Analysis Based On Electrical Measurement Patents (Class 422/98)
  • Patent number: 12092602
    Abstract: An electrode includes an electrically conductive substrate with a coating containing boron-doped diamond (BDD) nanoparticles. Fabricating the electrode can include dispersing BDD nanoparticles in a solvent to yield a suspension, coating a conductive substrate with the suspension, and drying the suspension to yield the electrode. In some cases, fabricating the electrode includes combining BDD nanoparticles with a polymeric resin precursor to yield a mixture including a metal oxide, coating a conductive substrate with the mixture to yield a coated substrate, and calcining the coated substrate to yield a metal oxide coating including BDD nanoparticles.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: September 17, 2024
    Assignees: Arizona Board of Regents on behalf of Arizona State University, William Marsh Rice University
    Inventors: Paul K. Westerhoff, Sergio Garcia-Segura, Shahnawaz Sinha, Rishabh Bansal, Rafael Verduzco, Michael S. Wong
  • Patent number: 11953486
    Abstract: The present invention relates to a sensor (1) for sensing organic carbon in a liquid (L), comprising: a container (2) having an interior space (20) for receiving the liquid (L), a photodetector (3), and a light source (4) configured to emit ultraviolet light (5) so that the ultraviolet light (5) travels along an optical path (P) through liquid (L) residing in the interior space (20) and is absorbable by carbon bonds of organic molecules in the liquid (L).
    Type: Grant
    Filed: July 19, 2020
    Date of Patent: April 9, 2024
    Assignee: SENSIRION AG
    Inventors: Raffaele Di Giacomo, Matthias Streiff, Michael Merz, Nicolas Moeller
  • Patent number: 11740214
    Abstract: According to one embodiment, a sensor includes a handhole part, a sensor module, and a holder. The handhole part includes an inner wall. The sensor module is provided in the handhole part. The sensor module includes a housing, a sensor circuit provided in the housing, the sensor circuit including a gas sensor element, and a battery configured to supply electrical power to the sensor circuit. The holder holds the sensor module so that a gap is formed between the inner wall and the housing and between the housing and a first member under the housing.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: August 29, 2023
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yosuke Akimoto, Hiroki Kudo, Hiroaki Yamazaki
  • Patent number: 11598741
    Abstract: A method for manufacturing a tungsten trioxide/silicon nanocomposite structure includes steps as follows. A silicon substrate is provided, wherein a surface of the silicon substrate is formed with a plurality of microstructures. A tungsten trioxide precursor solution is provided, wherein the tungsten trioxide precursor solution is contacted with the silicon substrate. A hydrothermal synthesis step is conducted, wherein the tungsten trioxide precursor solution is reacted to form a plurality of tungsten trioxide particles on the plurality of microstructures, so as to obtain the tungsten trioxide/silicon nanocomposite structure.
    Type: Grant
    Filed: December 15, 2020
    Date of Patent: March 7, 2023
    Assignee: National Cheng Kung University
    Inventors: Chia-Yun Chen, Po-Hsuan Hsiao, Pin-Ju Chien
  • Patent number: 11592413
    Abstract: A method for determining a nicotine content in a gas mixture. The method includes exposing a metal oxide-based sensor to the gas mixture, applying a temperature profile over time to the metal oxide so that the temperature of the metal oxide, proceeding from a predetermined first temperature level, is brought to a predetermined second temperature level under controlled first transition conditions, and the temperature is brought from the second temperature level to a third predetermined temperature level under controlled second transition conditions, ascertaining a transient specific electrical resistance of the metal oxide at at least one certain point in time during the application with the temperature profile, and determining the nicotine content based on the ascertained resistance. A processing unit and a computer program product for carrying out the method are also described.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: February 28, 2023
    Assignee: ROBERT BOSCH GMBH
    Inventors: Gudrun Bieder, Philipp Nolte, Chi Trung Ngo, Philipp Pfander
  • Patent number: 11584540
    Abstract: An air quality sensor includes a detector element array, a processor operatively connected to the detector element array, and a memory. The memory is disposed in communication with the processor and has instructions recorded on the memory that, when read by the processor, cause the processor to execute certain operations including measuring electrical resistance of one of more detector element of the detector element array. A difference is calculated between the measured resistance and a reference resistance, and a determination is made of presence or absence of a contaminant in air communicated to the detector element array from an atmosphere of an aircraft cabin based on the difference between the measured resistance and the reference resistance. Aircraft and methods of monitoring air quality also described.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: February 21, 2023
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Lance R. Bartosz, Kenneth Carney, Hsien-chi W. Niu, Catherine Thibaud
  • Patent number: 11450195
    Abstract: Disclosed is a detecting method of a wearable device, which comprises: providing a current to drive a light source to emit auxiliary light corresponding to ambient light received by the wearable device; and informing a wearing status indicative whether the wearable device is correctly worn by a user or not according to the current. By this way, the wearing status of the user can be easily detected.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: September 20, 2022
    Assignee: PixArt Imaging Inc.
