Analysis Based On Electrical Measurement Patents (Class 422/98)
  • Patent number: 10545108
    Abstract: A thin film gas sensor device includes a substrate, a first pillar, a second pillar, a nanostructured thin film layer, and a first and a second electrical contact. The first and second pillars are supported by the substrate. The nanostructured thin film layer is formed with a semi-conductor material including holes. The semiconductor material is configured to undergo a reduction in a density of the holes in the presence of a target gas, thereby increasing an electrical resistance of the nanostructured thin film layer. The first and the second electrical contacts are operably connected to the nanostructured thin film layer, such that the increase in electrical resistance can be detected.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: January 28, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Ashwin K. Samarao, Gary O'Brien, Ando Feyh
  • Patent number: 10495618
    Abstract: A multi-channel particle and/or gas detector including an array of detector elements held in a housing structure, the structure configured to provide each detector element with an inlet and an outlet, wherein each inlet, detector element and outlet form a dedicated detector channel which operatively communicates with a sampling tube.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: December 3, 2019
    Assignee: Xtralis Global
    Inventor: Alasdair James Williamson
  • Patent number: 10458306
    Abstract: An object is to prevent a wrong diagnosis from being made in an abnormality diagnosis apparatus for an exhaust gas purification system including a filter and a PM sensor. After sensor regeneration is performed, the application of voltage to the PM sensor is started, and thereafter abnormality diagnosis of the PM sensor is performed based on whether or not a signal is output from the PM sensor. Abnormality diagnosis of the filter is performed based on whether or not the output value of the PM sensor reaches a predetermined abnormality criterion value. If the output value of the PM sensor reaches the predetermined abnormality criterion value before a predetermined diagnosis completion time after the abnormality diagnosis of the PM sensor, the filter is diagnosed as abnormal, and the application of voltage to the PM sensor is stopped at that time.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: October 29, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuya Takaoka, Toru Kidokoro
  • Patent number: 10408779
    Abstract: A gas sensor includes: a first conductive layer; a second conductive layer including a first region having a first thickness and a second region having a second thickness larger than the first thickness; a metal oxide layer disposed between the first conductive layer and the second conductive layer, the metal oxide layer including a bulk region and a local region surrounded by the bulk region, a degree of oxygen deficiency of the local region being higher than that of the bulk region; and an insulation layer covering the first conductive layer, the second region of the second conductive layer, and the metal oxide layer and not covering the first region of the second conductive layer.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: September 10, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Zhiqiang Wei, Kazunari Homma, Satoru Fujii
  • Patent number: 10274421
    Abstract: Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, redox-active molecules, a metal, or any combinations thereof. In some exemplary embodiments, optical properties of the plasmonic nanomaterials and/or the redox-active molecules combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the material or as a result of charge transfer to and from the plasmonic nanomaterial and/or the redox-active molecule as a result of interactions with the MOF material.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: April 30, 2019
    Assignees: Oregon State University, U.S. Department of Energy
    Inventors: Chih-hung Chang, Ki-Joong Kim, Alan X. Wang, Yujing Zhang, Xinyuan Chong, Paul R. Ohodnicki
  • Patent number: 10101186
    Abstract: A method and a measuring apparatus for determining specific quantities for the gas quality in which the gas or gas mixture flows through an ultrasonic flow sensor as well as through a microthermal sensor, and the former is used for determining the sound and flow velocity and the latter for determining the thermal conductivity and the thermal capacity of the gas or gas mixture. The sound velocity, the thermal conductivity and the thermal capacity are subsequently used for the correlation of the specific quantities for the gas quality.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: October 16, 2018
    Assignee: MEMS AG
    Inventor: Philippe Pretre
  • Patent number: 10060875
    Abstract: A method of co-functionalizing single-walled carbon nanotubes for gas sensors, which includes the steps of: fabricating single-walled carbon nanotube interconnects; synthesizing tin oxide onto the single-walled carbon nanotube interconnects; and synthesizing metal nanoparticles onto the tin oxide coated single-walled carbon nanotube interconnects.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: August 28, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nosang Vincent Myung, Syed Mubeen, Ashok Mulchandani, Marc Arnold Deshusses
  • Patent number: 9927365
    Abstract: A method of making a measuring instrument, such as a gas analyser (20), comprises the steps of: selecting one or more measuring devices, such as an electrochemical cell (9) and/or an infrared gas analyser (14), from a group of measuring devices; selecting a tubular profile (5) of the appropriate length for the selected measuring devices; and mounting the selected measuring devices (9, 14) in the tubular profile (5).
