Group Ib Metal (cu, Ag, Or Au) Patents (Class 423/23)
  • Patent number: 7601200
    Abstract: A method of efficient separation/purification for obtaining high-purity silver chloride which eliminates the necessity of a pretreatment of a refining intermediate comprising sparingly soluble silver compounds and impurity elements when silver chloride is separated from the refining intermediate and purified to a high degree and which enables the silver chloride to be used as a raw material to give high-purity silver metal without necessitating the pyrometallurgical refining or electro-refining of the silver metal.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: October 13, 2009
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Shinichi Heguri, Masushi Kasai, Satoshi Asano, Yoshiaki Manabe, Harumasa Kurokawa
  • Patent number: 7585475
    Abstract: A method of creating solvent extraction reagent formulations that have high conductivity by combining (a) phenolic oxime extraction reagent(s) or other extraction reagent(s) in the organic phase of a solvent extraction circuit of a metal recovery operation, comprising combining the phenolic oxime extraction reagent(s) or other reagent(s) with one or more ketone, nitrile and/or amide compounds, or mixtures thereof, to create an extraction reagent formulation with a conductivity of at least 4,000 pS/m, measured according to the provisions of BS 5958 Part I, as well as a method of creating an organic phase that has a high conductivity, preferably a conductivity of at least 250 pS/m, comprising adding to that organic phase in an extraction circuit a phenolic oxime extraction reagent formulation with one or more ketoxime, aldoxime, mixtures thereof, or one or more other extraction reagents, and one or more ketone, nitrile, or amide compounds, or mixture thereof, and novel ketone, nitrile and amide compounds.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: September 8, 2009
    Assignee: Cognis IP Management GmbH
    Inventors: Michael J. Virnig, Daniel McSweeney, Frank McDonnell
  • Patent number: 7566436
    Abstract: A mixing reactor for mixing efficiently streams of fluids of differing densities. In a preferred embodiment, one of the fluids is supercritical water, and the other is an aqueous salt solution. Thus, the reactor enables the production of metal oxide nanoparticles as a continuous process, without any risk of the reactor blocking due to the inefficient mixing inherent in existing reactor designs.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: July 28, 2009
    Assignee: The University of Nottingham
    Inventors: Edward Henry Lester, Barry James Azzopardi
  • Patent number: 7566437
    Abstract: The present invention relates to a method for manufacture of silver-based composite powders for electrical contact materials. The invention relates also to electrical contact materials made from such composite powders. The process comprises a high energy dispersing process of wet silver oxide (Ag2O) with additional second oxide components in aqueous suspension. The high energy dispersing process can be conducted by high shear mixing or by high energy milling. Preferably high speed dispersing units working at rotating speeds in the range of 5,000 to 30,000 rpm or high energy mills such as attritor mills are used. The new process is versatile, economical and offers access to a broad spectrum of contact materials. The silver-based composite powders made according to the new process yield contact materials with a highly dispersed microstructures and superior material characteristics.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: July 28, 2009
    Assignee: Umicore AG & Co. KG
    Inventors: Dan Goia, Bernd Kempf, Inge Fallheier, Roger Wolmer, Andreas Koffler
  • Publication number: 20090148361
    Abstract: Processes and systems for recovering promoter-containing compounds, for example, perrhenates, from promoter-containing catalyst substrates, for example, substrates containing precious metals, such as silver, are disclosed. The processes include contacting the substrates with a first solution adapted to remove at least some of the catalyst promoter from the substrates, for example, an oxidizing agent, to produce a second solution containing catalyst promoter, passing the second solution through a porous medium adapted to capture at least some of the catalyst promoter, for example, a ion exchange resin; and passing a third solution, for example, a base solution, through the porous medium to remove at least some of the catalyst promoter from the porous medium and produce a fourth solution containing compounds having a catalyst promoter. Systems adapted to practice these processes are also disclosed.
    Type: Application
    Filed: December 5, 2007
    Publication date: June 11, 2009
    Applicant: AMES GOLDSMITH CORPORATION
    Inventors: Michael S. Herman, Michael J. Delsignore, Len D. Spaulding, James E. Phillips, SR.
