Measuring Electrical Property Patents (Class 422/82.01)
  • Patent number: 8323570
    Abstract: The invention relates to different designs of a microelectronic sensor device comprising an array of heating elements (HE) and an array of sensor elements (SE) that are aligned with respect to each other adjacent to a sample chamber (SC). By applying appropriate currents to the heating elements (HE), the sample chamber can be heated according to a desired temperature profile.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: December 4, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Mark Thomas Johnson, Hendrikus Alfonsus Roelof Stapert, Marc Wilhelmus Gijsbert Ponjee
  • Patent number: 8323982
    Abstract: Fluid analyte sensors include a photoelectrocatalytic element that is configured to be exposed to the fluid, if present, and to respond to photoelectrocatalysis of at least one analyte in the fluid that occurs in response to impingement of optical radiation upon the photoelectrocatalytic element. A semiconductor light emitting source is also provided that is configured to impinge the optical radiation upon the photoelectrocatalytic element. Related solid state devices and sensing methods are also described.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: December 4, 2012
    Assignee: Valencell, Inc.
    Inventors: Steven Francis LeBoeuf, Jesse Berkley Tucker, Michael Edward Aumer
  • Publication number: 20120301360
    Abstract: Devices used in conjunction with detecting analytes and methods of their manufacture are disclosed. A pre-concentrator device includes a thermoelectric material and an aerogel which includes a nanostructured material disposed on, and in thermal communication with, the thermoelectric material. Such a pre-concentrator is part of a detection system including a sensor. The detection system is used in a method for detecting analytes.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 29, 2012
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: Mitchell W. MEINHOLD, Andrew A. GUZELIAN, Robert A. ROUFAIL, Brent M. SEGAL, James M. SPATCHER, Aaron G. SELL, Eric C. HOLIHAN, Jonathan A. NICHOLS
  • Patent number: 8318505
    Abstract: A multiple-gate field-effect transistor includes a fluid in a top gate, two lateral gates, and a bottom gate. The multiple-gate field-effect transistor also includes a patterned depletion zone and a virtual depletion zone that has a lesser width than the patterned depletion zone. The virtual depletion zone width creates a virtual semiconductor nanowire that is lesser in width than the patterned depletion zone.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: November 27, 2012
    Assignee: Intel Corporation
    Inventors: Gil Shalev, Amihood Doron, Ariel Cohen
  • Patent number: 8318477
    Abstract: A cellular electrophysiological measurement device includes a thin plate and a frame. The thin plate has a first surface with a depression and a second surface with a through-hole. The frame is in contact with an outer periphery on the second surface of thin plate. The thin plate has a laminated structure of at least two layers including a first material layer on the first surface and a second material layer on the second surface. The frame is formed of a third material layer. The structure allows the cellular electrophysiological measurement device to be not so vulnerable to breakage of thin plate and other damages, thereby having high production yield.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Takashi Yoshida, Masatoshi Kojima
  • Patent number: 8318096
    Abstract: A wireless blood glucose meter is a battery-powered apparatus to communicating wirelessly with a portable terminal, and includes a blood glucose level detector that measures a blood glucose level, a transmitter that transmits the blood glucose level measured by the blood glucose level detector to the portable terminal, a receiver that receives a response signal sent from the portable terminal in response to the transmission of the blood glucose level by the transmitter to the portable terminal, and a voltage monitor that monitors the output voltage of the battery. A transmission control circuit changes the transmission method used by the transmitter on the basis of the output voltage of the battery as detected by the voltage monitor.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Eiji Okuda, Tooru Aoki, Norio Imai, Akiyoshi Oozawa
  • Patent number: 8318098