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: March 27, 2018
    Assignee: AG Instruments Ltd.
    Inventor: Hany Agaiby
  • Patent number: 9880126
    Abstract: Disclosed are a biosensor, a method of producing the same, and a method of detecting a biomaterial through the biosensor. The biosensor includes a substrate, an insulating layer, source and drain electrodes formed on the insulating layer, a middle-discontinuous channel provided between the source and drain electrodes, and a detection area on which a detection target material is to be fixed, covering the middle-discontinuous channel.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: January 30, 2018
    Assignee: Ajou University Industry-Academic Cooperation Foundation
    Inventors: Jae-Ho Kim, Sung-Wook Choi, Jae-Hyeok Lee, Gwang Hyeon Nam
  • Patent number: 9835595
    Abstract: Disclosed sensors can include at least one resonator (in some embodiments, at least two resonators) and various other structures that may be formed in association with the resonators. The at least one resonator in embodiments can include a bottom electrode, a piezoelectric layer, and a top electrode, wherein the piezoelectric layer is positioned between the bottom electrode and the top electrode.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: December 5, 2017
    Assignee: QORVO US, INC.
    Inventors: James Russell Webster, Peter J. Schiller, Richard Allan Van Deusen, Ian Robert Harmon
  • Patent number: 9664633
    Abstract: A resistive hydrogen sensor has at least two electrical connections and at least one resistance layer containing at least one suitable material for incorporating hydrogen, via which the electrical connections are connected to each other. The resistance layer adjoins at least one interface on a contact layer, which contains at least one chemical element from the fourth subgroup of the periodic table and/or carbon. The contact layer connected in series between the electrical connections to the resistance layer.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: May 30, 2017
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Müller, Mirko Frank
  • Patent number: 9417207
    Abstract: A method of selectively sensing the concentration of a target gas in polluted ambient air comprises the steps of: —providing a target gas sensor (220) sensitive to the target gas; —providing a first gas flow derived from the ambient air, from which first flow the target gas is substantially removed; —providing a second gas flow derived from the ambient air, substantially comprising the same target gas concentration as the ambient air; —exposing the target gas sensor to the first gas flow during a first time interval, and obtaining from the sensor a first output signal (Smf); —exposing the target gas sensor to the second gas flow during a second time interval not overlapping with the first time interval, and obtaining a second output signal (Smu); —calculating the difference (S?) between the first and the second output signals; calculating the concentration of the target gas from the calculated signal difference (S?).
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: August 16, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johan Marra, Johan Hendrik Klootwijk, Jacobus Bernardus Giesbers, Nico Maris Adriaan De Wild, Marcel Bulder, Rogier Adrianus Henrica Niessen, Peter Van Der Linde
  • Patent number: 9389212
    Abstract: One example includes a sensor for sensing NOX, including an electrically insulating substrate, a first electrode and a second electrode, each disposed onto the substrate, wherein each of the first electrode and the second electrode has a first end configured to receive a current and a second end and a sensor element formed of nickel oxide powder, the sensor element disposed on the substrate in electrical communication with the second ends of the first electrode and the second electrode. In some examples, electronics are used to measure the change in electrical resistance of a sensor in association with NOx concentration near the sensor. In some examples, the sensor is maintained at 575° C.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: July 12, 2016
    Assignee: Honeywell International Inc.