    Inventors: Hsiu-Ling Yeh, Yung-Chang Lin
  • Patent number: 11428655
    Abstract: A gas sensor (1) including a first gas detection element (2) and a second gas detection element (3), a first storage portion (4) having a first internal space (4A), and a first opening (4B) establishing communication between the first internal space (4A) and the outside space thereof exposed to a detection subject atmosphere, a second storage portion (5) having a second internal space (5A) and a second opening (5B) establishing communication between the second internal space (5A) and the outside space, a first membrane (4C) allowing permeation of water vapor and substantially not allowing permeation of a detection target gas, and covering the first opening (4B), and a calculation unit (12) for calculating the concentration of a detection target gas contained in the detection subject atmosphere, based on outputs from the first and second gas detection elements (2, 3), respectively.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: August 30, 2022
    Assignee: NGK SPARK PLUG CO., LTD.
    Inventors: Yusuke Matsukura, Shoji Kitanoya, Masaya Watanabe, Daisuke Ichikawa
  • Patent number: 11313844
    Abstract: In a multi-channel resistance-based gas sensor system, the multi-channel array includes gas sensor channels respectively connected to resistive type gas sensors. The pre-processing unit selects a current mode, a resistance mode, or an external resistance mode, analyzes a sensing value obtained from any one of the gas sensor channels based on the selected mode and outputs a voltage value corresponding thereto. The analog-to-digital converter (ADC) converts the voltage value to digital data. The control unit controls the pre-processing unit to execute one of the current mode for analyzing a sensing value smaller than or equal to a preset first resistance value, the external resistance mode for analyzing a sensing value greater than or equal to a preset second resistance value greater than the preset first resistance value and the resistance mode for analyzing a sensing value between the preset resistance first value and the preset second resistance value.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 26, 2022
    Assignee: ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jae Joon Kim, Subin Choi, Kyeong-Hwan Park
  • Patent number: 11315686
    Abstract: Embodiments of this invention include systems and methods for developing individualized dietary and health improvement plans based on an individual's intestinal microbiome and digestive activity. More particularly, the invention is related to a system providing a hydrogen and/or methane sensor device and a wireless platform in communication with the sensor device to periodically analyze the individual's metabolic activity in correlation with their gut microbiome and a personal database to provide personalized feedback to the individual of treatment plans and general techniques that can be used to improve the individual's general health and well being. The systems and methods further include a system for analyzing the hydrogen and/or methane levels in the individual's exhalations or flatulence in light of the individual's intestinal microbiome.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 26, 2022
    Assignee: Vivante Health, Inc.
    Inventor: Kimon Angelides
  • Patent number: 11193908
    Abstract: The present invention relates to a gas sensor and a manufacturing method thereof. A sensor body of the gas sensor is formed by cutting a multi-layered ceramic/metal platform where a plurality of sequential layer structures of a ceramic dielectric material and metal are layered in a layering direction. The sensor body includes at least one layered body wherein a ceramic dielectric material, a first internal electrode, a ceramic dielectric material, and a second internal electrode are sequentially layered. The first internal electrode and the second internal electrode are exposed through a cut surface by cutting. The first internal electrode is electrically connected to a first electrode terminal disposed on a first side of the sensor body, and the second internal electrode is electrically connected to a second electrode terminal disposed on a second side of the sensor body facing the first side.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: December 7, 2021
    Assignee: INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY ERICA CAMPUS
    Inventors: Yong Ho Choa, Hyo Ryoung Lim, Yo Min Choi, Nu Si A Eom, Sungyoul Kim
  • Patent number: 11127272
    Abstract: An electronic apparatus is provided. The electronic apparatus according to an embodiment includes a plurality of different types of gas sensors configured to output sensing values based on sensing a gas, and a processor configured to determine a gas type corresponding to a plurality of sensing values respectively output from the plurality of different types of gas sensors.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: September 21, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jang-pyo Park, Sang-hun Lee, Yong-won Jeong, Jeong-eun Lee
  • Patent number: 10948445
    Abstract: A method and a gas sensor arrangement for determining an absolute gas concentration with a gas sensor and a decomposing gas to be measured are disclosed. In an embodiment a method includes acquiring a first sensor signal and determining from the first sensor signal at least one initial data point, decomposing the gas to be measured using a means for decomposing the gas of the gas sensor arrangement, acquiring a second sensor signal and determining from the second sensor signal at least one decay data point and deriving an absolute gas concentration from a gas concentration function realized as a mathematical function by evaluating the gas concentration function at least for the at least one initial data point and the at least one decay data point.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: March 16, 2021
    Assignee: SCIOSENSE B.V.