    Abstract: Embodiments of the present technique facilitate the detection of analytes. Detection is generally achieved by binding agents labeled with non-radiative energy transfer acceptors. The binding agents, when bound to a specific analyte, change conformation such that the distance between the respective non-radiative energy transfer acceptors and a respective quantum dot or quantum well changes. Certain embodiments of the present technique also comprise readout circuitry configured to determine rates of non-radiative energy transfer electrically and not optically.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventor: Rogerio Geraldes Rodrigues
  • Patent number: 8318099
    Abstract: Embodiments of the invention include a wireless sensor, such as an RFID tag, that includes a substrate, an antenna disposed on the substrate, and an environmentally sensitive sensor material disposed over at least a portion of said substrate. Other embodiments an RFID tag and at least one antibody coupled to the RFID tag. The RFID tag includes a substrate, circuitry disposed on the substrate, and an antenna coupled to the substrate. The at least one antibody is capable of affecting the signals emanating from the RFID tag. Further embodiments include a detection system that includes a reader. Yet other embodiments include a method for detecting specific analytes. The method includes providing an RFID tag which emanates a first signal having a first frequency, and enabling the REID tag to emanate a second signal having a second frequency upon attraction of a specific analyte to the RFID tag.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: November 27, 2012
    Assignee: General Electric Company
    Inventors: Radislav Alexandrovich Potyrailo, William Guy Morris, Kenneth Brakeley Welles, II, Andrew Michael Leach, Andrew David Pris
  • Patent number: 8318107
    Abstract: Disclosed herein are a system for collecting a sample and optionally detecting or analyzing an electrical property thereof, the method comprising: means for obtaining a sample in a sample container; means for directing the sample into a sensing chamber in fluid communication with the sample container, the sensing chamber comprising a plurality of sensing chamber electrodes positioned at the sensing chamber and configured to be in contact with the sample when the sample is directed into the sensing chamber; means for applying an electrical signal to the sample with a read-out analyzer via the plurality of sensing chamber electrodes; the plurality of sensing chamber electrodes in operable communication with the read-out analyzer; and means for detecting the effect of the sample on the electrical signal, thereby determining an electrical property of the sample.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: November 27, 2012
    Assignee: Biosense Technologies, Inc.
    Inventors: Ronald J. Rieder, John R. Howatt, Alexander Sloutsky, John Oleksy
  • Patent number: 8313904
    Abstract: Characteristics of a chemical or biological sample are detected using an approach involving light detection. According to an example embodiment of the present invention, an assaying arrangement including a light detector is adapted to detect light from a sample, such as a biological material. A signal corresponding to the detected light is used to characterize the sample, for example, by detecting a light-related property thereof. In one implementation, the assaying arrangement includes integrated circuitry having a light detector and a programmable processor, with the light detector generating a signal corresponding to the light and sending the signal to the processor. The processor provides an output corresponding to the signal and indicative of a characteristic of the sample.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: November 20, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Abbas El Gamal, Helmy Eltoukhy, Khaled Salama
  • Patent number: 8313940
    Abstract: A self-addressable, self-assembling microelectronic device is designed and fabricated to actively carry out and control multi-step and multiplex molecular biological reactions in microscopic formats. These reactions include nucleic acid hybridization, antibody/antigen reaction, diagnostics, and biopolymer synthesis. The device can be fabricated using both microlithographic and micro-machining techniques. The device can electronically control the transport and attachment of specific binding entities to specific micro-locations. The specific binding entities include molecular biological molecules such as nucleic acids and polypeptides. The device can subsequently control the transport and reaction of analytes or reactants at the addressed specific micro-locations. The device is able to concentrate analytes and reactants, remove non-specifically bound molecules, provide stringency control for DNA hybridization reactions, and improve the detection of analytes. The device can be electronically replicated.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: November 20, 2012
    Assignee: Gamida For Life B.V.