    Inventors: Tripathy Sanjeeb, Abhilasha Srivastava, Raju Raghurama, Reddappa Reddy Kumbarageri, Srinivas S. N. Mutukuri
  • Patent number: 9289155
    Abstract: Disclosed is a method and device for detection of H. Pylori in breath emissions utilizing an unlabelled urea, in which a patient ingests a safe quantity of unlabelled urea. After ingestion, expired breath of the patient is analyzed for ammonia, with a detection based on levels of ammonia lower than 50 parts per billion to 500 ppm to detect helicobacter pylori.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 22, 2016
    Assignee: The Research Foundation For The State University of New York
    Inventors: Basil Rigas, Anastasia Rigas, Pelagia-Irene Gouma
  • Patent number: 9285251
    Abstract: The present invention relates to gas sensor housing (1), comprising: a gas sensor (3) held by a housing body (11) below a primary gas permeable membrane (2); at least one connector element (10) molded into the housing body (11) such that the respective ends thereof enable connectivity to the gas sensor (3) such that signals may be carried from the gas sensor (3) to the connector element (10); a sensor envelope (9) providing an enclosure for the housing body (11); means for retaining the primary gas permeable membrane (2) in place above the gas sensor (3); a spacer section (7) providing a separation distance (X) between the gas sensor (3) and the primary gas permeable membrane (2).
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: March 15, 2016
    Assignee: INFICON AB
    Inventors: Fredrik Enquist, Peter Hebo
  • Patent number: 9034266
    Abstract: A method for sensing hydrogen includes the use of a transduction device with a sensing layer, and means for measuring a mass and/or conductivity change caused by an interaction of a gas with the sensing layer to provide a measure of an amount of hydrogen in the gas. The sensing layer includes polyaniline nanofiber material.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 19, 2015
    Assignees: The Aerospace Corporation, The Regents of the University of California
    Inventors: Shabnam Virji, Richard B. Kaner, Bruce H. Weiller
  • Patent number: 9028756
    Abstract: A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Takashi Yamato, Naohiko Matsuo, Satoshi Iguchi
  • Patent number: 9023283
    Abstract: A separate excitation and high sensitive resonant type mass sensor is provided. The resonant type mass sensor 1 includes: an oscillator 3; an vibrator 2 placed on the oscillator 3; and a detecting unit 5 for detecting the resonant frequency of the vibrator 2, and is characterized in that the vibrator 2 and the oscillator 3 are not coupled mechanically and that the vibrator 2 is not mechanically coupled to any members. The vibration of the vibrator 2 is represented by a standing wave. The vibrator 2 includes a molecular recognition means for recognizing the molecules of a substance to be measured. The molecular recognition means may collect specific molecules by antigen-antibody reaction. The vibrator 2 may include at least a magnetizable part. To the magnetizable part, magnetic beads 26, to which an antibody or antigen is immobilized, may be adsorbed magnetically.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Incorporated National University Iwate University
    Inventor: Masaki Yamaguchi
  • Patent number: 9017612
    Abstract: Provided is a gas sensor that needs no temperature sensor for detecting a temperature of a heater for preventing dew condensation. The gas sensor comprises a hydrogen sensor 1 including: an element housing 13 having a detection chamber 13a to which hydrogen is introduced; a detection element 31 arranged in the detection chamber 13a and detecting hydrogen; a heater 21 for heating the detection chamber 13a by heat generation via passing an electric current through the heater 21, a resistance value of the heater 21 being changed corresponding to a temperature of the detection chamber 13a; and a microcomputer 51 and a heater operation circuit 52 for controlling the heater 21. Herein, the microcomputer 51 controls a temperature of the detection chamber 13a by adjusting the electric current passing through the heater 21 based on the resistance value of the heater 21.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 28, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shunji Tsukabayashi, Hidetoshi Oishi, Kazuhiro Okajima
  • Patent number: 9011778
    Abstract: A hydrogen sensitive composite sensing material based on cerium oxide with or without additives to enhance sensitivity to hydrogen, reduce cross-sensitivities to interfering gases, or lower the operating temperature of the sensor, and a device incorporating these hydrogen sensitive composite materials including a support, electrodes applied to the support, and a coating of hydrogen sensitive composite material applied over the electroded surface. The sensor may have in integral heater. The sensor may have a tubular geometry with the heater being inserted within the tube. A gas sensor device may include a support, electrodes applied to the support, and a dual sensor element to cancel unwanted effects on baseline resistance such as those resulting from atmospheric temperature changes. The hydrogen sensitive composite material or other gas sensitive materials may be used in the dual element gas sensor device.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 21, 2015
    Assignee: NexTech Materials, Ltd.
