effective to produce a crude acetic acid product; separating the crude acetic acid product into at least one derivative stream, at least one of the at least one derivative stream comprising residual carbon monoxide; and reacting at least a portion of the residual carbon monoxide with at least one of methanol and a methanol derivative over a metal catalyst in a second reactor to produce additional acetic acid.
    Type: Application
    Filed: February 28, 2013
    Publication date: July 4, 2013
    Applicant: CELANESE INTERNATIONAL CORPORATION
    Inventor: Celanese International Corporation
  • Publication number: 20130172606
    Abstract: Methods and apparatus for producing terephthalic acid using a p-xylene stream enriched with p-toluic acid are described. The apparatus includes first and second reactor zones. The reactor zones can be in the same reactor or in different reactors.
    Type: Application
    Filed: December 29, 2011
    Publication date: July 4, 2013
    Applicant: UOP LLC
    Inventors: Alakananda Bhattacharyya, Raymond C. Shih
  • Patent number: 8444940
    Abstract: A reactor is described for the production of C2 to C8 olefins from gaseous oxygenate and H2O and one or more material flows containing C2 C4, C5, C6, C7, C8 olefin and paraffin at 400° to 470° C., wherein several reaction stages which the material flow can pass through from the top to the bottom, each consisting of a support base with a catalyst layer situated on it, are arranged in a closed, upright container.
    Type: Grant
    Filed: April 21, 2007
    Date of Patent: May 21, 2013
    Assignee: Lurgi GmbH
    Inventors: Hermann Bach, Lothar Brehm, Jurgen Bohle, Gunter Quass, Gunther Heinz, Katja Bartels, Heinrich Dörr, Harald Kömpel
  • Publication number: 20130025192
    Abstract: A solar thermochemical processing system is disclosed. The system includes a first unit operation for receiving concentrated solar energy. Heat from the solar energy is used to drive the first unit operation. The first unit operation also receives a first set of reactants and produces a first set of products. A second unit operation receives the first set of products from the first unit operation and produces a second set of products. A third unit operation receives heat from the second unit operation to produce a portion of the first set of reactants.
    Type: Application
    Filed: July 26, 2012
    Publication date: January 31, 2013
    Applicant: BATTELLE MEMORIAL INSTITUTE
    Inventors: Robert S. Wegeng, Paul H. Humble, Shankar Krishnan, Steven D. Leith, Daniel R. Palo
  • Patent number: 8362299
    Abstract: The present invention relates to a method for purifying an unpurified phase, containing a target product, preferably (meth)acrylic acid, water, and at least one impurity differing from the target product and from water comprising: a) crystallizing the target product and water; b) separating the crystals from the mother liquor created in step a); c) melting at least part of the separated crystals to form a melt; and d) recycling at least part of said melt to step b). The invention further relates to a method for the production of a purified phase, containing a target product and water, a method for the production of a polymer based on (meth)acrylic acid, polymers that may be obtained by means of said method, chemical products, such as fibers or molded bodies, and the use of polymers.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: January 29, 2013
    Assignee: Evonik Stockhausen GmbH
    Inventors: Axel Hengstermann, Franz-Felix Kuppinger, Jorg Leistner, Jurgen Mosler, Peter Jansens
  • Patent number: 8323590
    Abstract: A process and apparatus are presented for the removal of carbon monoxide from ethylene streams. The removal of carbon monoxide before selective hydrogenation protects the catalyst in the selective hydrogenation reactor. Carbon monoxide levels are controlled with the water gas shift process to convert the carbon monoxide to carbon dioxide, with the carbon dioxide removed in an acid gas removal process.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 4, 2012
    Assignee: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche
  • Publication number: 20120301373
    Abstract: A method for producing 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene using a single set of four unit operations, the unit operations being (1) hydrogenation of a starting material comprising hexafluoropropene and optionally recycled 1,1,1,2,3-pentafluoropropene; (2) separation of the desired intermediate hydrofluoroalkane, such as 1,1,1,2,3,3-hexafluoropropane and/or 1,1,1,2,3-pentafluoropropane; (3) dehydrofluorination of the intermediate hydrofluoroalkane to produce the desired 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene, followed by another separation to isolate the desired product and, optionally, recycle of the 1,1,1,2,3-pentafluoropropene.