  • Patent number: 7537741
    Abstract: A method for treating a polymetallic sulfide ore containing gold and/or silver, and further containing base metals selected from the group consisting of iron, aluminum, chromium, titanium, copper, zinc, lead, nickel, cobalt, mercury, tin, and mixtures thereof, is disclosed. The method comprises the steps of grinding the polymetallic sulfide ore to produce granules, oxidizing the granules to produce oxidized granules, and chloride leaching the granules using a brine solution including dissolved halogens, as well as chloride and bromide salts.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: May 26, 2009
    Assignee: Nichromet Extraction Inc.
    Inventor: Jean-Marc Lalancette
  • Patent number: 7531149
    Abstract: A general, reproducible, and simple synthetic method that employs readily available chemicals permits control of the size, shape, and size distribution of metal oxide nanocrystals. The synthesis entails reacting a metal fatty acid salt, the corresponding fatty acid, and a hydrocarbon solvent, with the reaction product being pyrolyzed to the metal oxide. Nearly monodisperse oxide nanocrystals of Fe3O4, Cr2O3, MnO, Co3O4, NiO, ZnO, SnO2, and In2O3, in a large size range (3-50 nm), are described. Size and shape control of the nanocrystals is achieved by varying the reactivity and concentration of the precursors.
    Type: Grant
    Filed: August 16, 2005
    Date of Patent: May 12, 2009
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Yongfen Chen, Nikhil Jana, Arun Narayanaswamy
  • Publication number: 20090104095
    Abstract: Novel compositions, as well as related methods, coatings, and articles, are disclosed.
    Type: Application
    Filed: October 17, 2008
    Publication date: April 23, 2009
    Inventors: Jeffrey R. Morgan, John D. Jarrell
  • Patent number: 7455825
    Abstract: Disclosed herein is a method for manufacturing metal sulfide nanocrystals using a thiol compound as a sulfur precursor. The method comprises reacting the thiol compound and a metal precursor in a solvent to grow metal sulfide crystals to the nanometer-scale level. Further disclosed is a method for manufacturing metal sulfide nanocrystals with a core-shell structure by reacting a metal precursor and a thiol compound in a solvent to grow a metal sulfide layer on the surface of a core. The metal sulfide nanocrystals prepared by these methods can have a uniform particle size at the nanometer-scale level, selective and desired crystal structures, and various shapes.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: November 25, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shin Ae Jun, Eun Joo Jang, Seong Jae Choi
  • Patent number: 7435405
    Abstract: By suppressing oxidation of sulfide minerals in sulfide ore due to bacteria or the like, this invention prevents the elution of heavy metals from the sulfide ore, and reduces the decrease in flotation performance when processing sulfide ore that is stored in a stockpile. Also, the invention makes it easier to process acidic wastewater from a stockpile or tailings dumpsite. In order to accomplish this, oxidation of sulfide minerals in sulfide ore is suppressed by adding an antioxidant, which contains plant polyphenol and whose main component is an organic acid that contains a carboxyl group, to the sulfide ore stored in a stockpile or tailings dumpsite.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: October 14, 2008
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yoshiyuki Tanaka, Ryoichi Nakayama, Hideyuki Okamoto, Masaki Imamura
  • Patent number: 7431902
    Abstract: A method for separating ammonia and sulfides from a sour water stream is disclosed. The stripping of a sour water stream where it is stripped to create a sour water stripper overhead gas and then contacted with an alkali hydroxide in order to separate ammonia and make an alkali sulfide.
    Type: Grant
    Filed: February 8, 2006
    Date of Patent: October 7, 2008
    Assignee: Sundance Resources Inc.
    Inventor: Robert V. Kerley
  • Patent number: 7410930
    Abstract: The present invention is a method for recovering a catalyst from a catalyst body comprising a carrier having a catalyst layer formed on at least a part of the surface thereof, which comprises (a) a step of forming an overcoat layer on the surface of the catalyst layer, and (b) a step of allowing the catalyst body having the overcoat layer formed thereon to stand under the condition to result in a difference in expansibility or contractility exhibited by the overcoat layer from that exhibited by the carrier, wherein exfoliation of the catalyst layer from the carrier is permitted by means of the resulting difference in expansibility or contractility under the condition.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: August 12, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hidenobu Wakita, Kiyoshi Taguchi, Seiji Fujihara, Kunihiro Ukai
  • Publication number: 20080118421
    Abstract: The present invention is directed to the microwave treatment of a class of selected metal ores and concentrates, particularly those known as chalcopyrite, in a fluidized bed reactor. The end product is commonly a mixture of copper oxide and copper sulfate, both of which are liquid soluble and directly recoverable by known techniques. The ratio of the oxide-sulfate mixture end product may be controlled by suitable control of microwave parameters.