    Inventors: Stefan Raible, Simone Scheurer, Christian Bitterlich
  • Patent number: 10883967
    Abstract: A gas detection element includes a crystal oscillator and a gas adsorption film formed on the crystal oscillator. The gas adsorption film has a thickness that causes the detection element to have a crystal impedance of no more than 10 times the crystal impedance of the crystal oscillator on which the gas adsorption film is not formed. A resonance frequency variation of the gas detection element due to humidity variation can be kept within a certain range.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: January 5, 2021
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Masashi Hattori, Junji Oshita
  • Patent number: 10845348
    Abstract: A gas sensor includes: a cell array which includes a plurality of cells disposed in rows and columns; a read-out circuit which reads out signals from the plurality of cells; and a signal processor which processes the signals read out. Each of the plurality of cells includes: a gas molecule detector which is electrically isolated between adjacent ones of the plurality of cells; and an amplifier circuit which is electrically connected to the gas molecule detector.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: November 24, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Toru Okino, Yutaka Hirose, Yoshihisa Kato, Akio Oki
  • Patent number: 10803382
    Abstract: Embodiments herein relate to gas identification with a gas identification apparatus having a plurality of metal oxide semiconductor (MOS) sensors. In various embodiments, a gas identification apparatus may include a set of heterogeneous MOS sensors to provide different response patterns for the presence of different gases and an identification engine coupled with the sensors, and having a plurality of regression models and one or more artificial neural networks, to analyze a response pattern to identify presence of a gas, based at least in part on a plurality of property measurements of the MOS sensors when exhibiting the response pattern, and using one or more of the plurality of regression models and the one or more artificial neural networks. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: October 13, 2020
    Assignee: Intel Corporation
    Inventors: Noureddine Tayebi, Varvara Kollia, Pradyumna S. Singh
  • Patent number: 10768109
    Abstract: A method of forming a chemical sensor includes forming a dielectric layer on an electrode. A carbon nanotube film is deposited on the dielectric layer. The carbon nanotube film is patterned into strips.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: September 8, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Abram L. Falk, Damon B. Farmer, Shu-Jen Han, George S. Tulevski
  • Patent number: 10545108
    Abstract: A thin film gas sensor device includes a substrate, a first pillar, a second pillar, a nanostructured thin film layer, and a first and a second electrical contact. The first and second pillars are supported by the substrate. The nanostructured thin film layer is formed with a semi-conductor material including holes. The semiconductor material is configured to undergo a reduction in a density of the holes in the presence of a target gas, thereby increasing an electrical resistance of the nanostructured thin film layer. The first and the second electrical contacts are operably connected to the nanostructured thin film layer, such that the increase in electrical resistance can be detected.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: January 28, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Ashwin K. Samarao, Gary O'Brien, Ando Feyh
  • Patent number: 10495618
    Abstract: A multi-channel particle and/or gas detector including an array of detector elements held in a housing structure, the structure configured to provide each detector element with an inlet and an outlet, wherein each inlet, detector element and outlet form a dedicated detector channel which operatively communicates with a sampling tube.