    Inventors: Michael J. Heller, Eugene Tu
  • Patent number: 8313907
    Abstract: Methods and apparatus for direct detection of chemical reactions are provided. In a preferred embodiment, electric charge perturbations of the local environment during enzyme-catalyzed reactions are sensed by an electrode system with an immobilized target molecule. The target molecule is preferably DNA. The charge perturbation caused by the polymerase reaction can uniquely identify a DNA sequence. The polymerization process generates local perturbations of charge in the solution near the electrode surface and induces a charge in a polarazible gold electrode. This event is detected as a transient current by a voltage clamp amplifier. Detection of single nucleotides in a sequence can be determined by dispensing individual dNTPs to the electrode solution and detecting the charge perturbations. Alternatively, multiple bases can be determined at the same time using a mix of all dNTPs with subsequent analysis of the resulting signal.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: November 20, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Nader Pourmand, Miloslav Karhanek, Ronald W. Davis
  • Patent number: 8313956
    Abstract: An apparatus for the selective release of a bound species based on the presence of an analyte, the apparatus comprising: a first and second receptor species, the first receptor species linked with a bound species and configured to interact with an analyte to form a first intermediate complex, the bound species for causing increased porosity of a membrane of an in-contact analyte sensor apparatus to correspondingly increase exposure of a sensing element of the analyte sensor apparatus to allow for production of a detectable electrical signal which can be used to sense the presence of the analyte, the second receptor species for interacting with the first intermediate complex to form a second intermediate complex; and a cleaving species, the cleaving species configured to interact with the second intermediate complex to release the bound species for use in sensing the presence of the analyte.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: November 20, 2012
    Assignee: Nokia Corporation
    Inventor: Marc James Ashton Bailey
  • Patent number: 8313697
    Abstract: The present invention relates to a cartridge 1 including a plurality of analyzing tools 3 arranged lined in a plane direction and a case 2 for accommodating the plurality of analyzing tools 3, and being configured to take out the analyzing tool 3 one at a time from the case 2. The plurality of analyzing tools 3 further include engagement means 32, 33 for restricting the analyzing tools 3 adjacent to each other in the plane direction and allowing removable attachment in a thickness direction D1, D2 of the analyzing tool 3. The present invention further relates to an analyzer and an analyzing system for analyzing a sample using the cartridge 1.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 20, 2012
    Assignee: Arkray, Inc.
    Inventor: Yoshiharu Sato
  • Publication number: 20120288948
    Abstract: The invention includes compositions, devices, and methods for analyzing a polymer and/or polymer unit. The polymer may be a homo- or hetero-polymer such as DNA, RNA, a polysaccharide, or a peptide. The device includes electrodes that form a tunnel gap through which the polymer can pass. The electrodes are functionalized with a reagent attached thereto, and the reagent is capable of forming a transient bond to a polymer unit. When the transient bond forms between the reagent and the unit, a detectable signal is generated and used to analyze the polymer.
    Type: Application
    Filed: January 31, 2011
    Publication date: November 15, 2012
    Applicant: ARIZONA BOARD OF REGENTS
    Inventors: Stuart Lindsay, Shuai Chang, Jin He, Peiming Zhang, Shuo Huang
  • Patent number: 8309028
    Abstract: The present invention provides a chemiresistor-based sensor for measuring the presence or amount of analyte in an electrolyte solution; said chemiresistor comprising (i) a chemiresistor film wherein the impedance of said nanoparticle film changes in the presence of an analyte; and (ii) two electrically conducting electrodes in electrical contact with said nanoparticle film; wherein said electrically conducting electrodes are adapted to be connected to a device for measuring the impedance of said chemiresistor film under a voltage signal and wherein the impedance of the double layer capacitor formed by the two electrically conducting electrodes in the presence of the electrolyte solution, is larger than the impedance of the chemiresistor film either before or after exposure of the chemiresistor film to the analyte. A method of using said chemiresistor-based sensor to measure the presence or amount of analyte is also provided.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: November 13, 2012
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Burkhard Raguse, Edith Chow
  • Patent number: 8309024
    Abstract: A system for non-destructive determination of the degree of fluorination in carbon monofluoride (CFx) during the process of CFx synthesis is described. The system includes a measuring generator containing a capacitive sensor for measuring a respective capacitance, a base generator containing a capacitive sensor for measuring a base capacitance, and a processor for determining a difference between the respective capacitance and the base capacitance. The system is configured to determine the degree of fluorination based on the difference between the respective capacitance and the base capacitance.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Enerize Corporation
    Inventors: Volodymyr I Redko, Elena M Shembel, Volodymyr S Khandetskyy, Dayal T Meshri, Isaac A Angres, Robert Adams, Dmytro Sivtsov, Oxana V Redko, Tymofiy V Pastushkin
  • Publication number: 20120282602
    Abstract: Provided herein is technology relating to testing biological samples and particularly, but not exclusively, to devices, systems, and kits for performing multiple, simultaneous real-time assays on a sample in a single-use disposable format. For example, the technology relates to an apparatus that finds use, for example, for point-of-care diagnostics, including use at accident sites, emergency rooms, in surgery, in intensive care units, as well as for non-medical applications.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: IBIS BIOSCIENCES, INC.