    Inventors: Christopher T. Holt, Stephen R. Cummings, Scott L. Swartz, Lora B. Thrun
  • Patent number: 9011779
    Abstract: Described is a personal device and methods for measuring the concentration of an analyte in a sample of gas. The device and method may utilize a chemically selective sensor element with low power consumption integrated with circuitry that enables wireless communication between the sensor and any suitable electronic readout such as a smartphone, tablet, or computer. In preferred form, the sensor circuitry relies upon the quantum capacitance effect of graphene as a transduction mechanism. Also in preferred form, the device and method employ the functionalization of the graphene-based sensor to determine the concentration of ethanol in exhaled breath.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 21, 2015
    Assignee: Andas Inc.
    Inventors: Timothy Clay Anglin, Jr., Timothy D. Bemer, Joseph C. Jensen
  • Patent number: 8986611
    Abstract: A sample analysis apparatus configured to automatically press a start button upon installation of a sample tube is provided. The sample analysis apparatus includes: a body of the sample analysis apparatus; a door housing which may be provided in an opened state or a closed state, and configured to be coupled to the body of the sample analysis apparatus by a hinge; a tube accommodating unit included in the door housing and configured to accommodate the sample tube; a start button included in the body of the sample analysis apparatus and configured to start analysis of the sample; and an operating member positioned at a first position which is distant from the start button the sample tube is not installed in the tube accommodating unit, and a second position which is configured to operate the start button when a sample tube is installed and the door housing is closed.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong Koo Lee, Tae Soo Kim, In Duk Hwang, Seock Woo Jang, Chul Ho Yun
  • Patent number: 8974734
    Abstract: An electronic nose device is disclosed in an embodiment of the invention. The electronic nose device includes a fan module, a gas molecule sensor module, a control unit and an output unit. The fan module is used to pump air actively to the gas molecule sensor module. The gas molecule sensor module detects the air pumped into by the fan module. The gas molecule sensor module at least includes a gas molecule sensor which is covered with a compound. The compound is used to combine preset gas molecules. The control unit controls the fan module to suck air into the electronic nose device. Then the fan module transmits an air current to the gas molecule sensor module to generate a detected data. The output unit calculates the detected data to generate a calculation result and outputs an indicating signal to an operator or compatible host computer according to the calculation result.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: March 10, 2015
    Assignee: EPS Bio Technology Corp.
    Inventors: Jun-Hao Tian, Jian-Hua Chen, Chi-Zuo Chu, Wei-Jen Ho, Li-Jin Kang, Yu-Lun Wang, Meng-Erh Li
  • Patent number: 8961880
    Abstract: A sensor for detecting phosgene includes a pair of electrodes separated by an electrode gap, and a layer of conducting polymer material positioned over and making electrical contact with the pair of electrodes, the layer of conducting polymer material being modified with an amine such that the electrical resistance of the conducting polymer material measured across the electrodes is responsive to changes in an amount of phosgene to which the conducting polymer material is exposed.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 24, 2015
    Assignees: The Aerospace Corporation, The Regents of the University of California
    Inventors: Shabnam Virji, Robert Kojima, Richard B. Kaner, Bruce H. Weiller
  • Patent number: 8950240
    Abstract: An acetone gas sensor apparatus, including: a chamber, used for containing a gas sample taken from a breath of a person; and an acetone gas sensor, placed in the chamber for generating an output current in response to an acetone concentration of the gas sample, the acetone gas sensor including: a substrate; a buffer layer, deposited on the substrate; an InN epilayer, deposited on the buffer layer for providing a current path for the output current; a first conductive contact, deposited on the InN epilayer for providing a drain contact; and a second conductive contact, deposited on the InN epilayer for providing a source contact.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: February 10, 2015
    Assignee: National Tsing Hua University
    Inventors: Jer-Liang Andrew Yeh, Shang-Jr Gwo
  • Patent number: 8940235
    Abstract: A chemical sensor is disclosed. The chemical sensor is an electronic device including in specific embodiments a first transistor and a second transistor. The first transistor includes a semiconducting layer made of a first semiconductor and carbon nanotubes. The second transistor includes a semiconducting layer made of a second semiconductor, and does not contain carbon nanotubes. The two transistors vary in their response to chemical compounds, and the differing response can be used to determine the identity of certain chemical compounds. The chemical sensor can be useful as a disposable sensor for explosive compounds such as trinitrotoluene (TNT). The electronic device is used in conjunction with an analyzer that processes information generated by the electronic device.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yiliang Wu, Ping Liu, Anthony James Wigglesworth
  • Publication number: 20150017740
    Abstract: The present invention provides a method and a system based on a multi-gate field effect transistor for sensing molecules in a gas or liquid sample. The said FET transistor comprises dual gate lateral electrodes (and optionally a back gate electrode) located on the two sides of an active region, and a sensing surface on top of the said active region. Applying voltages to the lateral gate electrodes, creates a conductive channel in the active region, wherein the width and the lateral position of the said channel can be controlled. Enhanced sensing sensitivity is achieved by measuring the channels conductivity at a plurality of positions in the lateral direction. The use of an array of the said FTE for electronic nose is also disclosed.