    Type: Grant
    Filed: February 27, 2015
    Date of Patent: December 3, 2019
    Assignee: Xtralis Global
    Inventor: Alasdair James Williamson
  • Patent number: 10458306
    Abstract: An object is to prevent a wrong diagnosis from being made in an abnormality diagnosis apparatus for an exhaust gas purification system including a filter and a PM sensor. After sensor regeneration is performed, the application of voltage to the PM sensor is started, and thereafter abnormality diagnosis of the PM sensor is performed based on whether or not a signal is output from the PM sensor. Abnormality diagnosis of the filter is performed based on whether or not the output value of the PM sensor reaches a predetermined abnormality criterion value. If the output value of the PM sensor reaches the predetermined abnormality criterion value before a predetermined diagnosis completion time after the abnormality diagnosis of the PM sensor, the filter is diagnosed as abnormal, and the application of voltage to the PM sensor is stopped at that time.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: October 29, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuya Takaoka, Toru Kidokoro
  • Patent number: 10408779
    Abstract: A gas sensor includes: a first conductive layer; a second conductive layer including a first region having a first thickness and a second region having a second thickness larger than the first thickness; a metal oxide layer disposed between the first conductive layer and the second conductive layer, the metal oxide layer including a bulk region and a local region surrounded by the bulk region, a degree of oxygen deficiency of the local region being higher than that of the bulk region; and an insulation layer covering the first conductive layer, the second region of the second conductive layer, and the metal oxide layer and not covering the first region of the second conductive layer.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: September 10, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Zhiqiang Wei, Kazunari Homma, Satoru Fujii
  • Patent number: 10274421
    Abstract: Disclosed herein are embodiments of sensor devices comprising a sensing component able to determine the presence of, detect, and/or quantify detectable species in a variety of environments and applications. The sensing components disclosed herein can comprise MOF materials, plasmonic nanomaterials, redox-active molecules, a metal, or any combinations thereof. In some exemplary embodiments, optical properties of the plasmonic nanomaterials and/or the redox-active molecules combined with MOF materials can be monitored directly to detect analyte species through their impact on external conditions surrounding the material or as a result of charge transfer to and from the plasmonic nanomaterial and/or the redox-active molecule as a result of interactions with the MOF material.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: April 30, 2019
    Assignees: Oregon State University, U.S. Department of Energy
    Inventors: Chih-hung Chang, Ki-Joong Kim, Alan X. Wang, Yujing Zhang, Xinyuan Chong, Paul R. Ohodnicki
  • Patent number: 10101186
    Abstract: A method and a measuring apparatus for determining specific quantities for the gas quality in which the gas or gas mixture flows through an ultrasonic flow sensor as well as through a microthermal sensor, and the former is used for determining the sound and flow velocity and the latter for determining the thermal conductivity and the thermal capacity of the gas or gas mixture. The sound velocity, the thermal conductivity and the thermal capacity are subsequently used for the correlation of the specific quantities for the gas quality.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: October 16, 2018
    Assignee: MEMS AG
    Inventor: Philippe Pretre
  • Patent number: 10060875
    Abstract: A method of co-functionalizing single-walled carbon nanotubes for gas sensors, which includes the steps of: fabricating single-walled carbon nanotube interconnects; synthesizing tin oxide onto the single-walled carbon nanotube interconnects; and synthesizing metal nanoparticles onto the tin oxide coated single-walled carbon nanotube interconnects.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: August 28, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nosang Vincent Myung, Syed Mubeen, Ashok Mulchandani, Marc Arnold Deshusses
  • Patent number: 9927365
    Abstract: A method of making a measuring instrument, such as a gas analyser (20), comprises the steps of: selecting one or more measuring devices, such as an electrochemical cell (9) and/or an infrared gas analyser (14), from a group of measuring devices; selecting a tubular profile (5) of the appropriate length for the selected measuring devices; and mounting the selected measuring devices (9, 14) in the tubular profile (5).
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: March 27, 2018
    Assignee: AG Instruments Ltd.
    Inventor: Hany Agaiby
  • Patent number: 9880126
    Abstract: Disclosed are a biosensor, a method of producing the same, and a method of detecting a biomaterial through the biosensor. The biosensor includes a substrate, an insulating layer, source and drain electrodes formed on the insulating layer, a middle-discontinuous channel provided between the source and drain electrodes, and a detection area on which a detection target material is to be fixed, covering the middle-discontinuous channel.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: January 30, 2018
    Assignee: Ajou University Industry-Academic Cooperation Foundation
    Inventors: Jae-Ho Kim, Sung-Wook Choi, Jae-Hyeok Lee, Gwang Hyeon Nam
  • Patent number: 9835595
    Abstract: Disclosed sensors can include at least one resonator (in some embodiments, at least two resonators) and various other structures that may be formed in association with the resonators. The at least one resonator in embodiments can include a bottom electrode, a piezoelectric layer, and a top electrode, wherein the piezoelectric layer is positioned between the bottom electrode and the top electrode.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: December 5, 2017
    Assignee: QORVO US, INC.