    Type: Application
    Filed: September 20, 2007
    Publication date: May 22, 2008
    Applicant: HW ADVANCED TECHNOLOGIES, INC.
    Inventor: James Tranquilla
  • Publication number: 20080041270
    Abstract: The present invention relates to a method for manufacturing metal nanoparticles, more particularly, to a method for manufacturing metal nanoparticles, the method comprising: forming a mixture by dissociating a metal precursor in fatty acid; and adding a metallic salt of a metal selected from the group consisting of Sn, Mg and Fe as a metallic catalyst into the mixture and mixing the mixture and the metallic salt. According to the present invention, metal nanoparticles have a uniform particle size distribution and a high yield by performing in a non-aqueous environment without using any organic solvent, and may be environment-friendlily due to no use of a reducing agent.
    Type: Application
    Filed: April 13, 2007
    Publication date: February 21, 2008
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kwi-Jong Lee, Jae-Woo Joung, Byung-Ho Jun
  • Publication number: 20080019891
    Abstract: A process for copper recovery includes mixing a sludge cake with an acidic copper-containing rinsing waste liquid to form slurry; reacting the slurry with acidic SPS-containing effluent, nitric acid, sulfuric acid and liquid alkali to form a copper-containing reaction product; press filtering the obtained-above copper-containing reaction product to obtain a copper oxide-containing solid and a filtrate.
    Type: Application
    Filed: December 27, 2006
    Publication date: January 24, 2008
    Inventors: Shenjung Huang, Da Jiang Chang
  • Publication number: 20070275259
    Abstract: The present invention relates to a method of producing metal nanoparticles and the metal nanoparticles produced thereby and in particular, to a method of producing metal nanoparticles comprising preparing a first solution including a dispersing stabilizer and a polar solvent; preparing a second solution including a metal precursor and a polar solvent; and adding the second solution into the first solution by dividing at least 2 times. According to the present invention, it is possible to produce metal nanoparticles of uniform size and isotropy with high efficiency using small amount of dispersion stabilizer through controlling reaction.
    Type: Application
    Filed: February 21, 2007
    Publication date: November 29, 2007
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kwi-Jong Lee, Byung-Ho Jun, Hye-Jin Cho
  • Patent number: 7226573
    Abstract: A silver oxide powder that replaces silver powder as a silver conductive paste filler has a specific surface area measured by the BET method is 1.0–25.0 m2/g, average primary particle diameter is 1–50 nm, and average secondary particle diameter is 1–1000 nm. The silver oxide powder is made by preparing a neutralization medium that is an aqueous solution containing one or both of sodium hydroxide and potassium hydroxide in a total amount of 0.5 mole/L or less, simultaneously adding an aqueous solution containing silver salt in an amount of 6.0 mole/L or less and an aqueous solution of at least one of sodium hydroxide and potassium hydroxide to the liquid medium to conduct a neutralization reaction, thereby obtaining a neutralized precipitate, maintaining the liquid at a pH in the range of 12±1.5 during the reaction, and subjecting the precipitate to filtration, washing, and drying.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: June 5, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Kenichi Harigae, Yoshiyuki Shoji
  • Patent number: 7201888
    Abstract: The present invention provides silver oxide particles having an average diameter of less than or equal to 100 nm that are stable and can be transported in dry powder form. The surface of the silver oxide particles is coated with an extremely thin layer of a surfactant such as fatty acid. Nanosized silver oxide particles according to the invention are preferably formed via the addition of a strong base to a mixture including an aqueous silver salt solution and a surfactant dissolved in an organic solvent that is at least partially water miscible. The strong base causes silver oxide to precipitate from the mixture as nanosized particles, which are immediately encapsulated by the surfactant and thus protected from further crystal growth and Ostwald ripening. The nanosized surfactant coated particles of silver oxide can be washed and dried and then transported in dry form.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: April 10, 2007
    Assignee: Ferro Corporation
    Inventors: Gregory M. Berube, Gargi Banerjee
  • Patent number: 7175819
    Abstract: Spent, acidic solutions comprising cupric chloride and hyrdrochloric acid from the copper etching process are regenerated by a process in which the acid is subjected to distillation with sulfuric acid. In one embodiment, the process comprises (a) providing a spent etchant comprising at least about 10% by weight chloride and at least about 5% dissolved copper; (b) adding at least about 2 moles of sulfuric acid per mole of dissolved copper to the spent etching solution, thereby converting copper chloride into hydrochloric acid and precipitated copper sulfate; (c) distilling the mixture from step (b) to vaporize at least a portion of the hydrochloric acid; (d) condensing at least a portion of the vaporized hydrochloric acid; (e) separating at least a portion of the precipitated copper sulfate from the residual liquid, wherein said residual liquid comprises sulfuric acid; and (f) reusing at least a portion of the residual liquid as a sulfuric acid source in step (b).