    Type: Application
    Filed: February 28, 2013
    Publication date: January 15, 2015
    Inventors: Gil Shalev, Yossi Rosenwaks
  • Patent number: 8932871
    Abstract: A system for a vehicle includes a first ozone sensor that generates a first sensor signal indicating a first amount of ozone in air flowing into a radiator. A second ozone sensor generates a second sensor signal indicating a second amount of ozone in air flowing out of the radiator. A control module receives the first sensor signal and the second sensor signal and determines an ozone conversion rate based on the first sensor signal and the second sensor signal.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: January 13, 2015
    Inventors: Scott H. Wittkopp, Chang H. Kim, Brian T. Heil
  • Publication number: 20150010438
    Abstract: A mobile custom-made hand-held chemical detection device interfacing with a smart device. The device includes at least one sensor, a microcontroller, and a Bluetooth module. The at least one sensor detects an associated chemical and generates information in response thereto so as to form chemical detection information. The microcomputer is operatively connected to the at least one sensor and processes the chemical detection information therefrom so as to form processed chemical detection information. The Bluetooth module is operatively connected to the microcontroller and the smart device, and communicates the processed chemical detection information from the microcontroller to the smart device for interpretation.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 8, 2015
    Inventors: Iem Heng, Shaojin Zhang
  • Patent number: 8920731
    Abstract: A chemical gas sensor formed from a nonwoven material is described. The gas sensor includes a flexible, gas-permeable, nonwoven web-based material substrate having a matrix that is composed of a plurality of inert thermoplastic, pulp, cellulose or staple fibers as either a major or minor portion, with a plurality of gas-sensitive fibers formed from a polymer that can absorb volatile organic compounds (VOC), and a plurality of electrically conductive fibers. The gas-sensitive fibers are intermixed with and associated spatially among a network of adjacent electrically conductive fibers, such that a change in physical morphology of said gas-sensitive fibers as a result of interacting with volatile organic compounds, causes a change in dielectric properties that disrupts said network of adjacent electrically conductive fibers. The sensor can be configured as either a resistive or a capacitive chemisensor.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: December 30, 2014
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Davis-Dang Nhan, Sudhanshu Gakhar, Sridhar Ranganathan
  • Publication number: 20140370613
    Abstract: An atmospheric pressure chemical ionization detector includes a reaction chamber that is configured to receive gas phase analytes. An electrode is disposed within the reaction chamber and is configured to ionize the gas phase analytes via corona discharge. A collector is disposed adjacent an outlet of the reaction chamber and is configured to attract ions from the chamber such that the ions hit the collector to induce a measurable current. The detector is configured for non-mass spectrometric detection of gas phase analyte ions.
