Utilizing Organic Reactant Patents (Class 423/226)
  • Patent number: 8894953
    Abstract: Disclosed is a method for recovering carbon dioxide from exhaust gas, more particularly, a method for recovering carbon dioxide from exhaust gas for saving the cost for recovery of carbon dioxide by decreasing energy required for recycling a carbon dioxide absorbent solution. In particular, a circulating solvent, whose heat of vaporization and/or sensible heat is lower than that of a solvent of an absorbent solution introduced to a recycling tower, is supplied to the lower portion of the recycling tower and mixed with the heated absorbent solution. As a result, the pressure inside the recycling tower is maintained so that carbon dioxide released from the absorbent solution is discharged to a storage tank/drum.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: November 25, 2014
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sung Yeup Chung, Yoon Ji Lee, Sang Jin Park, Ki Chun Lee
  • Patent number: 8883036
    Abstract: A process for the production of a H2S-enriched H2 gas stream without the need for H2S compression is disclosed. A slip stream of rich amine from a hydroprocessing unit is reduced in pressure and stripped with a hydrogen-containing gas. The H2S content of the resulting gas stream can be readily controlled by adjusting the stripping pressure and/or hydrogen rate. The H2S-enriched H2 gas stream is suitable for the sulfidation of catalytically active metals.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 11, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventor: Bruce Edward Reynolds
  • Patent number: 8858906
    Abstract: The invention provides a process for the removal of CO2 from a gas, the process comprising the steps of: (a) removing CO2 from the gas by contacting the gas with absorbing liquid in an absorber to obtain absorbing liquid enriched in CO2 and a purified gas; (b) heating absorbing liquid enriched in CO2 (c) contacting heated absorbing liquid enriched in CO2 with a stripping gas at elevated temperature in a regenerator to obtain regenerated absorbing liquid and a hot gas stream enriched in CO2 wherein at least part of the absorbing liquid enriched in CO2 is heated through external heat exchange with the hot gas stream enriched in CO2.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: October 14, 2014
    Assignee: Shell Oil Company
    Inventors: Ayhan Eksilioglu, Frank Haiko Geuzebroek
  • Publication number: 20140294708
    Abstract: The present invention provides a process for removing mercaptans from a gas stream gas stream, comprising the steps: a) providing a first mercaptan-comprising gas stream comprising at least a mercaptan of the general formula: R1—SH, wherein R1 is an alkyl group comprising 1 to 4 carbon atoms; and b) contacting the mercaptan-comprising gas stream with an absorption medium comprising a substituted disulphide and a nitrogen-containing base to obtain a second mercaptan-depleted gas stream, wherein: the substituted disulphide is of the general formula R2—SS—R3 wherein: R2 and R3 are carbon comprising substituents of which the corresponding R2—SH and R3—SH thiols have a vapour pressure below the vapour pressure of any R1—SH thiol.
    Type: Application
    Filed: November 30, 2011
    Publication date: October 2, 2014
    Inventors: Jozef Jacobus Titus Smits, Sipke Hidde Wadman
  • Publication number: 20140294709
    Abstract: Functionalized metal-organic framework adsorbents with ligands containing basic nitrogen groups such as alkylamines and alkyldiamines appended to the metal centers and method of isolating carbon dioxide from a stream of combined gases and carbon dioxide partial pressures below approximately 1 and 1000 mbar. The adsorption material has an isosteric heat of carbon dioxide adsorption of greater than ?60 kJ/mol at zero coverage using a dual-site Langmuir model.
    Type: Application
    Filed: March 28, 2014
    Publication date: October 2, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey R. Long, Thomas M. McDonald, Deanna M. D'Alessandro
  • Publication number: 20140271434
    Abstract: Carbon dioxide capture and release includes contacting a gas comprising carbon dioxide with a mixture comprising a precursor and a solvent and reducing the precursor to form a capture agent. The capture agent is reacted with the carbon dioxide to form a non-volatile species containing carbon dioxide. The non-volatile species is oxidized to regenerate the precursor and to release carbon dioxide. The mixture may be formed by combining the precursor and the solvent.
