Analysis Based On Electrical Measurement Patents (Class 422/98)
  • Patent number: 7914740
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: March 29, 2011
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 7901632
    Abstract: An array of sensor elements is formed by the incorporation of sensing materials into porous structures, creating sensing systems with extremely large surface areas with sensing molecules attached to mimic the large number of cilia of an olfactory system. In each sensor element, the sensing material or molecules are attached to spacer molecules or groups, which are attached to linker molecules or groups, which are attached to the porous substrate material. More specifically, a porphyrin doped aerogel material is used. The porphyrin sensing material is attached to the aerogel throughout its high surface area pore space. The porphyrin is covalently bonded to the silica network of the aerogel with a triethoxysilyl group linker that covalently attaches to the aerogel, and an alkyl group spacer.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: March 8, 2011
    Inventor: Chi Yung Fu
  • Patent number: 7897399
    Abstract: The present disclosure relates to nitric oxide sensors and systems. In some embodiments one or more devices are provided that include one or more nitric oxide sensors; one or more transmitters; and one or more controllers configured to transmit using the one or more transmitters one or more signals that are associated with controlling one or more nitric oxide generators.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: March 1, 2011
    Assignee: The Invention Science Fund I, LLC
    Inventors: Roderick A. Hyde, Muriel Y. Ishikawa, Leif T. Stordal, Lowell L. Wood, Jr.
  • Patent number: 7875244
    Abstract: A gas sensor has shock resistance and temperature resistance attributes. The gas sensor includes at least one catalytic measuring element (3), which is arranged in a sensor housing (1) forming a combustion chamber (2). The sensor housing (1) has at least one gas-permeable housing opening (4) for the gas exchange between the environment and the combustion chamber (2). The catalytic measuring element (3) is arranged between at least two disk-shaped support elements (5) made of a heat-insulating and temperature-resistant material.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: January 25, 2011
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Mladen Schlichte, Erik Stender
  • Patent number: 7875455
    Abstract: A method and system for evaluating status and response of a mineral-producing field (e.g., oil and/or gas) by monitoring selected chemical and physical properties in or adjacent to a wellsite headspace. Nanotechnology sensors and other sensors are provided for one or more underground (fluid) mineral-producing wellsites to determine presence/absence of each of two or more target molecules in the fluid, relative humidity, temperature and/or fluid pressure adjacent to the wellsite and flow direction and flow velocity for the fluid. A nanosensor measures an electrical parameter value and estimates a corresponding environmental parameter value, such as water content or hydrocarbon content. The system is small enough to be located down-hole in each mineral-producing horizon for the wellsite.
    Type: Grant
    Filed: July 12, 2006
    Date of Patent: January 25, 2011
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Jing Li, Meyya Meyyappan
  • Patent number: 7871569
    Abstract: Systems and methods for detecting the presence of biomolecules in a sample using biosensors that incorporate resonators which have functionalized surfaces for reacting with target biomolecules. In one embodiment, a device includes a piezoelectric resonator having a functionalized surface configured to react with target molecules, thereby changing the mass and/or charge of the resonator which consequently changes the frequency response of the resonator. The resonator's frequency response after exposure to a sample is compared to a reference, such as the frequency response before exposure to the sample, a stored baseline frequency response or a control resonator's frequency response.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 18, 2011
    Assignee: Intel Corporation
    Inventors: Yuegang Zhang, Andrew A. Berlin, Qing Ma, Li-Peng Wang, Valluri Rao, Mineo Yamakawa
  • Patent number: 7871572
    Abstract: Provided are mixed ligand metal nanoparticle chemical sensors in which metal nanoparticles are encapsulated by at least two kinds of different molecule ligands having a relatively low conductivity and various composition ratios, and a chemical sensor array in which a film of the metal nanoparticle sensor is formed on the substrate. The metal nanoparticle sensor using the mixed ligand improves sensitivity and reaction speed with respect to an analyte, and selectivity with respect to various analytes, and a kind and a composition of a ligand of the mixed ligand constituting the metal nanoparticle sensor are adjusted to allow the high sensitivity nanoparticle sensor to be applied to the sensor array technology, thereby enabling a design of sensor properties as well as systematic access to a configuration of the sensor array the most efficient for the analytes.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: January 18, 2011
    Assignee: Electronics and Telecommunications Research Instutute
    Inventors: Young Jun Kim, Yong Shin Kim, Yoon Seok Yang, Seung Chul Ha, Hae Sik Yang, Yun Tae Kim, Dae Sik Lee, Young Sik Hong
  • Patent number: 7850924
    Abstract: An apparatus for notifying a user which gas tank(s) to connect to an enclosed chamber such as an incubator. The user inputs the desired setpoints for gasses such as O2 and CO2, and the corresponding gas level is determined. The determined gas level is compared with the setpoint of the gas and can display, which gas tank(s) should be hooked up to chamber.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: December 14, 2010
    Assignee: Thermo Fisher Scientifiic Inc.