    Type: Application
    Filed: December 10, 2012
    Publication date: December 18, 2014
    Applicant: Waters Technologies Corporation
    Inventor: Douglas M. Stevens
  • Publication number: 20140371105
    Abstract: The invention relates to a sensor assembly to detect and quantify organic and/or inorganic mercury compounds, including elemental mercury that may be present in gases or liquids, such as natural gas, air, condensates, crude oil, refined petroleum gas or liquids, and water including connate water, condensed water and water containing hydrate inhibitor(s). The sensor assembly includes a housing having a flow channel defined by an inlet, a sensor array, and an outlet. The sensor array is based on the differential sorption properties measured using a surface acoustic wave (SAW) sensor array, a chemiresistor array, or a combination of the two.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: David Glynn Thomas, Nicholas Paul Langley, Nicholas Charles Last, Roderick J. Travis
  • Patent number: 8912005
    Abstract: An array of sensors arranged in matched pairs of transistors with an output formed on a first transistor and a sensor formed on the second transistor of the matched pair. The matched pairs are arranged such that the second transistor in the matched pair is read through the output of the first transistor in the matched pair. The first transistor in the matched pair is forced into the saturation (active) region to prevent interference from the second transistor on the output of the first transistor. A sample is taken of the output. The first transistor is then placed into the linear region allowing the sensor formed on the second transistor to be read through the output of the first transistor. A sample is taken from the output of the sensor reading of the second transistor. A difference is formed of the two samples.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: December 16, 2014
    Assignee: Life Technologies Corporation
    Inventors: Keith G. Fife, Jungwook Yang
  • Patent number: 8906695
    Abstract: In general, the present disclosure is directed toward a novel hybrid spintronic device for converting chemical absorption into a change in magnetoresistance. This device uses a novel magnetic material which depends on the attachment of an organic structure to a metallic film for its magnetism. Changes in the chemical environment lead to absorption on the surface of this organometallic bilayer and thus modify its magnetic properties. The change in magnetic properties, in turn, leads to a change in the resistance of a magnetoresistive structure or a spin transistor structure, allowing a standard electrical detection of the chemical change in the sensor surface.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: December 9, 2014
    Assignee: University of South Carolina
    Inventors: Thomas M. Crawford, Samir Y. Garzon
  • Publication number: 20140356971
    Abstract: A hydrogen sulfide gas detector is provided. The detector includes a metal oxide semiconductor-based hydrogen sulfide gas sensor having an electrical characteristic that varies with hydrogen sulfide gas concentration. Measurement circuitry is coupled to the metal oxide semiconductor-based hydrogen sulfide gas detector to measure the electrical characteristic. A controller is coupled to the measurement circuitry and is configured to receive an indication of the electrical characteristic of the hydrogen sulfide gas sensor as well as an indication of ambient humidity. The controller is configured to provide a compensated hydrogen sulfide gas concentration output based on the indication of the electrical characteristic of the hydrogen sulfide gas sensor, an indication of ambient temperature, and the indication of ambient humidity.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 4, 2014
    Applicant: Rosemount Analytical Inc.
    Inventors: Henryk Kozlow, Alastair Kerr Muir, Todd Christopher Phelps, Lucjan Antoni Oleszczuk
  • Patent number: 8900517
    Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: December 2, 2014
    Assignee: Nanomix, Inc.
    Inventors: Jean-Christophe P. Gabriel, Philip G. Collins, George Gruner, Keith Bradley
  • Patent number: 8889420
    Abstract: A photoconductive sensor compound for detecting explosives can have a structure I: where R is a morphology control group, A is a linking group, B is a electron donor that is selective for transferring electrons to PTCDI backbone upon irradiation to make the resulting nanostructures conductive, and R1 through R8 are side groups.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: November 18, 2014
    Assignee: University of Utah Research Foundation
    Inventors: Ling Zang, Yanke Che
  • Publication number: 20140322817
    Abstract: A mass spectrometer is disclosed comprising an Electron Transfer Dissociation cell. Positive analyte ions are fragmented into fragment ions upon colliding with singly charged negative reagent ions with the cell. The cell comprises a plurality of ring electrodes which form a spherical trapping volume. Ions experience negligible RF heating over the majority of the trapping volume which enables the kinetic energy of the analyte and reagent ions to be reduced to just above thermal temperatures. An Electron Transfer Dissociation cell having an enhanced sensitivity is thereby provided. Fragment ions created within the cell may be cooled and may be transmitted onwardly to an orthogonal acceleration Time of Flight mass analyser enabling a significant improvement in the resolution of the mass analyser to be obtained.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventors: Martin Raymond Green, Jason Lee Wildgoose, Jeffery Mark Brown