    Type: Application
    Filed: August 17, 2012
    Publication date: September 18, 2014
    Inventor: Daniel A. Buttry
  • Publication number: 20140255282
    Abstract: Both a system and a method for scrubbing a contaminated gas stream with a glycerol solution are disclosed. The system includes a contaminated gas stream in need of purification, along with a column which receives the contaminated gas stream. A glycerol solution is also received by the column and is used to scrub the contaminated gas stream in the column. The glycerol solution is used to reduce at least three contaminants from the gas stream, and includes greater than 50% glycerol and less than 98% glycerol. In one embodiment, the glycerol solution includes between 0.5% to 10% salts, wherein the salts are sodium based, potassium based or a combination thereof. The salts act catalytically to convert glycerol and carbon dioxide to glycerol carbonate.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 11, 2014
    Applicant: Whole Energy Fuels Corporation
    Inventors: Orion Lekos, Atul Deshmane
  • Publication number: 20140251922
    Abstract: Method for removing hydrogen sulfide from fluids such as oil and gas well drilling, treatment, and production fluids and effluents from hydrocarbon operations and mineral mining operations. The sulfide scavenger used in the method is a gluconate salt other than ferrous gluconate. The gluconate salt is added to the fluid along with an iron source if iron is not already in the fluid. The gluconate reacts with the iron and forms iron gluconate in the fluid, which in turn reacts with the hydrogen sulfate to form iron sulfide which may be readily removed from the fluid.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Cato Russell McDaniel, Carl J. Thaemlitz
  • Publication number: 20140219899
    Abstract: Methods and systems for capturing carbon dioxide from dilute sources are disclosed. In some embodiments, the methods include the following: (a) directing a first substantially gaseous stream including a first amount of carbon dioxide to a primary scrubber; (b) in the primary scrubber, removing a portion of the first amount of carbon dioxide thereby forming a second substantially gaseous stream including a second amount of carbon dioxide; (c) directing the second substantially gaseous stream to a secondary scrubber; (d) in the secondary scrubber, removing a portion of the second amount of carbon dioxide thereby forming a third substantially gaseous stream; (e) mixing substantially all of the portion of the second amount of carbon dioxide removed in step (d) with the first substantially gaseous stream before it enters the primary scrubber; and (f) repeating steps (a) thru (e).
    Type: Application
    Filed: February 6, 2012
    Publication date: August 7, 2014
    Inventors: Klaus Lackner, Allen Wright
  • Patent number: 8765083
    Abstract: This invention provides novel compositions comprising substituted polyamines as acid gas scrubbing solutions and methods of using the compositions in an industrial system. The invention relates to the use of such polyamine compounds in industrial processes to remove acidic contaminants from natural and industrial fluid streams, such as natural gas, combustion gas, natural gas, synthesis gas, biogas, and other industrial fluid streams. The compositions and methods of the invention are useful for removal, absorption, or sequestration of acidic contaminants and sulfide contaminants including CO2, H2S, RSH, CS2, COS, and SO.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: July 1, 2014
    Assignee: Nalco Company
    Inventors: Alan M. Blair, Keith N. Garside, William J. Andrews, Kailas B. Sawant
  • Patent number: 8765087
    Abstract: A reforming method of a metallurgical furnace generated exhaust gas includes reforming a high temperature exhaust gas discharged from a metallurgical furnace by adding a reducing agent to the gas, wherein addition of the reducing agent is initiated when an oxygen concentration in the exhaust gas is 1 vol % or less, and a reforming reaction is completed when a temperature of the exhaust gas is 800° C. or higher, and an apparatus thereof. The reducing agent is blown from a reducing agent blowing nozzle having a double pipe structure.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: July 1, 2014
    Assignee: JFE Steel Corporation
    Inventors: Katsuhiko Takagi, Hitoshi Saima, Yasuhiro Mogi, Yasuo Miyoshi
  • Patent number: 8765086