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: February 13, 2007
    Assignee: Phibro-Tech, Inc.
    Inventors: Gang Zhao, H. Wayne Richardson
  • Patent number: 7163667
    Abstract: A production process for an oxide magnetic material comprising the steps of blending raw material powder so as to take the composition of a hexagonal ferrite including: at least one kind of an element A selected from the group consisting of Ba, Sr and Ca; Co and Cu; Fe; and O; and sintering said blended powder at a temperature lower than 1000° C.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: January 16, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Takashi Umemoto, Hideki Yoshikawa, Keiichi Kuramoto, Hitoshi Hirano
  • Patent number: 7160525
    Abstract: Nanoparticle compositions of noble metals, and methods of making them, are described. The nanoparticle compositions are made by reacting a salt or complex of a noble metal, such as Au, Ag, Cu or Pt, with a weak ligand, and a reducing agent, in a single liquid phase. The noble metal is typically provided as a halide or carboxylate. The ligand is preferably a fatty acid or aliphatic amine. The reducing agent is preferably a borohydride reagent, hydrazine, or a mixture thereof. Nanocrystals in the size range of 1 nm to 20 nm are produced, and can be made in substantially monodisperse form.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: January 9, 2007
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Lin Song Li, Nikhil Jana
  • Patent number: 7141227
    Abstract: This invention provides a method for preparing cerium oxide nanoparticles with a narrow size distribution. The cerium oxide nanoparticles obtained by the method of the invention are nearly all crystalline. The method comprises providing a first aqueous solution comprising cerium nitrate and providing a second aqueous solution comprising hexamethylenetetramine. The first and second aqueous solutions are mixed to form a mixture, and the mixture is maintained at a temperature no higher than about 320° K to form nanoparticles. The nanoparticles that are formed are then separated from the mixture. A further aspect of the present invention is an apparatus for preparing cerium oxide nanoparticles. The apparatus comprises a mixing vessel having a first compartment for holding a first aqueous solution comprising cerium nitrate and a second compartment for holding a second aqueous solution comprising hexamethylenetetramine. The mixing vessel has a retractable partition separating the first and second compartments.
    Type: Grant
    Filed: May 7, 2002
    Date of Patent: November 28, 2006
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: Siu-Wai Chan
  • Patent number: 7128840
    Abstract: Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: October 31, 2006
    Assignee: Idaho Research Foundation, Inc.