  • Patent number: 8857281
    Abstract: A probe for use in determining the amount of a first gas component in a combustion gas containing the first gas component and a second gas component which is obtainable from the first gas component by reduction or oxidation, the probe comprising: a first component probe for taking a first sample of the gas and converting the first gas component present in the first sample to the second gas component, the first component probe including a first passage for conveying the first sample, the wall of the first passage in contact with the first sample being made of a material that converts the first gas component to the second gas component; and a second component probe for taking a second sample of the gas, the second component probe including a second passage for conveying the second sample.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: October 14, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Robert Edmund Pearce
  • Patent number: 8858888
    Abstract: One feature pertains to a radiation dosimeter comprising a microdosimeter cell array that includes a first microdosimeter cell having a first semiconductor volume configured to generate a first current in response to incident radiation. The first semiconductor volume may have at least one of a first size, a first shape, a first semiconductor type, and/or a first semiconductor doping type and concentration that is associated with a first biological cell type or a first biological cell component type. The dosimeter may further comprise a processing circuit communicatively coupled to the microdosimeter cell array and configured to generate a signal based on the first current. The signal generated may be indicative of an amount of radiation absorbed by the microdosimeter cell array. A display may be utilized by the dosimeter to show a radiation level reading based on the signal generated.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: October 14, 2014
    Inventors: James Francis Ziegler, Chao-tuan Liu, Razmig Hagop Messerian, Wayne Newhauser
  • Patent number: 8850869
    Abstract: A sensor element for a sensor or measuring device for measuring fluids, with a housing, the interior of which is sealed toward the outside and through which the fluid to measured can flow, and with at least one electrode arrangement in the housing interior, the electrode arrangement having at least one electrode and forming at least one measuring path.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: October 7, 2014
    Assignee: BC Tech Holding AG
    Inventor: Helmut Hartl
  • Patent number: 8852950
    Abstract: A method for determining an NOx concentration in a measurement gas is provided, where a measurement value for the NOx concentration is determined from the sensor signal of a gas sensor and a measurement value for the concentration of a second component in the measurement gas is determined. A corrected value for the NOx in the measurement gas is determined from the measurement values, and the measurement value and the corrected measurement value for the NOx concentration are displayed and/or output.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 7, 2014
    Assignee: Testo AG
    Inventors: Knut Hoyer, Andreas Kaufmann, Reinhold Munch, Thomas Springmann
  • Publication number: 20140273259
    Abstract: A method of making a low-dimensional material chemical vapor sensor comprising exfoliating MoS2, applying the monolayer flakes of MoS2 onto a SiO2/Si wafer, applying a methylmethacrylate (MMA)/polymethylmethacrylate (PMMA) film, defining trenches for the deposition of metal contacts, and depositing one of Ti/Au, Au, and Pt in the trench and resulting in a MoS2 sensor. A low-dimensional material chemical vapor sensor comprising monolayer flakes of MoS2, trenches in the SiO2/Si wafer, metal contacts in the trenches, and thereby resulting in a MoS2 sensor. A full spectrum sensing suite comprising similarly fabricated parallel sensors made from a variety of low-dimensional materials including graphene, carbon nanotubes, MoS2, BN, and the family of transition metal dichalcogenides. The sensing suites are small, robust, sensitive, low-power, inexpensive, and fast in their response to chemical vapor analytes.
    Type: Application
    Filed: November 8, 2013
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Adam L. Friedman, F. Keith Perkins, Enrique Cobas, Paul M. Campbell, Glenn G. Jernigan, Berend T. Jonker
  • Publication number: 20140274804
    Abstract: A sensor assembly is disclosed for detecting, speciating, and measuring a concentration of organic analytes in a fluid stream. The assembly includes a housing for containing elements of the sensor assembly; a sensor array configured to detect and measure the concentration of the organic analytes in the fluid sample and produce an electrical output signal indicative of a type and concentration of the organic analytes detected; an inlet channel through which a sample is drawn into the housing and into contact with the sensor array; an outlet channel through which the sample is expelled from the housing; and a sampler located within the housing for drawing the fluid sample into the housing via the inlet channel and expelling the sample via the outlet channel.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: CHEVRON U.S.A. INC.