    Inventors: Jared J. Drader, Gordon Bruce Collier, Steven A. Hofstadler
  • Publication number: 20120282616
    Abstract: A device for receiving a sample carrier is provided. The device includes an opening for receiving part of the sample carrier and a cutter for removing a part of the sample carrier. The cutter is coupled to a lid, which is movable to allow the cutter to make an incision in the sample carrier and, at the same time, to close at least part of the opening left open after receipt of the sample carrier. The disclosure further relates to a system comprising such a device and a method for operating such a device.
    Type: Application
    Filed: November 4, 2011
    Publication date: November 8, 2012
    Applicant: BIOCARTIS SA
    Inventors: Harmina Zeijlstra, Ronald De Gier, Marloes M. E. B. Van De Wal, Ronaldus M. H. Steyvers, Astrid E. Visser
  • Patent number: 8303893
    Abstract: Provided are a method and an apparatus that enable rapid and automatic determination of the coagulant injection rate in a process of water treatment through coagulation and sedimentation. Using a coagulation analyzer comprising sample tanks 1A to 1D each for keeping a predetermined amount of raw water, a water supply pump 7, water supply/discharge valves 4, 6 for raw water and washing water, mixers 3A to 3D, a coagulant injection unit 21, and a detector 30 for determining the particle size and the particle number of flocs, the time within which the coagulant 20 injected into the sample tanks is dispersed by mixing and the particles begin to agglomerate (agglomeration start time) is determined, and based on the thus-determined agglomeration start time, the coagulant injection rate is determined, or the amount of the coagulant to be injected is controlled.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: November 6, 2012
    Assignee: Metawater Co., Ltd.
    Inventors: Dabide Yamaguchi, Yoshiharu Tanaka, Tokio Ohto, Takashi Nakayama
  • Patent number: 8303897
    Abstract: An organic chemical sensor includes a dielectric core that comprises an elastomer and a high dielectric constant material. The elastomer absorbs an organic chemical to be sensed. An electrically conductive layer is secured to a first side of the dielectric core. A permeable conductive layer is secured to a second side of the dielectric core. The permeable conductive layer is electrically conductive and permeable to the organic chemical to be sensed. The absorption of the organic chemical to be sensed by the elastomeric layer causes a decrease in the capacitance between the electrically conductive layer and the permeable conductive layer.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: November 6, 2012
    Inventors: Jeannine O. Colla, Paul E. Thoma
  • Patent number: 8303896
    Abstract: An object of the present invention is to provide a biosensor and a method for immobilizing a physiologically active substance, by which preconcentration effects can be obtained at a pH that is equivalent to or higher than the isoelectric point of the physiologically active substance and the physiologically active substance can be covalently bound to the surface. The present invention provides a biosensor comprising a solid substrate to which a polymer having a primary or secondary amino group is bound, by which a physiologically active substance can be chemically immobilized following preconcentration of the substance at a pH that is equivalent to or higher than the isoelectric point of the substance.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: November 6, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Taisei Nishimi, Toshihide Ezoe
  • Patent number: 8298486
    Abstract: Objects of the present invention is to provide a piezoelectric resonator having high frequency stability and a sensing sensor using the piezoelectric resonator. In the present invention, a piezoelectric resonator 1 has: a first oscillation area 105 which is provided in a piezoelectric piece 100 and from which a first oscillation frequency is taken out; a second oscillation area which is provided in an area 105 different from the first oscillation area 106 via an elastic boundary area 107 and from which a second oscillation frequency is taken out; and excitation electrodes 101 to 103 provided on one surface side and another surface side of the oscillation areas 105, 106 across the piezoelectric piece 100, and a frequency difference between the first oscillation frequency and the second oscillation frequency is not less than 0.2% nor greater than 2.2% of these oscillation frequencies.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: October 30, 2012
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Shigenori Watanabe, Takeru Mutoh, Mitsuaki Koyama
  • Patent number: 8298828
    Abstract: The present disclosure relates to various methods for measuring the amount of an analyte present in a biological fluid using an electrochemical testing process. Various embodiments are disclosed, including the use of AC test signals and the performance of tests having a Total Test Time within about 3.0 seconds or less, and/or having a clinically low Total System Error.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: October 30, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Eric R. Diebold, Terry A. Beaty, Harvey B. Buck, Jr.