    Inventors: James Russell Webster, Peter J. Schiller, Richard Allan Van Deusen, Ian Robert Harmon
  • Patent number: 9664633
    Abstract: A resistive hydrogen sensor has at least two electrical connections and at least one resistance layer containing at least one suitable material for incorporating hydrogen, via which the electrical connections are connected to each other. The resistance layer adjoins at least one interface on a contact layer, which contains at least one chemical element from the fourth subgroup of the periodic table and/or carbon. The contact layer connected in series between the electrical connections to the resistance layer.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: May 30, 2017
    Assignee: Micronas GmbH
    Inventors: Gilbert Erdler, Holger Reinecke, Claas Müller, Mirko Frank
  • Patent number: 9417207
    Abstract: A method of selectively sensing the concentration of a target gas in polluted ambient air comprises the steps of: —providing a target gas sensor (220) sensitive to the target gas; —providing a first gas flow derived from the ambient air, from which first flow the target gas is substantially removed; —providing a second gas flow derived from the ambient air, substantially comprising the same target gas concentration as the ambient air; —exposing the target gas sensor to the first gas flow during a first time interval, and obtaining from the sensor a first output signal (Smf); —exposing the target gas sensor to the second gas flow during a second time interval not overlapping with the first time interval, and obtaining a second output signal (Smu); —calculating the difference (S?) between the first and the second output signals; calculating the concentration of the target gas from the calculated signal difference (S?).
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: August 16, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johan Marra, Johan Hendrik Klootwijk, Jacobus Bernardus Giesbers, Nico Maris Adriaan De Wild, Marcel Bulder, Rogier Adrianus Henrica Niessen, Peter Van Der Linde
  • Patent number: 9389212
    Abstract: One example includes a sensor for sensing NOX, including an electrically insulating substrate, a first electrode and a second electrode, each disposed onto the substrate, wherein each of the first electrode and the second electrode has a first end configured to receive a current and a second end and a sensor element formed of nickel oxide powder, the sensor element disposed on the substrate in electrical communication with the second ends of the first electrode and the second electrode. In some examples, electronics are used to measure the change in electrical resistance of a sensor in association with NOx concentration near the sensor. In some examples, the sensor is maintained at 575° C.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: July 12, 2016
    Assignee: Honeywell International Inc.
    Inventors: Tripathy Sanjeeb, Abhilasha Srivastava, Raju Raghurama, Reddappa Reddy Kumbarageri, Srinivas S. N. Mutukuri
  • Patent number: 9289155
    Abstract: Disclosed is a method and device for detection of H. Pylori in breath emissions utilizing an unlabelled urea, in which a patient ingests a safe quantity of unlabelled urea. After ingestion, expired breath of the patient is analyzed for ammonia, with a detection based on levels of ammonia lower than 50 parts per billion to 500 ppm to detect helicobacter pylori.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 22, 2016
    Assignee: The Research Foundation For The State University of New York
    Inventors: Basil Rigas, Anastasia Rigas, Pelagia-Irene Gouma
  • Patent number: 9285251
    Abstract: The present invention relates to gas sensor housing (1), comprising: a gas sensor (3) held by a housing body (11) below a primary gas permeable membrane (2); at least one connector element (10) molded into the housing body (11) such that the respective ends thereof enable connectivity to the gas sensor (3) such that signals may be carried from the gas sensor (3) to the connector element (10); a sensor envelope (9) providing an enclosure for the housing body (11); means for retaining the primary gas permeable membrane (2) in place above the gas sensor (3); a spacer section (7) providing a separation distance (X) between the gas sensor (3) and the primary gas permeable membrane (2).