    Abstract: A process for removal of H2S and CO2 from an acid gas stream comprising H2S and CO2, the process comprising the steps of: (a) reacting H2S in the acid gas stream with SO2 to form sulphur vapor and water vapor, thereby obtaining a first off-gas stream comprising CO2, water vapor, sulphur vapor, residual SO2 and residual H2S; (b) converting residual SO2 in the first off-gas stream to H2S in a first off-gas treating reactor, thereby obtaining a second off-gas stream depleted in SO2 and enriched in H2S and CO2 compared to the first off-gas stream; (c) contacting the second off-gas stream with an H2S absorbing liquid, thereby transferring H2S from the gas stream to the H2S absorbing liquid to obtain H2S absorbing liquid enriched in H2S and a third off-gas stream enriched in CO2; (d) removing CO2 from the third off-gas stream by contacting the third off-gas stream with CO2 absorbing liquid in a CO2 absorber, thereby transferring CO2 from the third off-gas stream to the CO2 absorbing liquid to obtain CO2 absorbing l
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 1, 2014
    Assignee: Shell Oil Company
    Inventors: Theodorus Johannes Brok, Gerardus Petrus Van Der Zwet
  • Publication number: 20140166289
    Abstract: Alpha-hydroxy alkyl esters have been found to perform as hydrogen sulfide scavengers. A method of scavenging hydrogen sulfide includes contacting a fluid containing hydrogen sulfide with a treatment fluid including an alpha-hydroxy alkyl ester. Accordingly, the alpha-hydroxy alkyl ester reacts with the hydrogen sulfide to reduce the amount of hydrogen sulfide in the fluid. A broad range of alpha-hydroxy alkyl esters are disclosed.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 19, 2014
    Applicant: Champion Technologies, Inc.
    Inventors: Aaron D. Martinez, Ravindranath Mukkamala, Erick J. Acosta Otero, Joseph P. Bailey
  • Publication number: 20140166282
    Abstract: Functionalized alpha-hydroxy alkyl ethers have been found to perform as non (or anti-) scaling hydrogen sulfide scavengers. A method of scavenging hydrogen sulfide includes contacting a fluid containing hydrogen sulfide with a treatment fluid including a functionalized alpha-hydroxy alkyl ether. Accordingly, the alpha-hydroxy alkyl ether reacts with the hydrogen sulfide to reduce the amount of hydrogen sulfide in the fluid. The functionalized alpha-hydroxy alkyl ether is functionalized with a phosphate group, phosphonate group, sulfate group, or sulfonate group. A broad range of alpha-hydroxy alkyl ethers are disclosed.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 19, 2014
    Applicant: Champion Technologies, Inc.
    Inventors: Aaron D. Martinez, Erick J. Acosta Otero, Maximilian A. Silvestri, Joseph P. Bailey, Jose M. Macias
  • Patent number: 8741246
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 3, 2014
    Assignee: Board of Trustees of the University of Alabama
    Inventor: Jason E. Bara
  • Patent number: 8734744
    Abstract: Aspects of the disclosure relate to the separation of gases and to a process for the removal of carbon dioxide gas using liquid absorbents. A process is disclosed for removing carbon dioxide from a gaseous stream comprising contacting the gaseous stream with a carbon dioxide absorbent comprising a mixture of an ionic liquid and water in a molar ratio of from 10:1 to 1:10, wherein the ionic liquid has the formula: [Cat+][X?].
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 27, 2014
    Assignee: Petroliam Nasional Berhad
    Inventors: David F. Wassell, Kenneth R. Seddon, Martin P. Atkins
  • Publication number: 20140127102
    Abstract: Change in the amount of an absorbing liquid is detected to restore the original amount, and carbon dioxide is stably recovered from exhaust gas. The carbon dioxide recovery apparatus has: an absorber where a gas contacts with an absorbing liquid that absorbs carbon dioxide contained in the gas; and a regenerator where the absorbing liquid after absorption is heated to release carbon dioxide and is regenerated. Water vapor in the carbon dioxide-containing recovery gas, discharged from the regenerator, is condensed by recovery equipment, and the condensed water is supplied at a fixed flow rate to the regenerator. A liquid level meter detects the liquid level changing with quantity fluctuations of the absorbing liquid. If the liquid level is lowered, a restoration system restores the original liquid level, using the condensed water. The condensed water sufficient for restoring the liquid level is supplied near the liquid level meter.