    Type: Application
    Filed: August 9, 2012
    Publication date: November 29, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: YUON CHIU, STEPHEN A. COTTRELL, HSUEH SUNG TUNG, HALUK KOPKALLI, GUSTAVO CERRI
  • Publication number: 20120256129
    Abstract: A process and apparatus are provided for gasification of a carbonaceous material. The process produces a raw syngas that can be further processed in a tar destruction zone to provide a hot syngas. The process includes contacting said carbonaceous material with molecular oxygen-containing gas in a gasification zone to gasify a portion of said carbonaceous material and to produce a first gaseous product. A remaining portion of the carbonaceous material is contacted with molecular oxygen-containing gas in a burn-up zone to gasify additional portion of the carbonaceous material and to produce a second gaseous product and a solid ash. The first gaseous product and said second gaseous product are combined to produce a raw syngas that includes carbon monoxide (CO), carbon dioxide (CO2) and tar. The raw syngas is contacted with molecular oxygen containing gas in a tar destruction zone to produce said hot syngas.
    Type: Application
    Filed: March 22, 2012
    Publication date: October 11, 2012
    Inventors: Peter S. Bell, Chin-Whan Ko, Sean Slape, Scott Breshears, Kim Ocfemia
  • Publication number: 20120219490
    Abstract: A method for simultaneously producing carbon nanotubes and hydrogen according to the present invention is a method for simultaneously producing carbon nanotubes and hydrogen, in which using a carbon source containing carbon atoms and hydrogen atoms and being decomposed in a heated state, and a catalyst for producing carbon nanotubes and H2 from the carbon source, the above carbon nanotubes are synthesized on a support in a heated state, placed in a reactor, and simultaneously, the above H2 is synthesized from the above carbon source, the method comprising a synthesis step of flowing a source gas comprising the above carbon source over the above support, on which the above catalyst is supported, to synthesize the above carbon nanotubes on the above support and simultaneously synthesize the above H2 in a gas flow.
    Type: Application
    Filed: September 9, 2010
    Publication date: August 30, 2012
    Inventors: Suguru Noda, Dong Young Kim, Toshio Osawa, Hisashi Sugime, Kei Hasegawa, Eisuke Haba
  • Publication number: 20120219870
    Abstract: A hydrogen purifier (100) includes: a shift conversion catalyst (5a) which reduces, through a shift reaction, carbon monoxide contained in a hydrogen-containing gas; and a methanation catalyst (6a) which reduces, through a methanation reaction, carbon monoxide contained in the hydrogen-containing gas that has passed through the shift conversion catalyst (5a). The shift conversion catalyst (5a) and the methanation catalyst (6a) are heat exchangeable with each other via a first partition wall (8), and a flow direction of the hydrogen-containing gas that passes through the shift conversion catalyst (5a) is opposite to a flow direction of the hydrogen-containing gas that passes through the methanation catalyst (6a).
    Type: Application
    Filed: August 24, 2011
    Publication date: August 30, 2012
    Inventors: Tomoyuki Nakajima, Hidenobu Wakita, Seiji Fujihara, Yukimune Kani
  • Publication number: 20120203015
    Abstract: An integrated process for preparing alkylene oxides and alkylene glycols is described. For this purpose, an alkylene oxide plant and an alkylene glycol plant are combined with one another and the water originating from the alkylene oxide plant and also other constituents of the reaction mixture are introduced into the alkylene glycol plant. In this way, alkylene glycols which have been produced in the alkylene oxide plant can be recovered as materials of value and the water circulation into the alkylene glycol plant can be eliminated or drastically reduced. In addition, the energy-intensive treatment of the process water from the alkylene oxide plant can be dispensed with. The integration of the two processes leads overall to better energy efficiency and conservation of resources in the work-up of residues from the process.
    Type: Application
    Filed: August 12, 2010
    Publication date: August 9, 2012
    Inventor: Ferdinand Rudolf Reif
  • Publication number: 20120190535
    Abstract: Provided is a preparation method of a catalyst slurry used for synthesizing hydrocarbons by contact with a synthesis gas which includes carbon monoxide gas and hydrogen gas as main components. The method includes the step of preparing the catalyst slurry having solid catalyst particles suspended in a liquid medium, wherein adopting a petroleum solvent which is a liquid at normal temperature and normal pressure as the liquid medium.