  • Patent number: 8298488
    Abstract: A microfabricated TID comprises a microhotplate and a thermionic source disposed on the microhotplate. The microfabricated TID can provide high sensitivity and selectivity to nitrogen- and phosphorous-containing compounds and other compounds containing electronegative function groups. The microfabricated TID can be microfabricated with semiconductor-based materials. The microfabricated TID can be combined with a microfabricated separation column and used in microanalytical system for the rapid on-site detection of pesticides, chemical warfare agents, explosives, pharmaceuticals, and other organic compounds that contain nitrogen or phosphorus.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: October 30, 2012
    Assignee: Sandia Corporation
    Inventors: Patrick R. Lewis, Ronald P. Manginell, David R. Wheeler, Daniel E. Trudell
  • Patent number: 8293194
    Abstract: The present invention relates to an analyzing device to be used by inserting an analytical instrument 2 comprising a plurality of terminal portions 25A to 28A therein, the device including a plurality of terminals 42 and 43 having a shape of a flat spring to be in contact with the plurality of terminal portions 25A to 28A, and a disposal mechanism for disposing of the analytical instrument 2 after completing an analysis. Contact portions 46 and 47 in the plurality of terminals 42 and 43 having a flat-spring shape to be in contact with the plurality of terminal portions 25A to 28A are placed to be in non-parallel with a direction orthogonal to a disposal direction D1 of the analytical instrument 2 in planar view. The portions 46 and 47 in the plurality of terminals 42 and 43 having the flat-spring shape are preferably placed so as to have a symmetrical or substantially symmetrical positional relationship relative to a center line L1 of the analytical instrument 2 extending along the disposal direction D1.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: October 23, 2012
    Assignee: Arkray, Inc.
    Inventors: Hideki Nishimura, Yasushi Dobuchi
  • Patent number: 8293538
    Abstract: The present invention provides a test strip for measuring a concentration of an analyte of interest in a biological fluid, wherein the test strip may be encoded with information that can be read by a test meter into which the test strip is inserted.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: October 23, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Henning Groll
  • Publication number: 20120264222
    Abstract: An ultrasensitive method for detecting non-aromatic non-planar nitroamine analytes in a sample is provided.
    Type: Application
    Filed: December 7, 2010
    Publication date: October 18, 2012
    Applicant: Yissum Research Development Company of The Hebrew University of Jerusalem Ltd.
    Inventors: Itamar Willner, Ran Tel-Vered, Michael Riskin
  • Publication number: 20120261256
    Abstract: This invention has two synergistic elements for simultaneous use in point-of-care or field analyses of diverse substances important to clinical medicine and other applications. The first element is a sample holder in which are stored the several reagents need for quantification of target molecules. The onboard storage of reagents in a water soluble plastic obviates the need for purchase, storage, measuring and mixing of the required reagents prior to analyses. The second part of the invention is a compact hand-held analyzer made of modern miniature optical components, into which the holder is inserted right after it is loaded with a sample by capillary action. The combination of the holder and analyzer permits analyses that are ten times faster than those done with current analyzers, and equally accurate. Analyses can be performed by diverse people, who require only a few minutes of training in the use of the entire invention.
    Type: Application
    Filed: February 22, 2012
    Publication date: October 18, 2012
    Inventors: Chia-Pin CHANG, David J. Nagel
  • Patent number: 8287717
    Abstract: The present invention relates to systems, methods, and devices for determining the concentration of an analyte in a sample. The use of linear, cyclic, or acyclic voltammetric scans and/or semi-integral, derivative, or semi-derivative data treatment may provide for increased accuracy when determining the concentration of an analyte in a sample. Hematocrit compensation in combination with the data treatments may reduce the hematocrit effect with regard to a glucose analysis in whole blood. In another aspect, fast scan rates may reduce the hematocrit effect.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: October 16, 2012
    Assignee: Bayer HealthCare LLC
    Inventor: Huan-Ping Wu
  • Patent number: 8287810
    Abstract: A membrane strip biosensor device using a fluid mobile conductive composition of ferromagnetic particles bound to a conductive polymer bound to a capture reagent is described. The biosensor device is designed to detect analytes at low concentrations in near real-time with an electronic data collection system and can be small. The device can be used to detect pathogens, proteins, and other biological materials of interest in food, water, and environmental samples.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: October 16, 2012
    Assignee: Board of Trustees of Michigan State University
    Inventors: Evangelyn C. Alocilja, Sudeshna Pal, Emma B. Setterington
  • Patent number: 8283184
    Abstract: In a method for measurement of very small local magnetic fields, in particular of local magnetic stray fields produced by magnetic beads, at least one magnetoresistive element is used. The element includes a hard-magnetic reference layer and a soft-magnetic sensor layer, whose magnetization can be rotated to a parallel position or an antiparallel position with respect to the reference layer magnetization, and whose output signal which can be tapped off is dependent on the position of the sensor layer magnetization with respect to the reference layer magnetization.