    Type: Application
    Filed: January 10, 2014
    Publication date: May 8, 2014
    Applicant: IHI Corporation
    Inventors: Shinya OKUNO, Shiko NAKAMURA, Atsushi MURAKAMI
  • Publication number: 20140127104
    Abstract: A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.
    Type: Application
    Filed: January 7, 2014
    Publication date: May 8, 2014
    Applicant: WEST VIRGINIA UNIVERSITY
    Inventors: Bingyun Li, Bingbing Jiang, McMahan L. Gray, Daniel J. Fauth, Henry W. Pennline, George A. Richards
  • Publication number: 20140112855
    Abstract: This invention relates to the separation of components from a gas mixture. Aspects of the invention relate to the separation of components, for example carbon dioxide (CO2) and/or hydrogen sulphide (H2S) from, for example, acid gas, for example natural gas, syngas or process gas although features of the invention may be applied to other source gases. Such a process is sometimes referred to as acid gas removal (AGR). In examples described herein, the source gas mixture contains CO2 and/or H2S in addition to other components and in some examples, the CO2 and/or H2S components of the gas are referred to as acid gas components. In examples of the invention, some or all of the acid gas component is removed using a solvent absorption method; some examples described use a chemical absorption system (for example including N-Methyl diethanolamine (MDEA)), and others use a physical solvent (for example based on methanol (MeOH)).
    Type: Application
    Filed: October 22, 2013
    Publication date: April 24, 2014
    Applicant: BP ALTERNATIVE ENERGY INTERNATIONAL LIMITED
    Inventor: Yasushi Mori
  • Publication number: 20140112856
    Abstract: The present disclosure is directed to a high temperature method to adsorb carbon dioxide onto an ion-exchange resin and/or regenerate the carbon dioxide-loaded ion-exchange resins.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 24, 2014
    Applicant: ADA-ES, INC.
    Inventors: Holly Krutka, William Morris, Sharon Sjostrom, Travis Starns
  • Patent number: 8703082
    Abstract: The present invention relates to a method for capturing CO2 from exhaust gas in an absorber (A1), wherein the CO2 containing gas is passed through an aqueous absorbent slurry wherein said aqueous absorbent slurry comprises an inorganic alkali carbonate, bicarbonate and at least one of an absorption promoter and a catalyst, and wherein the CO2 is converted to solids by precipitation in the absorber, said slurry having the precipitated solids is conveyed to a separating device (F1), in which the solids are separated off, essentially all of at least one of the absorption promoter and catalyst is recycled together with the remaining aqueous phase to the absorber.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: April 22, 2014
    Assignee: Sinvent AS
    Inventors: Hallvard F. Svendsen, Finn Andrew Tobiesen, Thor Mejdell, Karl Anders Hoff
  • Publication number: 20140061540
    Abstract: Metal-organic frameworks of the family M2 (2,5-dioxido-1,4-benzenedicarboxylate) wherein M=Mg, Mn, Fe, Co, Cu, Ni or Zn are a group of porous crystalline materials formed of metal cations or clusters joined by multitopic organic linkers that can be used to isolate individual gases from a stream of combined gases. This group of adsorbant materials incorporates a high density of coordinatively-unsaturated MII centers lining the pore surfaces. These adsorbents are particularly suited for selective carbon dioxide/monoxide adsorption via pressure swing adsorption near temperatures of 313 K since they selectively adsorb carbon dioxide at high pressures in the presence of hydrogen, and desorb carbon dioxide upon a pressure decrease. The redox-active FeII centers in Fe2(dobdc) can be used for the separation of O2 from N2 and other separations based on selective, reversible electron transfer reactions.