    Type: Application
    Filed: August 12, 2010
    Publication date: July 26, 2012
    Inventors: Yasuhiro Onishi, Masaki Shingu, Yuichi Tanaka
  • Publication number: 20120136181
    Abstract: A method of removing alkalinity and salt from a nitroaromatic product downstream of water washing to remove mineral acids and alkaline washing to remove salts of organic acids, comprises washing the product stream with an acidic aqueous solution, prior to the step of removing excess organic reactant, by steam stripping or distillation. Acid removed from the stripper or column is recycled back for use in the acidic washing. The acidic washing is done instead of the neutral washing step of the prior art. It removes residual salt and decreases the level of entrained colloidal water in the nitroaromatic product.
    Type: Application
    Filed: August 18, 2009
    Publication date: May 31, 2012
    Applicant: NORAM INTERNATIONAL LIMITED
    Inventor: Sergio Berretia
  • Publication number: 20120117860
    Abstract: A two-stage reactor is disclosed for the conversion of solid particulate biomass material. The reactor is designed to maximize conversion of the solid biomass material, while limiting excess cracking of primary reaction products. The two-stage reactor comprises a first stage reactor, in which solid biomass material is thermally pyrolyzed to primary reaction products. The primary reaction products are catalytically converted in a second stage reactor.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 17, 2012
    Applicant: KiOR, Inc.
    Inventors: Michael Brady, Ronald Lee Cordle, Peter Loezos, Dennis Stamires
  • Patent number: 8178061
    Abstract: Processes and systems are disclosed that relate to the removal of impurities and separation the light olefins from an MTO product vapor stream. Specifically, the processes and systems relate to recovery of light olefins during regeneration of an adsorber in an oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can include recycling residual effluent stream to an upstream operation unit upstream of the oxygenate removal unit. Processes and systems for recovering light olefins during regeneration of an adsorber in an oxygenate removal unit can also include recycling residual effluent gas produced by depressurizing residual effluent in the first adsorber, as well as preferably venting an effluent gas from the first adsorber to a compressor upstream of the oxygenate removal unit.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: May 15, 2012
    Assignee: UOP LLC
    Inventor: Jason T. Corradi
  • Publication number: 20120107182
    Abstract: A process and apparatus are presented for the removal of carbon monoxide from ethylene streams. The removal of carbon monoxide before selective hydrogenation protects the catalyst in the selective hydrogenation reactor. Carbon monoxide levels are controlled with the water gas shift process to convert the carbon monoxide to carbon dioxide, with the carbon dioxide removed in an acid gas removal process.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 3, 2012
    Applicant: UOP LLC
    Inventors: David A. Wegerer, Kurt M. Vanden Bussche
  • Patent number: 8163047
    Abstract: A method of cooling hot fluid flowing through a chamber is provided. The method includes channeling cooling fluid through at least one cooling tube that extends through a passage of the chamber, and circulating the hot fluid flowing within the passage around the at least one cooling tube using at least one fluid diverter.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: April 24, 2012
    Assignee: General Electric Company
    Inventors: George Albert Goller, Daniel Anthony Nowak
  • Patent number: 8147765
    Abstract: A novel process and apparatus is disclosed for sustainable, continuous production of hydrogen and carbon by catalytic dissociation or decomposition of hydrocarbons at elevated temperatures using in-situ generated carbon particles. Carbon particles are produced by decomposition of carbonaceous materials in response to an energy input. The energy input can be provided by at least one of a non-oxidative and oxidative means. The non-oxidative means of the energy input includes a high temperature source, or different types of plasma, such as, thermal, non-thermal, microwave, corona discharge, glow discharge, dielectric barrier discharge, or radiation sources, such as, electron beam, gamma, ultraviolet (UV). The oxidative means of the energy input includes oxygen, air, ozone, nitrous oxide (NO2) and other oxidizing agents.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: April 3, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Nazim Z. Muradov, Franklyn Smith, Ali Tabatabaie-Raissi
  • Publication number: 20120076711
    Abstract: A structure is disclosed containing a sorbent with amine groups that is capable of a reversible adsorption and desorption cycle for capturing CO2 from a gas mixture wherein said structure is composed of fiber filaments wherein the fiber material is carbon and/or polyacrylonitrile.