    Inventors: David Glynn Thomas, Rachel Ellen Mohler, Karen Ann Synowiec, Elaine Mae Bild
  • Patent number: 8826724
    Abstract: Chemical sensors such as carbon dioxide sensors and methods for making such sensors are disclosed. An example carbon dioxide sensor may include a substrate, with a sensing beam supported by the substrate. The sensing beam may be configured to resonant. A sensing layer may be disposed on the sensing beam, wherein the sensing layer may include an amino group and is configured to sense carbon dioxide. In some instances, a reference beam may also be supported by the substrate, and may be configured to resonant. A reference layer may be disposed on the reference beam, wherein the reference layer may includes an amino group that has been poisoned so that it will be substantially non-sensitive to carbon dioxide.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: September 9, 2014
    Assignee: Honeywell International Inc.
    Inventors: Bogdan Serban, Mihai N. Mihalia, Cornel Cobianu, Viorel Georgel Dumitru, Octavian Buiu
  • Publication number: 20140248708
    Abstract: An apparatus for preparing a gas sample for analysis includes a separation unit configured to separate the gas sample into one or more component samples. A thermal conductivity detector detects the output of the one or more component sample from the separation unit. At least one component sample is collected in a component sample collection unit having a sample collector.
    Type: Application
    Filed: February 28, 2014
    Publication date: September 4, 2014
    Inventors: Dennis D. COLEMAN, John BOETTCHER, Gavin Atlas STEELE, IV
  • Patent number: 8821798
    Abstract: A method of fabricating a microwell in an array structure is disclosed herein. The array structure can include a plurality of field effect transistors (FETs), where each FET has a gate structure. The method can include disposing a titanium nitride (TiN) layer on at least one conductive layer coupled to the gate structure of at least one FET. A insulation layer can also be disposed on the array structure, where the insulation layer lies above the TiN layer. Further, an opening above the gate structure of the at least one FET can be etched to remove the insulation layer above the gate structure and to expose the TiN layer. A microwell with at least one sidewall formed from the insulation layer and with a bottom surface formed from the TiN layer is a result of the etching process.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: September 2, 2014
    Assignee: Life Technologies Corporation
    Inventors: James Bustillo, Todd Rearick, Wolfgang Hinz, Keith Fife
  • Patent number: 8821797
    Abstract: A hydrogen detection system can include an exposed detection element made of a catalytic metal which burns hydrogen so as to generate combustion heat. A hydrogen sensor can detect a hydrogen concentration based on a detected value of the detection element. A heating unit can heat the detection element. A hydrogen storage unit is included, and a hydrogen guiding pipe can guide the hydrogen from the hydrogen storage unit to the detection element. A flow rate adjusting device is attached to the hydrogen guiding pipe, and adjusts a flow rate of the hydrogen. A first dilution unit can dilute the hydrogen from the hydrogen storage unit with a dilution gas, and a controller can control the heating unit and the flow rate adjusting device.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 2, 2014
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shunji Tsukabayashi, Hidetoshi Oishi, Kazuhiro Okajima
  • Patent number: 8815160
    Abstract: A vapor sensor is constructed from a single glass filament less than 2 millimeters in diameter and greater than 1 millimeters in length, the filament having a first end and a second end separated by a long axis and comprising electrodes at each end, coated with a resilient material, and a first layer of conducting particles embedded in the resilient material and forming a conducting path between ends of the filament.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: August 26, 2014
    Inventor: Patrick Dolan
  • Patent number: 8815161
    Abstract: A gas-sensing element configured to measure a concentration of a specific component of a gas is mounted to a first circuit board which includes a driving circuit configured to drive the gas-sensing element. A moisture-proof material is disposed over at least one side of the first circuit board disposed in a tubular gas-sensing element case fixed to a sensor case. A gas-sensing chamber is defined by the first circuit board and an inner tubular surface of the gas-sensing element case, and opens at an open end of the gas-sensing element case to receive the gas to be monitored. A second circuit board which includes a control circuit configured to control the gas-sensing element via the driving circuit is fixed to a sensor case, and disposed in a position separate from the gas-sensing chamber such that the second circuit board is kept out of contact with the gas to be monitored.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: August 26, 2014
    Assignee: Honda Motor Co., Ltd
    Inventors: Hidetoshi Oishi, Tsuyoshi Eguchi, Takashi Sasaki, Akihiro Suzuki, Shunji Tsukabayashi