    Type: Application
    Filed: August 12, 2013
    Publication date: March 6, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey R. Long, Zoey R. Herm, Joseph A. Swisher, Berend Smit, Rajamani Krishna, Eric Bloch, Leslie Murray
  • Patent number: 8652435
    Abstract: An improved process for reduction-oxidation desulphurization uses an oxidizer operating at a pressure greater than the absorber where a liquid reduction-oxidation catalyst solution contacts a sulfur-containing gas feed stream.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: February 18, 2014
    Assignee: Merichem Company
    Inventor: Gary J. Nagl
  • Patent number: 8652237
    Abstract: A system and process are disclosed for selective removal and recovery of H2S from a gaseous volume, e.g., from natural gas. Anhydrous organic, sorbents chemically capture H2S gas to form hydrosulfide salts. Regeneration of the capture solvent involves addition of an anti-solvent that releases the captured H2S gas from the capture sorbent. The capture sorbent and anti-solvent are reactivated for reuse, e.g., by simple distillation.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 18, 2014
    Assignee: Battelle Memorial Institute
    Inventors: David J. Heldebrant, Phillip K. Koech, James E. Rainbolt, Mark D. Bearden, Feng Zheng
  • Patent number: 8641994
    Abstract: A method and a plant for capturing CO2 from an exhaust gas from combustion of carbonaceous material are described. At least a part of the combustion gas is introduced into a biol fuel boiler as an oxygen containing gas, to increase the concentration of CO2 and decrease the oxygen concentration in the gas before introduction into an absorption column for separation of CO2.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: February 4, 2014
    Assignee: Aker Clean Carbon AS
    Inventors: Simon Woodhouse, Oscar Fredrik Graff
  • Publication number: 20140017153
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Application
    Filed: June 10, 2013
    Publication date: January 16, 2014
    Inventor: Jason E. Bara
  • Patent number: 8628743
    Abstract: Gas sweetening solutions are described that are capable of removing hydrogen sulfide from gas streams. These gas sweetening solutions increase the size of produced sulfur particles and thereby improve efficiency of their separation, while simultaneously reducing corrosive effects of the sweetening solutions. The gas sweetening solutions comprise at least one chelating agent, cationic iron and a mixture of nitrite salt and phosphate species.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: January 14, 2014
    Assignee: Research Institute of Petroleum Industry (RIPI)
    Inventors: Masih Hosseini Jenab, Jaber Neshati, Khaled Forsat
  • Patent number: 8585802
    Abstract: An energy-efficient method of recovering carbon dioxide (CO2) in a high-pressure liquid state from a high-pressure gas stream. The method includes cooling, condensing, and/or separating CO2 from a high-pressure gas stream in two or more separation zones and further purifying the resulting sub-critical pressure liquid CO2 streams in a third purification zone to thereby provide purified CO2. The purified liquid CO2 may be pumped to above the critical pressure for further utilization and/or sequestration for industrial or environmental purposes.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: November 19, 2013
    Inventor: Arnold Keller
  • Publication number: 20130302233
    Abstract: The present invention provides a process for removing mercaptans from a gas stream. In the process, a first mercaptan-comprising gas stream comprising at least a mercaptan of the general formula: R1—SH, wherein R1 is an alkyl group comprising 1 to 4 carbon atoms, and an acid component is contacted with an absorption medium to obtain a mercaptan-depleted gas stream. The absorption medium includes a substituted disulphide and a base. The substituted disulphide is of the general formula R2—SS—R3, wherein R2 and R3 are carbon comprising substituents of which the corresponding R2—SH and R3—SH thiols have a vapour pressure below the vapour pressure of any R1—SH thiol, and at least one of R2 and R3 is an electron withdrawing group.