    Inventors: Chien M. Wai, Youichi Enokida
  • Patent number: 7118727
    Abstract: The present invention provides a process for producing particles, such as oxide nanoparticles, in a substantially water-free environment. The process involves mixing at least one metal compound of the formula MX(m?n) with at least one surfactant and at least one solvent, wherein M is an electropositive element of Groups 1–15; each X is independently selected from the group consisting of O1/2, F, Cl, Br, I, OR, O2CR, NR2, and R; each R is independently a hydrocarbyl group; n is equal to ½ the oxidation state of the metal M in the product particle; and m is equal to the oxidation state of the element M. The components are typically combined to form a mixture which is thermally treated for a time period sufficient to convert the metal compound into particles of the corresponding oxide, having sizes in a range between about 0.5 nanometer and about 1000 nanometers.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: October 10, 2006
    Assignee: General Electric Company
    Inventor: Darryl Stephen Williams
  • Patent number: 7105136
    Abstract: In a method for preparing copper salts from at least one cupriferous and one additional reactant, the reactants are used to prepare micro-emulsions while employing at least one block polymer, the intermediate products obtained this way are mixed and reacted together so as to form a micro-emulsion. The preparation of the starting micro-emulsion as well as the subsequent joint reaction preferably occur either with ultrasound or in a high-pressure homogenizer. The copper salts obtained this way exhibit a particle size of less than 50 nm, preferably 5 to 20 nm and can be adjusted to specific applications through the appropriate doping of foreign ions.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: September 12, 2006
    Assignee: Spiess-Urania Chemicals GmbH
    Inventors: Hartmut Ploss, Gerhard Goebel, André Simon
  • Patent number: 7091525
    Abstract: A display device is formed by burying at least part of a light emitting device in an insulating material, wherein a drive electrode for the light emitting device is formed so as to be extracted on a surface of the insulating material. A display unit is produced by two-dimensionally arraying such light emitting devices on a base body. Since the display device is modularized by burying a light emitting device finely formed in an insulating material, to re-shape the light emitting device into a size easy to handle, it is possible to suppress the production cost of the display unit using such display devices, and to ensure a desirable handling performance of the light emitting device; for example, facilitate the carrying of the light emitting device or the mounting thereof on a base body.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: August 15, 2006
    Assignee: Sony Corporation
    Inventors: Toyoharu Oohata, Hideharu Nakajima, Yoshiyuki Yanagisawa, Toshiaki Iwafuchi
  • Patent number: 7045113
    Abstract: A Mo—Cu composite powder is provided which is comprised of individual finite particles each having a copper phase and a molybdenum phase wherein the molybdenum phase substantially encapsulates the copper phase. The composite powder may be consolidated by conventional P/M techniques and sintered without copper bleedout according to the method described herein to produce Mo—Cu pseudoalloy articles having very good shape retention, a high sintered density, and a fine microstructure.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: May 16, 2006
    Assignee: Osram Sylvania Inc.
    Inventors: Leonid P Dorfman, Michael J. Scheithauer, David L. Houck, Anna T. Spitsberg, Jeffrey N. Dann
  • Patent number: 7018593
    Abstract: A method of recovering base metal from a tailings dump which includes the steps of: aerating a surface layer of the dump; adjusting the pH and the moisture content of the surface layer to provide conditions favourable for bacterial oxidation of sulphide minerals; allowing bacterial oxidation to take place for a controlled period, after the controlled period removing the oxidized surface layer and adding water thereto for form a slurry; separating the slurry into solids and a solution; and recovering base metal from the solution.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: March 28, 2006
    Assignee: Billiton SA Limited
    Inventors: Peter Michael Craven, Trevor Hugh Tunley
  • Patent number: 6855527
    Abstract: A method of biotreating a solid material to remove an undesired compound using a nonstirred surface bioreactor is provided. According to the method, the surface of a plurality of coarse substrates is coated with a solid material to be biotreated to form a plurality of coated coarse substrates. The coarse substrates have a particle size greater than about 0.3 cm and the solid material to be biotreated has a particle size less than about 250 ?m. A nonstirred surface reactor is then formed by stacking the plurality of coated coarse substrates into a heap or placing the plurality of coated coarse substrates into a tank so that the void volume of the reactor is greater than or equal to about 25%. The solid material is biotreated in the surface bioreactor until the undesired compound in the solid material is degraded to a desired concentration.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: February 15, 2005
    Assignee: GeoBiotics LLC
    Inventor: William J. Kohr
  • Publication number: 20040238356
    Abstract: A silver alloy sputtering target is provided which is useful in forming a thin silver-alloy film of a uniform thickness by the sputtering method. When crystal orientation strengths are determined at four arbitrary positions by the X-ray diffraction method, the orientation which exhibits the highest crystal orientation strength (Xa) is the same at the four measurement positions, and variations in strength ratio (Xb/Xa) between the highest crystal orientation strength (Xa) and the second highest crystal orientation strength (Xb) is 20% ore less.
    Type: Application
    Filed: February 23, 2004
    Publication date: December 2, 2004
    Inventors: Hitoshi Matsuzaki, Katsutoshi Takagi, Junichi Nakai, Yasuo Nakane
  • Publication number: 20040179985
    Abstract: The present invention relates to a process for recovering metals, in particular precious metals, from electronic scrap, comprising a leaching phase in which the electronic scrap is treated with a leaching solution based on cupric chloride and an alkaline chloride to dissolve the metals exposed to said solution, with the exception of gold, and a subsequent recovery phase of gold in solid form.