    Inventors: Richard H. Bair, III, Bryan M. Elwood
  • Publication number: 20100311103
    Abstract: One subject of the present invention is a transparent solid support coated with at least one layer of metal and with at least one layer of transparent conductive oxide (TCO), especially tin-doped indium oxide (ITO) in order to form a solid support that can be used at the same time or independently for detection by SPR and by an electrochemical method. The invention comprises a process for producing such supports, especially by cathode sputtering using a device comprising a radiofrequency (RF) generator, this device also being included in the invention. Another subject of the invention is a kit and a method for detection or identification of an organic or mineral compound by surface plasmon resonance (SPR) and/or electrochemical plasmon resonance comprising or using such supports.
    Type: Application
    Filed: December 11, 2008
    Publication date: December 9, 2010
    Inventors: Rabah Boukherroub, Xavier Castel, Sabine Szunerits
  • Publication number: 20100310422
    Abstract: The present invention relates to an optical biosensor comprising a porous matrix. In the specific case, reference is made to anodized porous alumina, on the surface of which the biological component specific for the analyte in question is immobilized, and to an optical-signal detector connected to said matrix. The present patent further relates to a biosensor having the porous matrix and the optical detector integrated in a single structure, in particular to biosensors with porous matrix other than porous alumina, for example porous silicon.
    Type: Application
    Filed: December 21, 2007
    Publication date: December 9, 2010
    Applicant: C.R.F. SOCIETA CONSORTILE PER AZIONI
    Inventors: Valentina GRASSO, Federica VALERIO, Vito Guido LAMBERTINI, Marco PIZZI, Piero PERLO
  • Patent number: 7846311
    Abstract: In vitro electrochemical sensors that provide accurate and repeatable analysis of a sample of biological fluid are provided. Embodiments include sensors that include a sample chambers having overhangs extending therefrom.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: December 7, 2010
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Benjamin J. Feldman, Yi Wang
  • Patent number: 7833483
    Abstract: A structure includes a substantially non-conductive frame having an exterior surface. The structure defines a plurality of passages that open to the exterior surface. Mesoporous material is disposed in the plurality of passages and is supported therein by the frame. In a method for making a mesoporous nanocrystalline titania hybrid material, a templating agent, an acid, and a titania precursor is mixed into a template liquid. A frame that defines a plurality of passages is placed into the template liquid. A solvent is evaporated from the template liquid, thereby forming a titania gel encapsulating the templating agent. The gel is heated to remove substantially the templating agent from the non-conductive frame and the titania, thereby leaving a mesoporous titania material.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventors: Anthony Yu-Chung Ku, Sergio Paulo Martins Loureiro, James Anthony Ruud
  • Patent number: 7833474
    Abstract: A sterile device immersed in a sterile buffer and a method for providing same. The sterile device may be a medical device such as a biosensor having a biomolecule as a sensing element such as, for example, a glucose oxidase enzyme. The buffer may be a bicarbonate solution. Both the device and the buffer may be packaged and stored over long term while maintaining sterilization. The sterilization method may comprise a combination of gaseous, liquid and light sterilization.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: November 16, 2010
    Assignee: Medtronic Minimed, Inc.
    Inventors: Aaron J. Swanson, Jennifer M. Reynolds, Rajiv Shah
  • Patent number: 7833482
    Abstract: A low power consumption catalytic gas sensor includes three beads. A trigger bead, which is smaller than either a sensing on a compensating bead can be monitored for the presence of a combustible gas. Where gas has been sensed, the sensing and compensating beads can be energized to establish a gas concentration.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: November 16, 2010
    Assignee: Honeywell International Inc.