    Type: Grant
    Filed: August 19, 2010
    Date of Patent: March 15, 2016
    Assignee: INFICON AB
    Inventors: Fredrik Enquist, Peter Hebo
  • Patent number: 9034266
    Abstract: A method for sensing hydrogen includes the use of a transduction device with a sensing layer, and means for measuring a mass and/or conductivity change caused by an interaction of a gas with the sensing layer to provide a measure of an amount of hydrogen in the gas. The sensing layer includes polyaniline nanofiber material.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 19, 2015
    Assignees: The Aerospace Corporation, The Regents of the University of California
    Inventors: Shabnam Virji, Richard B. Kaner, Bruce H. Weiller
  • Patent number: 9028756
    Abstract: A specimen analyzing method and a specimen analyzing apparatus capable of measuring interference substances before analyzing a specimen. The method comprises a step for sucking the specimen stored in a specimen container (150) and sampling it in a first container (153), a step for optically measuring the specimen in the first container, a step for sampling the specimen in a second container (154) and preparing a specimen for measurement by mixing the specimen with a reagent in the second container, and a step for analyzing the specimen for measurement according to the results of the optical measurement of the specimen.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: May 12, 2015
    Assignee: Sysmex Corporation
    Inventors: Norimasa Yamamoto, Takashi Yamato, Naohiko Matsuo, Satoshi Iguchi
  • Patent number: 9023283
    Abstract: A separate excitation and high sensitive resonant type mass sensor is provided. The resonant type mass sensor 1 includes: an oscillator 3; an vibrator 2 placed on the oscillator 3; and a detecting unit 5 for detecting the resonant frequency of the vibrator 2, and is characterized in that the vibrator 2 and the oscillator 3 are not coupled mechanically and that the vibrator 2 is not mechanically coupled to any members. The vibration of the vibrator 2 is represented by a standing wave. The vibrator 2 includes a molecular recognition means for recognizing the molecules of a substance to be measured. The molecular recognition means may collect specific molecules by antigen-antibody reaction. The vibrator 2 may include at least a magnetizable part. To the magnetizable part, magnetic beads 26, to which an antibody or antigen is immobilized, may be adsorbed magnetically.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: May 5, 2015
    Assignee: Incorporated National University Iwate University
    Inventor: Masaki Yamaguchi
  • Patent number: 9017612
    Abstract: Provided is a gas sensor that needs no temperature sensor for detecting a temperature of a heater for preventing dew condensation. The gas sensor comprises a hydrogen sensor 1 including: an element housing 13 having a detection chamber 13a to which hydrogen is introduced; a detection element 31 arranged in the detection chamber 13a and detecting hydrogen; a heater 21 for heating the detection chamber 13a by heat generation via passing an electric current through the heater 21, a resistance value of the heater 21 being changed corresponding to a temperature of the detection chamber 13a; and a microcomputer 51 and a heater operation circuit 52 for controlling the heater 21. Herein, the microcomputer 51 controls a temperature of the detection chamber 13a by adjusting the electric current passing through the heater 21 based on the resistance value of the heater 21.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 28, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventors: Shunji Tsukabayashi, Hidetoshi Oishi, Kazuhiro Okajima
  • Patent number: 9011779
    Abstract: Described is a personal device and methods for measuring the concentration of an analyte in a sample of gas. The device and method may utilize a chemically selective sensor element with low power consumption integrated with circuitry that enables wireless communication between the sensor and any suitable electronic readout such as a smartphone, tablet, or computer. In preferred form, the sensor circuitry relies upon the quantum capacitance effect of graphene as a transduction mechanism. Also in preferred form, the device and method employ the functionalization of the graphene-based sensor to determine the concentration of ethanol in exhaled breath.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 21, 2015
    Assignee: Andas Inc.
    Inventors: Timothy Clay Anglin, Jr., Timothy D. Bemer, Joseph C. Jensen
  • Patent number: 9011778
    Abstract: A hydrogen sensitive composite sensing material based on cerium oxide with or without additives to enhance sensitivity to hydrogen, reduce cross-sensitivities to interfering gases, or lower the operating temperature of the sensor, and a device incorporating these hydrogen sensitive composite materials including a support, electrodes applied to the support, and a coating of hydrogen sensitive composite material applied over the electroded surface. The sensor may have in integral heater. The sensor may have a tubular geometry with the heater being inserted within the tube. A gas sensor device may include a support, electrodes applied to the support, and a dual sensor element to cancel unwanted effects on baseline resistance such as those resulting from atmospheric temperature changes. The hydrogen sensitive composite material or other gas sensitive materials may be used in the dual element gas sensor device.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 21, 2015
    Assignee: NexTech Materials, Ltd.