    Type: Application
    Filed: March 11, 2004
    Publication date: September 16, 2004
    Inventors: Marco Olper, Massimo Maccagni, Silvano Cossali
  • Publication number: 20040141896
    Abstract: The invention relates to a method for the stabilization of the production capacity of an extraction plant extracting metals in a process, where the metal content of the feed solution varies. For the stabilization of capacity, the extraction cells and their piping are constructed and situated in such a way, that the extraction stages can be connected in different combinations, either in parallel or in a series. The method is especially suitable for the copper extraction process.
    Type: Application
    Filed: November 12, 2003
    Publication date: July 22, 2004
    Inventors: Pertti Pekkala, Bror Nyman, Juhani Lyyra, Raimo Kuusisto, Stig-Erik Hultholm, Eero Ekman
  • Patent number: 6712998
    Abstract: A process produces a transparent conductive layer forming coating liquid by combining a colloidal dispersion of fine silver particles, a reducing agent and at least one of an alkali metal aurate solution and/or an alkali metal platinate solution to obtain a colloidal dispersion of noble-metal-coated fine silver particles coated with gold and/or platinum. A cation exchanger is added to the combination. The colloidal dispersion of noble-metal-coated fine silver particles is obtained while any impurity ions formed as a result of reduction are removed through the cation exchanger. This process enables the raw-material concentration to be set at a higher concentration than the conventional process to enable production of the transparent conductive layer forming coating liquid at a low cost and a good productivity.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: March 30, 2004
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventor: Kenji Kato
  • Patent number: 6656588
    Abstract: Doped, nanosize metal oxide particles have been shown to exhibit stimulated emission and continuous-wave laser action when energized appropriately, for example by electron beams. The doped particles are useful as solid state lasing devices and “laser paints”. Particles containing homogeneously distributed dopant atoms in concentrations greater than the thermodynamic solubility in the metal oxide matrix, and having in some circumstances, unusual oxidation states, have been produced.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: December 2, 2003
    Assignee: The Regents of the University of Michigan
    Inventors: Richard M. Laine, Stephen C. Rand, Thomas Hinklin, Guy R. Williams
  • Patent number: 6645444
    Abstract: A process for forming metal nanocrystals involves complexing a metal ion and an organic ligand in a solvent and introducing a reducing agent to reduce a plurality of metal ions to form the metal nanocrystals associated with the organic ligand. The nanocrystals are optionally doped or alloyed with other metals.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: November 11, 2003
    Assignee: Nanospin Solutions
    Inventor: Avery N. Goldstein
  • Patent number: 6627118
    Abstract: A crystalline Ni alloy particle for an anisotropic conductive film comprising Ni and a metalloid element such as P, B, etc. and having a structure in which a Ni intermetallic compound phase is precipitated can be produced by preparing substantially amorphous Ni alloy particle by an electroless reduction method, and heat-treating the substantially amorphous Ni alloy particle. The Ni alloy particle is preferably heat-treated after disintegration, and preferably coated with Au.
    Type: Grant
    Filed: April 23, 2001
    Date of Patent: September 30, 2003
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kagehiro Kageyama, Koji Sato
  • Patent number: 6599414
    Abstract: An improvement in the solvent extraction process for recovering metal values, i.e. copper, from acidic aqueous solutions containing copper and iron which may also include chloride, and more particularly to an improvement which provides for increased copper to iron ratios in the loaded organic extractant phase. The improvement comprises washing the loaded organic extractant phase prior to stripping of the copper values therefrom with an aqueous acidic wash solution containing at least a portion of electrolyte solution, wherein the wash solution or the electrolyte solution has been previously contacted with copper metal.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: July 29, 2003
    Assignee: Cognis Corporation
    Inventors: Michael J. Virnig, G. Timothy Fisher
  • Patent number: 6596053
    Abstract: A process for the recovery of copper from an aqueous phase containing nitrate ions, in which the aqueous phase is contacted with a solution of an oxime extractant in a water-immiscible organic solvent, which comprises using at least one of the following process variants: I) reducing the acidity of the aqueous phase prior to contact with the organic solution; and II) reducing the electromotive force in the aqueous phase prior to contact with the organic solution.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: July 22, 2003
    Assignee: Cognis Corporation
    Inventors: Michael J. Virnig, Phillip L. Mattison, Hans C. Hein
  • Publication number: 20030129112
    Abstract: The invention refers to a selective metal leaching process from the materials that contain them, in which said metals come into contact with a solution comprising said process two or more in this order, of the following leaching steps: (a), (b) or (c) in the following order: (a) Treatment of the material with an aqueous solution in the presence of oxygen; (b) Treatment of the remaining material with an aqueous solution in the presence of oxygen and ozone; (c) Treatment of the remaining material with an aqueous solution in the presence of oxygen, ozone and a third reagent. And optionally a step of separation of phases is carried out after every one of the previously steps (a), (b) or (c). Said process is used for the recovery of metals from scrap, ores, concentrates and mixtures of these.