    Inventor: Ravosh Samari
  • Publication number: 20100282245
    Abstract: A system for the detection of nitric oxide in a gas sample includes a converter for oxidation of nitric oxide to nitrogen dioxide, a nitrogen dioxide sensor including nanostructures and a filtering device to remove at least carbon dioxide from the gas sample positioned upstream of the converter. The nitrogen dioxide sensor can, for example, include a recognition layer on the nanostructures adapted to enhance sensitivity to nitrogen dioxide. A method for detecting nitric oxide in exhaled breath includes detecting nitric oxide in the exhaled breath using a nitric oxide sensor including nanostructures. Another method for detecting nitric oxide in exhaled breath includes filtering the breath to remove at least carbon dioxide from the breath, oxidizing nitric oxide in the exhaled breath to nitrogen dioxide and detecting the nitrogen dioxide using a nitrogen dioxide sensor including nanostructures.
    Type: Application
    Filed: January 14, 2008
    Publication date: November 11, 2010
    Inventors: Alexander Star, Oleksander Kuzmych
  • Publication number: 20100279425
    Abstract: A sensor for sensing gaseous chemicals includes a substrate, a variable resistance nanocrystalline ITO thin film formed on the substrate, and electrodes electrically coupled to the thin film. A sensor array assembly includes a sensor slide and a perforated interface circuit. The interface circuit abuts and electrically couples the sensor slide. The sensor slide includes several spaced apart ITO film strips formed on a slide substrate. A common electrode is electrically coupled to a common portion of each ITO film strip providing an electrically conductive path across the common portions of each of the plurality of spaced apart ITO film strips. A discrete electrode is electrically coupled to a discrete portion of each ITO film strip. The interface circuit is configured to abut and electrically couple to the sensor slide. A conductive discrete electrode pad electrically couples each of the plurality of discrete electrodes of the sensor slide to discrete terminals on the interface circuit.
    Type: Application
    Filed: November 11, 2007
    Publication date: November 4, 2010
    Applicant: THE UNIVERSITY OF NORTH FLORIDA BOARD OF TRUSTEES
    Inventor: Nirmalkumar G. Patel
  • Patent number: 7824619
    Abstract: The present invention relates to a molecular sensor for detecting the presence of a target analyte comprising a nitro-containing explosive molecule, the sensor comprising: a support substrate; a pair of electrodes comprising (i) a first electrode and (ii) a second electrode, wherein at least one of (i) and (ii) is at the substrate; an electron donor (ED) molecule capable of forming an electron donor-acceptor (EDA) complex with the nitro-containing explosive molecule; and wherein the ED molecule is disposed between the electrodes and is attached to each electrode by an alligator clip comprising a pendant group, thereby forming a nanojunction between the electrodes; a detection means operably connected to the pair of electrodes, the detection means capable of detecting a change in the electrical resistance or in the capacitance of the sensor when the ED molecule forms an EDA complex with the explosive molecule, the sensor thereby detecting the presence of the explosive molecule.
    Type: Grant
    Filed: June 7, 2005
    Date of Patent: November 2, 2010
    Inventor: Ari Aviram
  • Patent number: 7824618
    Abstract: Provided is a sensor structure comprising a heater and a temperature sensor at the center of a membrane having a well structure, allowing a temperature to be rapidly controlled with low power, and the object is analyzed using a conductivity change measured at two or more substrate temperatures with a pair of detecting electrode and a detecting layer implemented on the heater, wherein the sensing layer can include a conductive particle and a non-conductive organic composite.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: November 2, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong Shin Kim, Yun Tae Kim, Hae Sik Yang, Young Jun Kim, Seung Chul Ha, Yoon Seok Yang
  • Patent number: 7824620
    Abstract: Disclosed are methods for fabricating integrated nano-scale and micro-scale structures. Also disclosed are carbon nanopipettes, shovels, and sheets made by these methods. Nano-scale and micro-scale structures fabricated by the disclosed methods are useful in a variety of application, for example, nanoelectrodes, functionalized probes for chemical and biological sensing, nanopipettes for fluid and macromolecule transfer, and devices for the dispensing and deposition of nanodrops.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: November 2, 2010
    Assignee: The Trustees Of The University Of Pennsylvania
    Inventors: Haim H. Bau, Byong M. Kim
  • Publication number: 20100272612
    Abstract: A composition for sensor films is provided that detects chemical analytes within sensors, such as polymer-absorption chemiresistors (i.e., conductometric sensors). The disclosure provides robust sensor film compositions that have low resistance, high conductivity, and greater temperature stability and sensitivity to chemical analytes. Methods of making these sensor films are also provided. Sensor film compositions include a matrix having a polymer resin and a plurality of conductive particles comprising a polymer-grafted conductive particle. Blends of conductive particles are also contemplated.