    Type: Grant
    Filed: September 20, 2006
    Date of Patent: October 9, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Manfred Rührig
  • Patent number: 8283175
    Abstract: A test device for determining the concentration of at least one analyte in a sample using a element is proposed. The test device can be used particularly for glucose measurement, in particular blood glucose measurement, cholesterol measurement and/or coagulation measurement. The test device according to the invention comprises a housing with a closed state and an opened state, and a storage device for receiving at least one test element. The at least one test element is typically designed as a strip-shaped test element, and the storage device typically comprises a magazine. The magazine comprises a plurality of cavities, and the test elements are received substantially parallel to one another in the cavities. A measuring device and a dispensing device are also provided. The dispensing device comprises means for conveying the at least one test element from at least one storage position of the storage device during opening of the housing.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: October 9, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Gregor Bainczyk, Thomas Eisele, Herbert Wieder
  • Patent number: 8277628
    Abstract: Disclosed are a method and apparatus that use an electric field for improved biological assays. The electric field is applied across a device having wells, which receive reactants, which carry a charge. The device thus uses a controllable voltage source between the first and second electrodes, which is controllable to provide a positive charge and a negative charge to a given electrode. By controlled use of the electric field charged species in a fluid in a fluid channel are directed into or out of the well by an electric field between the electrodes. The present method involves the transport of fluids, as in a microfluidic device, and the electric field-induced movement of reactive species according to various assay procedures, such as DNA sequencing, synthesis or the like.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: October 2, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mostafa Ronaghi, Tarun Khurana, Juan G. Santiago
  • Patent number: 8277729
    Abstract: The present invention is to present a sample analyzer which is capable of respond immediately when a need to perform analysis of multiple items arises. The sample analyzer 1 includes a table 12 capable of holding a first rack 320 and a second rack 330; a reagent dispensing arm 120 which comprises a pipette part 121; a reagent dispensing driving section 120a for moving the reagent dispensing arm 120; a reagent barcode reader 350; and a control section 501 for controlling the reagent dispensing driving section 120a so as to move the pipette part 121 to a predetermined reagent aspirating position according to the identification information obtained by the reagent barcode reader 350.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: October 2, 2012
    Assignee: Sysmex Corporation
    Inventors: Naohiko Matsuo, Hiroyuki Fujino, Takamichi Naito, Nobuhiro Kitagawa
  • Patent number: 8278110
    Abstract: A method and a blood oxygen tester for determining whether a blood sample is arterial or venous blood are disclosed. A blood oxygen tester for determining whether a blood sample is arterial or venous blood includes a housing and a blood sample receptacle defined by the housing. A blood oxygen sensor is in communication with the blood sample receptacle and a test result indicator is in communication with the blood oxygen sensor. The indicator is responsive to the blood oxygen sensor for indicating whether a tested blood sample is arterial blood or venous blood.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 2, 2012
    Inventor: Ali Ghobadi
  • Patent number: 8277731
    Abstract: To shorten the time required for an oscillation frequency to stabilize in a sensing device sensing a substance to be sensed by using the fact that a natural frequency of a piezoelectric resonator changes when the substance to be sensed is adsorbed by an adsorption layer formed on the piezoelectric resonator. A sensing device includes: an oscillator circuit 4 oscillating a quartz-crystal resonator 12; and an intense excitation circuit that is formed by the oscillator circuit 4 including a series circuit of a resistor 52 and a third transistor 53 of PNP type and that intensely excites the quartz-crystal resonator 12 connected to the oscillator circuit 4 for a period of time preset by a one-shot circuit 22 by supplying the quartz-crystal resonator 12 with high power equal to or more than twice regular power supplied at the time of the measurement of the substance to be sensed, to stabilize the oscillation of the quartz-crystal resonator 12.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: October 2, 2012
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Tomoya Yorita, Junichiro Yamakawa, Shigenori Watanabe, Mitsuaki Koyama
  • Patent number: 8273532
    Abstract: In a molecular analysis system, there is provided a structure including a nanopore and first and second fluidic reservoirs. The two reservoirs are fluidically connected via the nanopore. A detector is connected to detect molecular species translocation of the nanopore, from one of the two fluidic reservoirs to the other of the two fluidic reservoirs. A controller is connected to generate a control signal to produce conditions at the nanopore to induce the molecular species to re-translocate the nanopore at least once after translocating the nanopore. This enables a method for molecular analysis in which a molecular species is translocated a plurality of times through a nanopore in a structure between two fluidic reservoirs separated by the structure.