    Type: Application
    Filed: February 8, 2010
    Publication date: March 29, 2012
    Applicant: ETH ZURICH
    Inventors: Christoph Gebald, Jan André Wurzbacher, Aldo Steinfeld
  • Publication number: 20120078012
    Abstract: A process for producing acetic acid comprising the steps of reacting carbon monoxide and at least one of methanol and a methanol derivative in a first reactor under conditions effective to produce a crude acetic acid product; separating the crude acetic acid product into at least one derivative stream, at least one of the at least one derivative stream comprising residual carbon monoxide; and reacting at least a portion of the residual carbon monoxide with at least one of methanol and a methanol derivative over a metal catalyst in a second reactor to produce additional acetic acid.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: Celanese International Corporation
    Inventors: G. Paull Torrence, Brian W. Hokkanen, Michael O. Nutt, Tianshu Pan, Ronald David Shaver
  • Publication number: 20120047793
    Abstract: Systems and methods for treating hydrogen recycle gas in a process for converting biorenewable feedstock into green diesel fuel are provided. Sponge oil is provided. Hydrogen recycle gas produced during the process is contacted with the sponge oil. The sponge oil and hydrogen recycle gas are contacted in a contact drum and propane and other light hydrocarbons from the hydrogen recycle gas are absorbed into the sponge oil producing purified recycle gas and propane-rich sponge oil. The purified recycle gas is recycled into the process and the propane-rich sponge oil is fractionated to recover propane. The sponge oil may be sour sponge oil to also sulfide a deoxygenation catalyst used in the process.
    Type: Application
    Filed: August 31, 2010
    Publication date: March 1, 2012
    Applicant: UOP LLC
    Inventors: Vedula Kasipati Murty, Donald Eizenga, Charles P. Luebke, Samarjit Singh
  • Publication number: 20120017499
    Abstract: Disclosed herein are example embodiments of torrefaction systems and methods for producing torrefied products from biomass. Exemplary embodiments include catalytic oxidation and/or reuse of the resultant combustion gases directly in a torrefaction reactor, a cooler, and/or a dryer/preheater.
    Type: Application
    Filed: September 21, 2011
    Publication date: January 26, 2012
    Applicant: ADVANCED TORREFACTION SYSTEMS, INC.
    Inventor: Mark Alan Leonhardt
  • Patent number: 8075856
    Abstract: The present invention is a multiple reaction set for the production of chemicals by equilibrium limited reactions utilizing plate-type or extended surface heat exchangers. The heat exchangers effectively cool the reaction products in order to condense the methanol contained within the reaction products for separation, and also to warm incoming feed reactants prior to entrance of the reactants into a reactor utilized for the production of methanol. The various reactors, heat exchangers, and separators can be formed as separated zones within the enclosed vessels, thereby eliminating the need for separately constructed reactors, heat exchangers, and separators. Multi-stream plate-type of extended surface heat exchangers can be utilized to allow efficient cooling and methanol separation.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: December 13, 2011
    Inventors: James Andrew Banister, Anthony Matthew Johnston, Brian S. Haynes
  • Publication number: 20110288347
    Abstract: A method for producing 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene using a single set of four unit operations, the unit operations being (1) hydrogenation of a starting material comprising hexafluoropropene and optionally recycled 1,1,1,2,3-pentafluoropropene; (2) separation of the desired intermediate hydrofluoroalkane, such as 1,1,1,2,3,3-hexafluoropropane and/or 1,1,1,2,3-pentafluoropropane; (3) dehydrofluorination of the intermediate hydrofluoroalkane to produce the desired 1,1,1,2-tetrafluoropropene and/or 1,1,1,2,3-pentafluoropropene, followed by another separation to isolate the desired product and, optionally, recycle of the 1,1,1,2,3-pentafluoropropene.
    Type: Application
    Filed: August 1, 2011
    Publication date: November 24, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: YUON CHIU, STEPHEN A. COTTRELL, HSUEH SUNG TUNG, HALUK KOPKALLI, GUSTAVO CERRI
  • Patent number: 8057666
    Abstract: A supercritical fluid polymer depolymerization machine is disclosed herein, which machine is capable of converting a wide range of biomass and/or waste plastic materials into a plurality of reaction products (liquid and gaseous) including fermentable sugars, hydrocarbons, and various aromatic substances that, in turn, are readily convertible into liquid transportation fuel known as “neodiesel.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 15, 2011
    Assignee: Xtrudx Technologies, Inc.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Publication number: 20110274991
    Abstract: A desulfurizer-reformer reactor system comprising a gradient assembly having a de-sulfurizing material and a re-forming catalyst material arranged in a sequential manner and methods of generating energy are disclosed.
    Type: Application
    Filed: June 5, 2009
    Publication date: November 10, 2011
    Applicant: UNIVERSITY OF TOLEDO
    Inventor: Abdul-Majeed Azad