    Type: Application
    Filed: July 6, 2010
    Publication date: October 28, 2010
    Applicant: Therm-O-Disc, Incorporated
    Inventor: Praveen C. Ramamurthy
  • Publication number: 20100272611
    Abstract: The present invention relates to a gas sensor (1) for detecting gases, with at least one gas-sensitive layer which is applied to a substrate (2), wherein at least one conductor track (3) for contact-connecting the layer is also provided on the substrate (2), and wherein the conductor track (3) is formed from a doped metal oxide material with non-catalytic properties in order to avoid the conductor track (3) influencing the detection of the gas. This avoids the disadvantages of the prior art and provides contact-connection of the gas-sensitive layers which does not influence the sensitive properties when detecting the gas by means of the layer.
    Type: Application
    Filed: November 27, 2008
    Publication date: October 28, 2010
    Applicant: EADS DEUTSCHLAND GMBH
    Inventors: Andreas Helwig, Gerhard Muller, Jan Spannhake
  • Patent number: 7801687
    Abstract: Methods for using modified single wall carbon nanotubes (“SWCNTs”) to detect presence and/or concentration of a gas component, such as a halogen (e.g., Cl2), hydrogen halides (e.g., HCl), a hydrocarbon (e.g., CnH2n+2), an alcohol, an aldehyde or a ketone, to which an unmodified SWCNT is substantially non-reactive. In a first embodiment, a connected network of SWCNTs is coated with a selected polymer, such as chlorosulfonated polyethylene, hydroxypropyl cellulose, polystyrene and/or polyvinylalcohol, and change in an electrical parameter or response value (e.g., conductance, current, voltage difference or resistance) of the coated versus uncoated SWCNT networks is analyzed. In a second embodiment, the network is doped with a transition element, such as Pd, Pt, Rh, Ir, Ru, Os and/or Au, and change in an electrical parameter value is again analyzed. The parameter change value depends monotonically, not necessarily linearly, upon concentration of the gas component.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: September 21, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration (NASA)
    Inventors: Jing Li, Meyya Meyyappan
  • Patent number: 7794663
    Abstract: A method for solid material detection in a medium includes receiving an exhaust gas downstream with respect to a workpiece from which a photoresist material is removed. An electromagnetic circuit is configured to include the exhaust gas, the exhaust gas is excited with electromagnetic energy and an impedance value of the electromagnetic circuit is determined, wherein the impedance value corresponds to an amount of solid material within the exhaust gas.
    Type: Grant
    Filed: February 19, 2004
    Date of Patent: September 14, 2010
    Assignee: Axcelis Technologies, Inc.
    Inventors: Richard E. Pingree, Jr., Palanikumara Sakthivel, Muhesh Vanodia, Michael B. Colson
  • Patent number: 7784678
    Abstract: A detecting strip reader with a removable firmware device, comprising a detecting strip reader and a firmware device. The firmware device comprises a first electrical connecting end, a database module, and an operation module, the firmware device being removably electrically connected to a second electrical connecting end in the detecting strip reader via the first electrical connecting end, wherein the characteristic of detecting strip reader is in that: a plurality of light reaction equations of detecting strips are saved in the database module, and when the first electrical connecting end of the firmware device receives an input signal from the second connecting end, the operation module selects one specific light reaction equation from the plurality of light reaction equations saved in the database module and performs the operation of the specific light reaction equation.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: August 31, 2010
    Assignee: ACTherm Inc.
    Inventors: Chien-Chih Kuo, Wen-Pin Hsieh
  • Publication number: 20100215547
    Abstract: A chemical vapor sensor includes an polymer layer and a first stratum of electrically conductive particles partially embedded in the polymer layer. A second stratum of electrically conductive particles adheres to the first stratum of particles primarily through particle-to-particle attractive forces.
    Type: Application
    Filed: February 18, 2010
    Publication date: August 26, 2010
    Inventor: Patrick Dolan
  • Patent number: 7780918
    Abstract: Sensor platforms and methods of making them are described, and include platforms having horizontally oriented sensor elements comprising nanotubes or other nanostructures, such as nanowires. Under certain embodiments, a sensor element has an affinity for an analyte. Under certain embodiments, such a sensor element comprises one or more pristine nanotubes, and, under certain embodiments, it comprises derivatized or functionalized nanotubes. Under certain embodiments, a sensor is made by providing a support structure; providing a collection of nanotubes on the structure; defining a pattern within the nanotube collection; removing part of the collection so that a patterned collection remains to form a sensor element; and providing circuitry to electrically sense the sensor's electrical characterization. Under certain embodiments, the sensor element comprises pre-derivatized or pre-functionalized nanotubes.