    Type: Grant
    Filed: October 2, 2008
    Date of Patent: September 25, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: Marc H. Gershow, Jene A. Golovchenko, Daniel Branton
  • Patent number: 8273566
    Abstract: Disclosed are methods for conducting assays of samples, such as whole blood, that may contain cells or other particulate matter. Also disclosed are systems, devices, equipment, kits and reagents for use in such methods. One advantage of certain disclosed methods and systems is the ability to rapidly measure the concentration of an analyte of interest in blood plasma from a whole blood sample without blood separation and hematocrit correction.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: September 25, 2012
    Assignee: Meso Scale Technologies, LLC
    Inventors: Mark A. Billadeau, Jeff D. Debad, Eli N. Glezer, Jonathan K. Leland, Charles A. Wijayawardhana
  • Patent number: 8268242
    Abstract: A hydrogen sensor includes a substrate, a hydrogen absorbing member, a power source, an ammeter, and a processing unit. The hydrogen absorbing member is positioned on the substrate, and includes a carbon nanotube yarn and a hydrogen absorbing film coated on the carbon nanotube yarn. The ammeter measures an electric current. The hydrogen absorbing member and the ammeter are connected in series to the power source. The processing unit is electrically coupled to the ammeter to obtain a hydrogen concentration according to the electric current.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: September 18, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Tai-Hsu Chou
  • Patent number: 8268243
    Abstract: A measurement module for glucose testing includes a glucose testing measurement module housing, a test strip receptacle formed in the housing, and a connector portion formed in the housing and shaped to permit mechanical removable attachment of the housing to a hand-held computer. Electronics determine the amount of glucose present in a sample of body fluid, when the test strip is positioned in the receptacle and the body fluid is placed on a test strip, and communicate the glucose amount to the hand-held computer via the connector portion.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: September 18, 2012
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Steven Drucker, Charles T. Liamos, Fredric C. Colman, Mark Lortz, Kelley Lipman, Feng Jiang, Henrik Bacho
  • Patent number: 8268629
    Abstract: A system and method for characterizing a liquid hydrocarbon fuel having unknown or variable composition is described and shown herein.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: September 18, 2012
    Assignee: dTEC Systems L.L.C.
    Inventors: Thomas Coleman, Frederick Wolf, James E Bruya
  • Patent number: 8268247
    Abstract: An electrophoresis apparatus is generally disclosed for sequentially analyzing a single sample or multiple samples having one or more analytes in high or low concentrations. The apparatus comprises a relatively large-bore transport capillary which intersects with a plurality of small-bore separation capillaries and includes a valve system. Analyte concentrators, having antibody-specific (or related affinity) chemistries, are stationed at the respective intersections of the transport capillary and separation capillaries to bind one or more analytes of interest. The apparatus allows the performance of two or more dimensions for the optimal separation of analytes. The apparatus may also include a plurality of valves surrounding each of the analyte concentrators to localize each of the concentrators to improve the binding of one or more analytes of interest.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 18, 2012
    Assignee: Princeton Biochemicals, Inc.