    Type: Application
    Filed: December 6, 2011
    Publication date: November 14, 2013
    Inventors: Jozef Jacobus Titus Smits, Sipke Hidde Wadman
  • Patent number: 8574453
    Abstract: One aspect of the present invention relates to salts that are room-temperature ionic liquids (RTILs), methods of making them, and methods of using them in connection with temporary or permanent gas sequestration. Another aspect of the present invention relates to a class of solvents which can be transformed into RTILs by exposure to a gas, and methods of using them in connection with temporary or permanent gas sequestration.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: November 5, 2013
    Assignee: Georgetown University
    Inventors: Tao Yu, Richard G. Weiss, Taisuke Yamada, Mathew George
  • Patent number: 8568510
    Abstract: A gas separation process for treating off-gas streams from reaction processes, and reaction processes including such gas separation. The invention involves flowing the off-gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, and passing the permeate/sweep gas mixture to the reaction. The process recovers unreacted feedstock that would otherwise be lost in the waste gases in an energy-efficient manner.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 29, 2013
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G Wijmans, Richard W Baker, Timothy C Merkel
  • Publication number: 20130280151
    Abstract: A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Inventors: Jong Suk Lee, William J. Koros, Nitesh Bhuwania, Patrick C. Hillesheim, Sheng Dai
  • Publication number: 20130259783
    Abstract: A method is provided for replacing at least a portion of the organic linker content of a zeolitic imidazolate framework composition. The method comprises exchanging the organic linker with another organic linker. Also provided is a new material, designated as EMM-19, and a method of using EMM-19 to adsorb gases, such as carbon dioxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Zheng Ni, Mobae Afeworki, Simon Christopher Weston, John Zengel, David Lawrence Stern
  • Patent number: 8529854
    Abstract: The present invention relates to a new process for removal of carbon dioxide from a feed gas, wherein the feed gas is fed to and concentrated in a stripper column (A) before condensation of the gaseous carbon dioxide. The present invention also relates to different uses of the removed carbon dioxide and to a plant for removal of carbon dioxide from the feed gas.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: September 10, 2013
    Assignee: Union Engineering A/S
    Inventor: Rasmus Find
  • Publication number: 20130230442
    Abstract: A method for collecting carbon dioxide from flue gas. The method includes: 1) mixing an aqueous solution of sodium carbonate with an amino alcohol activator to yield a CO2 absorbent; spraying the CO2 absorbent into the flue gas to produce a sodium bicarbonate slurry; 2) thermally decomposing the sodium bicarbonate slurry to produce a highly concentrated CO2 gas and an aqueous solution of sodium carbonate; 3) returning the aqueous solution of sodium carbonate to step 1) to form the CO2 absorbent for recycling; 4) cooling the highly concentrated CO2 gas for condensing hot water vapor therein; 5) carrying out gas-liquid separation on the highly concentrated CO2 gas, removing condensed water to yield highly purified CO2 gas; and 6) drying, compressing, and condensing the highly purified CO2 gas. An apparatus for collecting carbon dioxide from flue gas according to the method is also provided.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: WUHAN KAIDI ELECTRIC POWER CO., LTD.
    Inventors: Shifa WEI, Xu HAN, Yongjie XUE, Zhilong WANG, Yanfeng ZHANG
  • Publication number: 20130224092
    Abstract: Aldehydes useful as H2S sulfide scavengers may be corrosive to some metals such as steel, iron and aluminum, but the corrosive effect of the aldehydes may be mitigated by employing a corrosion inhibitor selected from the group consisting of a di-basic soluble phosphate salt, a tri-basic soluble phosphate salt, a phosphate ester, a thiophosphate ester, a thioamine, a Mannich Reaction Product, and combinations thereof.