    Type: Grant
    Filed: May 12, 2004
    Date of Patent: August 24, 2010
    Assignee: Nantero, Inc.
    Inventors: Brent M. Segal, Thomas Rueckes, Bernhard Vogeli, Darren Brock, Venkatachalam C. Jaiprakash, Claude L. Bertin
  • Patent number: 7776193
    Abstract: A cell electrophysiological sensor is provided with: a well having a wall formed by at least one curved face, with opening sections being formed on the two ends thereof; a frame substrate having a through hole and an electrode; a cell electrophysiological sensor chip that is provided with a thin plate having a second through hole; and a void substrate, and in this structure, the frame substrate has a thickness greater than the thickness of the cell electrophysiological sensor chip and the opening diameter of the third opening section is made larger than the opening diameter of the fourth opening section.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: August 17, 2010
    Assignee: Panasonic Corporation
    Inventors: Masaya Nakatani, Hiroshi Ushio, Soichiro Hiraoka
  • Patent number: 7771658
    Abstract: A disposable cartridge for characterizing particles suspended in a liquid, especially a self-contained disposable cartridge for single-use analysis, such as for single-use analysis of a small quantity of whole blood. The self-contained disposable cartridge facilitates a straightforward testing procedure, which can be performed by most people without any particular education. Furthermore, the apparatus used to perform the test on the cartridge is simple, maintenance free, and portable.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: August 10, 2010
    Assignee: Chempaq A/S
    Inventor: Ulrik Darling Larsen
  • Patent number: 7771654
    Abstract: An apparatus for monitoring ammonia in gaseous streams, particularly in flue gas streams. The apparatus is transportable but can be permanently installed. The flue gas can be monitored in real time.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 10, 2010
    Inventors: Randall P. Moore, Robert L. Mullowney, Jr.
  • Publication number: 20100196746
    Abstract: Provided is a catalyst material comprising aggregates of nanoneedles of mainly R-type manganese dioxide and having a mesoporous structure. With this, water can be oxidatively decomposed under visible light at room temperature to produce oxygen gas, proton and electron. Also provided is a catalyst material comprising aggregates of nanoparticles of mainly hydrogenated manganese dioxide. With this, acetic acid or an inorganic substance can be synthesized from carbon dioxide gas.
    Type: Application
    Filed: March 25, 2008
    Publication date: August 5, 2010
    Inventor: Hideki Koyanaka
  • Patent number: 7754155
    Abstract: A cell isolating device and method is provided to concentrate or isolate cells with specific characteristics from a mixture of different cell types. One embodiment may comprise two subtypes of antibodies that are directly conjugated to biotin (Abb) and conjugated to a fluorescent molecule (Abf). The conjugated antibodies (Abb+Abf) bind to the target cells in a mixed cell suspension. The cell suspension is then passed over an immobilized avidin or streptavidin substrate on a glass microscope slide. The biotinylated target cells adhere to the avidin/streptavidin substrate, while the unbound cells are washed off and collected in a wicking member. Captured cells on the avidin/streptavidin substrate may then be visualized directly using a fluorescent microscope or detected and enumerated via an on-board fluorescent detection device.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: July 13, 2010
    Inventors: Amelia A. Ross, Steve Bernstein
  • Publication number: 20100166614
    Abstract: A hydrogen-gas concentration sensor comprises a substrate, and a plurality of hydrogen detecting films formed on the substrate, adjacent to one another. The hydrogen detecting films have a thin film layer, and a catalyst layer formed on the thin film layer. Each catalyst layer, when in contact with a hydrogen gas, exerts photocatalysis to hydrogenate each thin film layer reversibly and causes the electric resistance value thereof to change reversibly. The individual thin film layers have different sensitivities of a change in the hydrogen gas concentration vs. a change in the resistance value and different hydrogen gas concentration measurement ranges. The hydrogen-gas concentration sensor measures the hydrogen gas concentration with a thin film layer having a high sensitivity when the hydrogen gas concentration is low, and measures the hydrogen gas concentration with a thin film layer having a wide measurement range when the hydrogen gas concentration is high.