    Inventors: Christopher T. Holt, Stephen R. Cummings, Scott L. Swartz, Lora B. Thrun
  • Patent number: 8986611
    Abstract: A sample analysis apparatus configured to automatically press a start button upon installation of a sample tube is provided. The sample analysis apparatus includes: a body of the sample analysis apparatus; a door housing which may be provided in an opened state or a closed state, and configured to be coupled to the body of the sample analysis apparatus by a hinge; a tube accommodating unit included in the door housing and configured to accommodate the sample tube; a start button included in the body of the sample analysis apparatus and configured to start analysis of the sample; and an operating member positioned at a first position which is distant from the start button the sample tube is not installed in the tube accommodating unit, and a second position which is configured to operate the start button when a sample tube is installed and the door housing is closed.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong Koo Lee, Tae Soo Kim, In Duk Hwang, Seock Woo Jang, Chul Ho Yun
  • Patent number: 8974734
    Abstract: An electronic nose device is disclosed in an embodiment of the invention. The electronic nose device includes a fan module, a gas molecule sensor module, a control unit and an output unit. The fan module is used to pump air actively to the gas molecule sensor module. The gas molecule sensor module detects the air pumped into by the fan module. The gas molecule sensor module at least includes a gas molecule sensor which is covered with a compound. The compound is used to combine preset gas molecules. The control unit controls the fan module to suck air into the electronic nose device. Then the fan module transmits an air current to the gas molecule sensor module to generate a detected data. The output unit calculates the detected data to generate a calculation result and outputs an indicating signal to an operator or compatible host computer according to the calculation result.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: March 10, 2015
    Assignee: EPS Bio Technology Corp.
    Inventors: Jun-Hao Tian, Jian-Hua Chen, Chi-Zuo Chu, Wei-Jen Ho, Li-Jin Kang, Yu-Lun Wang, Meng-Erh Li
  • Patent number: 8961880
    Abstract: A sensor for detecting phosgene includes a pair of electrodes separated by an electrode gap, and a layer of conducting polymer material positioned over and making electrical contact with the pair of electrodes, the layer of conducting polymer material being modified with an amine such that the electrical resistance of the conducting polymer material measured across the electrodes is responsive to changes in an amount of phosgene to which the conducting polymer material is exposed.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: February 24, 2015
    Assignees: The Aerospace Corporation, The Regents of the University of California
    Inventors: Shabnam Virji, Robert Kojima, Richard B. Kaner, Bruce H. Weiller
  • Patent number: 8950240
    Abstract: An acetone gas sensor apparatus, including: a chamber, used for containing a gas sample taken from a breath of a person; and an acetone gas sensor, placed in the chamber for generating an output current in response to an acetone concentration of the gas sample, the acetone gas sensor including: a substrate; a buffer layer, deposited on the substrate; an InN epilayer, deposited on the buffer layer for providing a current path for the output current; a first conductive contact, deposited on the InN epilayer for providing a drain contact; and a second conductive contact, deposited on the InN epilayer for providing a source contact.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: February 10, 2015
    Assignee: National Tsing Hua University
    Inventors: Jer-Liang Andrew Yeh, Shang-Jr Gwo
  • Patent number: 8940235
    Abstract: A chemical sensor is disclosed. The chemical sensor is an electronic device including in specific embodiments a first transistor and a second transistor. The first transistor includes a semiconducting layer made of a first semiconductor and carbon nanotubes. The second transistor includes a semiconducting layer made of a second semiconductor, and does not contain carbon nanotubes. The two transistors vary in their response to chemical compounds, and the differing response can be used to determine the identity of certain chemical compounds. The chemical sensor can be useful as a disposable sensor for explosive compounds such as trinitrotoluene (TNT). The electronic device is used in conjunction with an analyzer that processes information generated by the electronic device.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yiliang Wu, Ping Liu, Anthony James Wigglesworth
  • Publication number: 20150017740
    Abstract: The present invention provides a method and a system based on a multi-gate field effect transistor for sensing molecules in a gas or liquid sample. The said FET transistor comprises dual gate lateral electrodes (and optionally a back gate electrode) located on the two sides of an active region, and a sensing surface on top of the said active region. Applying voltages to the lateral gate electrodes, creates a conductive channel in the active region, wherein the width and the lateral position of the said channel can be controlled. Enhanced sensing sensitivity is achieved by measuring the channels conductivity at a plurality of positions in the lateral direction. The use of an array of the said FTE for electronic nose is also disclosed.