    Type: Application
    Filed: August 20, 2012
    Publication date: August 29, 2013
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Stephen R. Keenan, Jonathan Collins, Sunder Ramachandran, Vladimir Jovancicevic, Rose Tompkins, Grahame N. Taylor, Richard L. Martin, Michael L. Walker
  • Patent number: 8518587
    Abstract: An alkaline electrochemical device having an alkaline electrolyte disposed between an anode electrode and a cathode electrode, where the anode electrode and/or the cathode electrode is provided with a CO2 inhibitor which substantially eliminates poisoning of the device by CO2. The device may be an alkaline fuel cell or an alkaline battery. In one embodiment, the electrolyte is an anion exchange polymeric alkaline electrolyte membrane.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: August 27, 2013
    Assignee: Gas Technology Institute
    Inventor: Qinbai Fan
  • Patent number: 8512448
    Abstract: A multi-stage scrubbing system comprises a pre-scrubber system structured to receive a vent stream therein and pre-scrub the vent stream with a pre-scrubber fluid. The pre-scrubber system includes a first outlet for discharging a pre-scrubbed vent stream and a second outlet for discharging a discharge stream of pre-scrubber fluid. A main scrubber system is fluidly coupled to the first outlet of the pre-scrubber system for receiving and further scrubbing the pre-scrubbed vent stream.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: August 20, 2013
    Assignee: Integroenergy Group, Inc.
    Inventors: Daniel W. Sonnek, Gregory W. Loest
  • Patent number: 8512449
    Abstract: The present invention is directed to water-dispersible, oil-soluble triazine sulfide-scavenging compositions for use in hydrocarbon recovery and processing applications. The compositions include a triazine component, a glycol ether component, and an optional alcohol component. The compositions contain a minor amount of water up to a maximum of about 15% by volume. The compositions can be used in any type of sulfide-scavenging operation and significantly reduce corrosion problems found with conventional triazine scavengers.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: August 20, 2013
    Assignee: Jacam Chemical Company 2013, LLC
    Inventors: Gene H. Zaid, Beth Ann Wolf
  • Patent number: 8506914
    Abstract: Systems containing imidazoles or blends of imidazoles and amines are described herein. Methods of their preparation and use are also described herein. The methods of using the systems include the reduction of volatile compounds from gas streams and liquid streams.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: August 13, 2013
    Assignee: Board of Trustees of The University of Alabama
    Inventor: Jason E. Bara
  • Patent number: 8501035
    Abstract: An absorption medium for removing acid gases from a fluid stream comprises an aqueous solution (A) of an alkali metal salt of an N,N-di-C1-C4-alkylaminocarboxylic acid and (B) N-hydroxyethylpiperazine. The absorption medium has a low vapor pressure and an increased resistance to oxygen. Preferred fluid streams are combustion exhaust gases or biogas.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: August 6, 2013
    Assignee: BASF SE
    Inventors: Christian Riemann, Torsten Katz, Georg Sieder, Gerald Vorberg, Erika Dengler
  • Patent number: 8500866
    Abstract: Upon cooling to 15 to 45° C., a process for the treatment of raw product gas generated by pressure gasification of solid fuels comprises the removal of HCN and NH3 in a preliminary stage, of H2S and COS and possibly other sulfur-containing compounds in a first stage and of CO2 in a second stage by physisorption with cold oxygenate, and the pure product gas is supplied to the direct reduction of iron ore as reduction gas and/or as fuel gas. An improvement of the process consists in that recycle gas loaded with CO2 and steam, which is branched off from the circuit of the recycle gas of the direct reduction of iron ore, is admixed to the desulfurized product gas upon removal of the steam contained therein.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 6, 2013
    Assignee: Lurgi Clean Coal Technology (Proprietary) Limited
    Inventor: Gerhard Schmitt
  • Publication number: 20130195744
    Abstract: Process for separating CO2 from a gaseous stream by chemisorption to 1-ethyl-3-methylimidazolium (emim) or 1-propyl-3-methylimidazolium (pmim), characterized in that emim or pmim are present as carboxylate salt and that chemisorption is carried out in the presence of guanidinium acetate or 1-butyl-3-methylimidazolium (bmim) acetate.