    Type: Application
    Filed: June 21, 2007
    Publication date: July 1, 2010
    Applicant: KABUSHIKI KAISHA ATSUMITEC
    Inventors: Naoki Uchiyama, Tomomi Kanai
  • Patent number: 7737700
    Abstract: Detecting air ingredients is obtained, a heater and gas sensitive acting layers are arranged on a substrate, which are connectable to an analyzing unit. Electrical resistances of n acting layers are connected in series; heater is a temperature sensor connected in parallel with this series connection, electrical resistance of heater is smaller than the sum of electrical resistances of acting layers and resistances are connected with a total of n+1 electrical terminals via electrodes so that heater is connected with two terminals and n?1 other terminals are connected with a respective junction that interconnects two acting layers. Heater is intermittently heated so that a predefined constant temperature of acting layers is achieved, temperature of acting layers is acquired by determining electrical resistance of heater; voltages in the series connection of acting layers are analyzed and a concentration of gases are determined from electrical resistances of acting layers.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: June 15, 2010
    Assignee: UST Umweltsensortechnik GmbH
    Inventors: Olaf Kiesewetter, Anatolij Ewert, Volkmar Melchert, Sven Kittelmann
  • Publication number: 20100098593
    Abstract: A gas detection device comprising a measuring circuit, said measuring surface comprising a substrate, a resistance heater bonded to said substrate and a coating, said coating comprising SnO2 nanoparticles doped with In2O3 nanoparticles and Pd oxide, said Pd oxide being formed from a solution of a Pd salt, such as PdCl2. The SnO2 nanocrystals have a specific surface of at least about 50 m2/g, a mean particle size of between about 5 nm and about 20 nm, and the contact points between individual nanoparticles of SnO2 and In2O3 and the associated Pd oxide are less than about 100 ?. The Pd salt solution is a solution of a palladium chloride in a dilute acid solution, such as HCl. The palladium salt to an oxide of palladium at an elevated temperature, as for example, by calcining said oxide of palladium. The palladium oxide is in the form of a coating on nanoparticles of SnO2 and In2O3.
    Type: Application
    Filed: July 17, 2009
    Publication date: April 22, 2010
    Applicant: Apollo, Inc.
    Inventors: Leonid Israilevich Trakhtenberg, Valdimir Fedorovich Gromov, Genrikh Nikolaevich Gerasimov, Valeriya Isaakovna Rozenberg, Luke Ferguson
  • Patent number: 7700041
    Abstract: A system for indirectly detecting a radiation source by directly detecting radiolytic products. The radiation source emits radiation and the radiation produces the radiolytic products. A fluid is positioned to receive the radiation from the radiation source. When the fluid is irradiated, radiolytic products are produced. By directly detecting the radiolytic products, the radiation source is detected.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: April 20, 2010
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Joseph C. Farmer, Larry E. Fischer, Thomas E. Felter
  • Patent number: 7695601
    Abstract: An electrochemical electrode probe includes an elongated body of a porous material disposed in a housing. The porous material is permeated with an electrolyte. A body of electrode material surrounds the porous body and functions as one electrode of an electrochemical system. A portion of the elongated body of porous material projects beyond the electrode body and functions to establish ionic and electrical conductivity with a sample of material which is to be tested. The sample of material functions as a working electrode, and the electrode body of the probe functions as a counter electrode/reference electrode. Further disclosed is an electrochemical analysis system which includes the probe and a support plate operable to retain a plurality of samples of test material thereupon. The probe is moved across the plate to sequentially measure the electrochemical properties of the various samples of material. Also disclosed are methods for using the system.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: April 13, 2010
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Rongzhong Jiang, Deryn Chu
  • Patent number: 7687029
    Abstract: An automated analyzer is described for determining, by way of combustion, nitrogen contained in organic compounds, in particular proteins present in foods, animal feeds, polymers, fuels etc., characterized in that the carbon dioxide absorption device upstream of the nitrogen detector is self-regenerating and comprises: a distributor valve able to switch different gas circuits without contaminations and losses from one gas sample to another, a carousel consisting of a plurality of absorber elements inside which is placed an adsorbent material, a furnace suitable for said adsorbers, in such a manner that each of said adsorbers presents itself in turn for each analysis and that on completion of said analysis the same adsorber is conveyed to the furnace for degassing of the absorbent material and thus for its relative regeneration.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: March 30, 2010
    Assignee: Ecoenergetics S.r.l.