    Type: Application
    Filed: February 28, 2013
    Publication date: January 15, 2015
    Inventors: Gil Shalev, Yossi Rosenwaks
  • Patent number: 8932871
    Abstract: A system for a vehicle includes a first ozone sensor that generates a first sensor signal indicating a first amount of ozone in air flowing into a radiator. A second ozone sensor generates a second sensor signal indicating a second amount of ozone in air flowing out of the radiator. A control module receives the first sensor signal and the second sensor signal and determines an ozone conversion rate based on the first sensor signal and the second sensor signal.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: January 13, 2015
    Inventors: Scott H. Wittkopp, Chang H. Kim, Brian T. Heil
  • Publication number: 20150010438
    Abstract: A mobile custom-made hand-held chemical detection device interfacing with a smart device. The device includes at least one sensor, a microcontroller, and a Bluetooth module. The at least one sensor detects an associated chemical and generates information in response thereto so as to form chemical detection information. The microcomputer is operatively connected to the at least one sensor and processes the chemical detection information therefrom so as to form processed chemical detection information. The Bluetooth module is operatively connected to the microcontroller and the smart device, and communicates the processed chemical detection information from the microcontroller to the smart device for interpretation.
    Type: Application
    Filed: July 8, 2013
    Publication date: January 8, 2015
    Inventors: Iem Heng, Shaojin Zhang
  • Patent number: 8920731
    Abstract: A chemical gas sensor formed from a nonwoven material is described. The gas sensor includes a flexible, gas-permeable, nonwoven web-based material substrate having a matrix that is composed of a plurality of inert thermoplastic, pulp, cellulose or staple fibers as either a major or minor portion, with a plurality of gas-sensitive fibers formed from a polymer that can absorb volatile organic compounds (VOC), and a plurality of electrically conductive fibers. The gas-sensitive fibers are intermixed with and associated spatially among a network of adjacent electrically conductive fibers, such that a change in physical morphology of said gas-sensitive fibers as a result of interacting with volatile organic compounds, causes a change in dielectric properties that disrupts said network of adjacent electrically conductive fibers. The sensor can be configured as either a resistive or a capacitive chemisensor.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: December 30, 2014
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Davis-Dang Nhan, Sudhanshu Gakhar, Sridhar Ranganathan
  • Publication number: 20140371105
    Abstract: The invention relates to a sensor assembly to detect and quantify organic and/or inorganic mercury compounds, including elemental mercury that may be present in gases or liquids, such as natural gas, air, condensates, crude oil, refined petroleum gas or liquids, and water including connate water, condensed water and water containing hydrate inhibitor(s). The sensor assembly includes a housing having a flow channel defined by an inlet, a sensor array, and an outlet. The sensor array is based on the differential sorption properties measured using a surface acoustic wave (SAW) sensor array, a chemiresistor array, or a combination of the two.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Applicant: Chevron U.S.A. Inc.
    Inventors: David Glynn Thomas, Nicholas Paul Langley, Nicholas Charles Last, Roderick J. Travis
  • Publication number: 20140370613
    Abstract: An atmospheric pressure chemical ionization detector includes a reaction chamber that is configured to receive gas phase analytes. An electrode is disposed within the reaction chamber and is configured to ionize the gas phase analytes via corona discharge. A collector is disposed adjacent an outlet of the reaction chamber and is configured to attract ions from the chamber such that the ions hit the collector to induce a measurable current. The detector is configured for non-mass spectrometric detection of gas phase analyte ions.
    Type: Application
    Filed: December 10, 2012
    Publication date: December 18, 2014
    Applicant: Waters Technologies Corporation
    Inventor: Douglas M. Stevens
  • Patent number: 8912005
    Abstract: An array of sensors arranged in matched pairs of transistors with an output formed on a first transistor and a sensor formed on the second transistor of the matched pair. The matched pairs are arranged such that the second transistor in the matched pair is read through the output of the first transistor in the matched pair. The first transistor in the matched pair is forced into the saturation (active) region to prevent interference from the second transistor on the output of the first transistor. A sample is taken of the output. The first transistor is then placed into the linear region allowing the sensor formed on the second transistor to be read through the output of the first transistor. A sample is taken from the output of the sensor reading of the second transistor. A difference is formed of the two samples.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: December 16, 2014
    Assignee: Life Technologies Corporation
    Inventors: Keith G. Fife, Jungwook Yang