    Type: Application
    Filed: June 5, 2012
    Publication date: August 1, 2013
    Applicant: VTU HOLDING GMBH
    Inventors: Peter Janiczek, Roland Kalb
  • Patent number: 8480924
    Abstract: Certain exemplary embodiments provide methods for reducing a concentration of a contaminant associated with a medium, which can be any substance or material, such as soil, water, air, and/or fluid. In one exemplary method, the medium is treated with a ferric chelate and an oxidizing agent in amounts effective to oxidize at least a portion of the contaminant.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: July 9, 2013
    Inventor: Henry Wilmore Cox, Jr.
  • Patent number: 8480796
    Abstract: Disclosed is a formulation for the absorption of CO2, which comprises water, at least one CO2 absorption compound and a carbonic anhydrase as an activator to enhance the absorption capacity of the CO2 absorption compound. The invention also concerns the use of carbonic anhydrase, in a CO2 absorption solution to increase the CO2 absorption rate of such solution.
    Type: Grant
    Filed: November 21, 2011
    Date of Patent: July 9, 2013
    Assignee: CO2 Solution Inc.
    Inventors: Sylvie Fradette, Olivera Ceperkovic
  • Patent number: 8476475
    Abstract: A premix is described for producing an absorption medium for removing acid gases from fluid streams. The premix comprises at least one alkanolamine, piperazine and water, the premix having a total amine content of more than 65% by weight, the molar ratio of water to piperazine in the premix being 1.6 to 4.8. The premix is characterized by a low solidification point. It is diluted with water and/or alkanolamine to give the ready-to-use absorption medium.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: July 2, 2013
    Assignee: BASF SE
    Inventor: Norbert Asprion
  • Patent number: 8444943
    Abstract: Apparatus and methods for recovering sulfur from acid gases. Acid gases containing relatively high amounts of carbonyl sulfide and/or one or more types of mercaptans can be treated in a sulfur recovery system employing an acid gas enrichment zone and a tail gas treatment zone, where partially-loaded sulfur absorbing solvent from the tail gas treatment zone is employed for sulfur absorption in the acid gas enrichment zone. Off-gas from the acid gas enrichment zone can be combined and hydrogenated with a sulfur recovery unit tail gas thereby increasing the total amount of sulfur recovery from the initial acid gas.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: May 21, 2013
    Assignee: Black & Veatch Corporation
    Inventor: Justin A. Lamar
  • Publication number: 20130078172
    Abstract: A solid sorbent for the capture and the transport of carbon dioxide gas is provided having at least one first layer of a positively charged material that is polyethylenimine or poly(allylamine hydrochloride), that captures at least a portion of the gas, and at least one second layer of a negatively charged material that is polystyrenesulfonate or poly(acryclic acid), that transports the gas, wherein the second layer of material is in juxtaposition to, attached to, or crosslinked with the first layer for forming at least one bilayer, and a solid substrate support having a porous surface, wherein one or more of the bilayers is/are deposited on the surface of and/or within the solid substrate. A method of preparing and using the solid sorbent is provided.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 28, 2013
    Applicant: WEST VIRGINIA UNIVERSITY RESEARCH CORPORATION
    Inventors: Bingyun Li, Bingbing Jiang, McMahan L. Gray, Daniel J. Fauth, Henry W. Pennline, George A. Richards
  • Patent number: 8404900
    Abstract: An absorbent for separating acidic gases is disclosed. The absorbent or an absorbent composition for separating acidic gases has more than 3 kinds of compounds along with Chemical Formula 1 and 2, and has ability of rapid carbon dioxide elimination, excellent absorption ability, and less energy consumption for regenerating an absorbent due to easy desorption of carbon dioxide.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 26, 2013
    Assignee: Korea Electric Power Corporation
    Inventors: Jun-Han Kim, Jae-Goo Shim, Kyung-Ryong Jang, Ji-Hyun Lee
  • Publication number: 20130071309
    Abstract: Aspects of the disclosure relate to the separation of gases and to a process for the removal of carbon dioxide gas using liquid absorbents.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 21, 2013
    Applicant: PETROLIAM NASIONAL BERHAD
    Inventors: David F. Wassell, Kenneth R. Seddon, Martin P. Atkins