    Inventors: Pietro Italiano, Bruno Lavettre
  • Patent number: 7682838
    Abstract: Magnetic nanoparticles and methods for their use in detecting biological molecules are disclosed. The magnetic nanoparticles can be attached to nucleic acid molecules, which are then captured by a complementary sequence attached to a detector, such as a spin valve detector or a magnetic tunnel junction detector. The detection of the bound magnetic nanoparticle can be achieved with high specificity and sensitivity.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: March 23, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Shan X. Wang, Robert L. White, Chris D. Webb, Guanxiong Li
  • Patent number: 7680607
    Abstract: A System and Method for Gas Recognition by Analysis of Bispectrum Functions is based on the Higher-Order Spectral analysis of time series measurements of resistance fluctuations in Metal Oxide Semiconductor (MOS) gas sensors, such as Taguchi-type sensors. A two-dimensional contour plot module of the bispectrum function is treated as a pattern. These patterns include information about the analyte(s) whereby characteristics of the gas can be identified.
    Type: Grant
    Filed: May 12, 2005
    Date of Patent: March 16, 2010
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Janusz Smulko, Laszlo B. Kish, Gabor Schmera
  • Publication number: 20100062536
    Abstract: In a method and apparatus for detecting toxic chemical hazardous materials and warfare agents in a gas, the gas is exposed to a substrate with a hydrogen terminated surface. The substrate may be made from a nonconductor material with available surface conductivity, or from a semiconductor material. The electrical resistance at the hydrogen terminated surface is measured to detect the presence of the hazardous materials and warfare agents. A method of producing such a substrate detector is also disclosed.
    Type: Application
    Filed: November 12, 2007
    Publication date: March 11, 2010
    Inventors: Martin Eickhoff, Andreas Helwig, José Antonio Garrido, Gerhard Mueller
  • Publication number: 20100039124
    Abstract: A molecularly imprinted polymer (MIP) sensor including a substrate, two or more electrodes, a conductive layer applied to the substrate and a molecularly imprinted polymer layer applied to the conductive layer is disclosed herein The MIP sensor may form part of an MIP sensor system that can be used to detect and quantify target molecules.
    Type: Application
    Filed: June 14, 2007
    Publication date: February 18, 2010
    Applicant: The Trustees of Dartmouth College
    Inventors: Joseph J. Belbruno, Ursula J. Gibson, Jane E.G. Lipson, Martin N. Wybourne
  • Publication number: 20100008825
    Abstract: A resonant sensor for detecting a specific environmental analyte is presented. The resonant sensor comprises a top conductive layer of two ground conductors and a center signal line, a bottom conductive layer of two ground lines shunted together by a shunt line and a sensing layer positioned between the top conductive layer and the bottom conductive layer. A capacitor is created by the overlap of the center signal line of the top conductive layer and the shunt line of the bottom conductive layer. Electrical properties of the sensing layer change in response to binding the specific environmental analyte with the sensing layer. The sensing layer can be an electro-optic polymer. Nanoparticles or carbon nanotubes can be dispersed within the sensing layer to bind with the specific environmental analyte. An integrated antenna can be incorporated into to sensor to receive radio frequencies for wireless, passive sensing.
    Type: Application
    Filed: July 14, 2008
    Publication date: January 14, 2010
    Applicant: University of Dayton
    Inventor: Guru Subramanyam
  • Patent number: 7638290
    Abstract: The invention relates to a reagent and a process for the identification and counting of biological cells in a sample. This reagent comprises a cell lysing agent selected from at least one detergent in a concentration capable of specifically lysing a given type of cells in the sample, and a stain capable of marking the intracellular nucleic acids of the remaining unlysed cells. Application in particular for the identification and counting of cells using an automated analysis system based on flow cytometry.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: December 29, 2009
    Assignee: ABX
    Inventors: Didier Lefevre, Sylvie Veriac, Henri Champseix
  • Patent number: 7628959
    Abstract: A hydrogen gas sensor and/or switch fabricated from arrays nanowires composed of metal or metal alloys that have stable metal hydride phases. The sensor and/or switch response times make it quite suitable for measuring the concentration of hydrogen in a flowing gas stream. The sensor and/or switch preferably operates by measuring the resistance of several metal nanowires arrayed in parallel in the presence of hydrogen gas. The nanowires preferably comprise gaps or break junctions that can function as a switch that closes in the presence of hydrogen gas. Consequently, the conductivity of the nanowires of the sensor and/or switch increases in the presence of hydrogen.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: December 8, 2009
    Assignee: The Regents of the University of California
    Inventors: Reginald Mark Penner, Erich C. Walter, Fred Favier
  • Patent number: 7629177
    Abstract: The present invention is a method and apparatus for sampling a high-temperature gaseous process stream containing components with high boiling points. The sampling system is especially suited for instruments having extremely low pressure chambers, such as mass spectrometers. The invention reduces the condensation of high boiling point components of the sample in the sampling system without the necessity of maintaining extremely high temperatures. The gaseous sample is passed through an orifice from the high temperature stream into a lower-temperature zone of the sampling system where a low pressure is maintained by a vacuum pump. The low pressure reduces the boiling point of the sample components so they may be maintained in a gas phase without excessive heating. The low pressure sample is then introduced into an instrument chamber through a sample introduction valve.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: December 8, 2009
    Assignee: Siemens Industry, Inc.