    Inventor: Norberto A. Guzman
  • Patent number: 8268245
    Abstract: A method for determining analytes in a liquid is provided comprising applying a liquid volume to be examined to a substrate of a transport plane; moving the liquid volume to be examined on the substrate of the transport plane to a site of examination; contacting the liquid volume to be examined with at least one sensory element, wherein the sensory element is located in a detection plane opposite to the substrate of the transport plane; and determining an analyte in the liquid volume to be examined by the sensory element, wherein the liquid volume is only in contact with the substrate of the transport plane during the step of moving the liquid volume to be examined on the substrate of the transport plane to a site of examination. The application also concerns a device for determining analytes in a liquid corresponding to the method according to the invention.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: September 18, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventor: Hans-Peter Wahl
  • Patent number: 8263409
    Abstract: An apparatus for estimating or supervising one or more internal mechanical properties of a metal alloy object with a known chemical composition based on the resistivity of the metal alloy object. The apparatus includes a device for measuring the resistivity of the metal alloy object, and a computation unit adapted to calculate the content of dissolved alloying elements in the metal alloy object based on the measured resistivity and the known chemical composition of the metal alloy, and based thereon to calculate at least one internal mechanical property of the metal alloy object.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: September 11, 2012
    Assignee: ABB AB
    Inventors: Sten Linder, Lennart Thegel
  • Patent number: 8262998
    Abstract: The invention describes a detection device that comprise nanostructures and which detection mechanism is based on the quantum confinement effects. The analyte species are sensed by measuring charge or/and energy transfer between the species and the nanostructures, which will be proportional to the overlap between the density of states distribution in the nanostructures and the density of states distribution in the targeted analyte species.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: September 11, 2012
    Inventors: Branislav Vlahovic, Vanja Vlahovic
  • Patent number: 8262876
    Abstract: A blood glucose measurement device (50) comprises a test piece insertion unit (10) for inserting, holding, and electrically connecting a test piece on which an electrode pattern has been formed, a measurement circuit (16) for electrochemically measuring a biological sample that has been placed in the form of a spot on the test piece, a communication circuit (15) for transmitting the result of measurement with the measurement circuit (16) by wireless communication using an antenna electrode (2C) equipped with the test piece, and a switch (14) that is connected to the test piece insertion unit (10) for switching between the measurement circuit (16) and the communication circuit (15).
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: September 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Kazuo Manabe, Norio Imai, Akiyoshi Oozawa
  • Patent number: 8262995
    Abstract: The invention concerns a pluggable data transfer module and a method that can be used to transfer data from an analytical system to a data processing unit in a galvanically decoupled manner. This invention is particularly suitable for medical fields of application in which recently it has become more and more desirable to process analytical data of a patient.
    Type: Grant
    Filed: December 11, 2002
    Date of Patent: September 11, 2012
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Udo Manser, Dieter Schaefer, Michael Schabbach, Peter Kuenstler
  • Publication number: 20120222958
    Abstract: Disclosed are methods and devices for detection of ion migration and binding, utilizing a nanopipette adapted for use in an electrochemical sensing circuit. The nanopipette may be functionalized on its interior bore with metal chelators for binding and sensing metal ions or other specific binding molecules such as boronic acid for binding and sensing glucose. Such a functionalized nanopipette is comprised in an electrical sensor that detects when the nanopipette selectively and reversibly binds ions or small molecules. Also disclosed is a nanoreactor, comprising a nanopipette, for controlling precipitation in aqueous solutions by voltage-directed ion migration, wherein ions may be directed out of the interior bore by a repulsing charge in the bore.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nader Pourmand, Boaz Vilozny, Paolo Actis, R. Adam Seger, Bakthan Singaram
  • Patent number: RE43815
    Abstract: An electrochemical biosensor test strip with four new features. The test strip includes an indentation for tactile feel as to the location of the strips sample application port. The sample application port leads to a capillary test chamber, which includes a test reagent. The wet reagent includes from about 0.2% by weight to about 2% by weight polyethylene oxide from about 100 kilodaltons to about 900 kilodaltons mean molecular weight, which makes the dried reagent more hydrophilic and sturdier to strip processing steps, such as mechanical punching, and to mechanical manipulation by the test strip user. The roof of the capillary test chamber includes a transparent or translucent window which operates as a “fill to here” line, thereby identifying when enough test sample (a liquid sample, such as blood) has been added to the test chamber to accurately perform a test. The test strip may further include a notch located at the sample application port. The notch reduces a phenomenon called “dose hesitation”.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: November 20, 2012
    Assignees: Roche Diagnostics Operations, Inc., Roche Operations Ltd.
    Inventors: William F. Crismore, Nigel A. Surridge, Daniel R. McMinn