    Inventors: Dean Vinson Davis, Jeffrey Scott Spaulding, Eugene L. Kesselhuth
  • Publication number: 20090280381
    Abstract: Diatomaceous earth (“DE”) proton conductors are disclosed for use as electrolytes in electrochemical applications, such as fuel cells, gas sensors, humidity sensors, and pH sensors. The DE proton conductors may be formed by, for example, cutting from diatomaceous crude, pressing diatomaceous powder into pellets, or any other suitable shape-forming methods. In electrochemical applications, the DE proton conductor may be used to separate a hydrogen anode from an oxygen cathode and may conduct protons generated at the hydrogen anode to the oxygen cathode.
    Type: Application
    Filed: June 29, 2007
    Publication date: November 12, 2009
    Applicant: World Minerals, Inc.
    Inventor: Bo Wang
  • Publication number: 20090246084
    Abstract: A gas sensor has a gas-sensitive layer with a surface area where the electron affinity depends on the concentration of a target gas brought in contact with the surface area. An electrical potential sensor is capacitively coupled to the surface area via an air gap. The surface area of the gas-sensitive layer is covered by an electric insulating layer that is inert to the target gas and is bonded to the gas-sensitive layer. The coating is designed in such a way that it is permeable for the target gas and a different, non-target gas that can be adsorbed on the surface area. The coating has different diffusion constants for the target gas and the non-target gas. The diffusion constants are coordinated with each other in such a way that the sensitivity of the gas sensor to the target gas increases when the target gas concentration exceeds a predetermined concentration threshold in the presence of the non-target gas.
    Type: Application
    Filed: March 25, 2009
    Publication date: October 1, 2009
    Applicant: Micronas GmbH
    Inventors: Christoph Wilbertz, Heinz-Peter Frerichs, Christoph Senft
  • Patent number: 7588726
    Abstract: A vapor analysis system comprising a vapor analyzer capable of collecting and analyzing a vapor sample for detection of a compound that may be contained within the vapor sample. A controller is coupled to the vapor analyzer. The controller is programmed to produce an indicator signal indicative of a relative concentration of the compound detected by the vapor analyzer within the vapor sample. A sample probe includes a housing containing a vapor channel through which the vapor sample is collected, and a vapor cable couples the sample probe to the vapor analyzer to allow collection and channeling of the vapor sample to the vapor analyzer. A multi-dimensional user indicator is disposed on the housing of the sample probe receives and operates in response to the indicator signal to indicate the relative concentration of the compound detected within the vapor sample for presentation via a multi-directional stimulus to a user of the vapor analysis system.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: September 15, 2009
    Assignee: Thermo Fisher Scientific Inc.
    Inventors: Robert F. Mouradian, Patrick John Kennedy, K. Stephen Johnson, Jr.
  • Patent number: 7588727
    Abstract: A microfluidic chip on a transparent substrate includes microchannels, and an electric layer having a heater and a sensor layout on the microchannel nearby and aside for supplying heat source and sensing the temperature individually. The sensor is close to the microchannel for controlling the temperature accurately. Hence, the microfluidic chip can measure the temperature precisely without using an isolation layer and lower energy consumptions and reduce production costs.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: September 15, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Shaw-Hwa Parng, Tung-Ming Yu
  • Patent number: RE42192
    Abstract: Generally, this invention relates to the development of field monitoring methodology for new substances and sensing chemical warfare agents (CWAs) and terrorist substances. It also relates to a portable test kit which may be utilized to measure concentrations of halogenated volatile organic compounds (VOCs) in the field. Specifically it relates to systems for reliably field sensing the potential presence of such items while also distinguishing them from other elements potentially present. It also relates to overall systems and processes for sensing, reacting, and responding to an indicated presence of such substance, including modifications of existing halogenated sensors and arrayed sensing systems and methods.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: March 1, 2011
    Assignee: The University of Wyoming Research Corporation
    Inventors: John F. Schabron, Joseph F. Rovani, Jr., Theresa M. Bomstad, Susan S. Sorini-Wong, Gregory K. Wong