    Type: Application
    Filed: August 1, 2002
    Publication date: July 10, 2003
    Applicant: SOCIEDAD ESPANOL DE CARBUROS METALICOS, S.A.
    Inventors: Juan Vinals Olia, Antonio Roca Vallmajor, Montserrat Cruells Cadevall, Eulalia Juan Morera, Juan Casado Gimenez
  • Patent number: 6582814
    Abstract: Rare earth-transition metal oxides are used as pigments. The rare earth-transition metal oxide pigments are preferably of the formula (RexTm)Oy, where Re is at least one rare earth element, Tm is at least one transition metal, x ranges from 0.08 to 12, and y ranges from x+1 to 2x+2. The pigments are useful as colorants, and possess good stability.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: June 24, 2003
    Assignee: DMC2 Degussa Metals Catalysts Cerdec AG
    Inventors: Daniel R. Swiler, Terry J. Detrie, Enos A. Axtell, III
  • Patent number: 6569358
    Abstract: The method of preparing the porous material incorporating ultrafine metal particles comprises the following steps: (1) preparing surface-protected ultrafine metal particles by reducing metal ions in the presence of molecules such as dodecanethiol molecules; (2) immersing a wet gel in a solution of the ultrafine metal particles, thus forming an ultrafine metal particle/wet gel composite in which the ultrafine metal particles are incorporated in the wet gel; and (3) drying the ultrafine metal particle/wet gel composite to form a porous body.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: May 27, 2003
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yutaka Tai, Koji Tajiri, Masao Watanabe, Sakae Tanemura
  • Publication number: 20030086849
    Abstract: The present invention relates generally to a process for the production of sulfuric acid and liberation of precious metal values from materials containing sulfur through pressure leaching operations. In accordance with various aspects of the present invention, the sulfur-bearing materials may comprise residues from pressure leaching operations, such as those carried out at medium temperatures. The process of the present invention can be advantageously used to convert such sulfur-bearing materials to sulfuric acid by means of pressure leaching. The sulfuric acid so produced can be used beneficially in other mineral processing operations, for example those at the site where it is produced. Metals, such as precious metals, that are contained within the sulfur-bearing materials advantageously may be recovered from processing products by established precious metals recovery technology.
    Type: Application
    Filed: December 23, 2002
    Publication date: May 8, 2003
    Inventors: John O. Marsden, Robert E. Brewer, Joanna M. Robertson, Wayne W. Hazen, Philip Thompson, David R. Baughman
  • Patent number: 6558581
    Abstract: A transparent electro-conductive structure comprising a transparent substrate and formed successively thereon a transparent electro-conductive layer and a transparent coat layer, which is used in, e.g., front panels of display devices such as CRTs. The transparent electro-conductive layer is composed chiefly of i) noble-metal-coated fine silver particles having an average particle diameter of from 1 nm to 100 nm, the fine silver particles being surface-coated with gold or platinum alone or a composite of gold and platinum, and ii) a binder matrix. A transparent electro-conductive layer forming coating fluid used in the production of this transparent conductive structure comprises a solvent and noble-metal-coated fine silver particles dispersed in the solvent and having an average particle diameter of from 1 nm to 100 nm, the fine silver particles being surface-coated with gold or platinum alone or a composite of gold and platinum.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: May 6, 2003
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Masaya Yukinobu, Kenji Kato
  • Publication number: 20030065238
    Abstract: A method of treating metal-contaminated spent foundry sand, or other industrial waste, by combining the sand with a sulfite to produce insoluble metal sulfur oxide complexes that do not leach from the sand. The treated waste may also be processed to reducing “clumping,” thereby rendering the treated waste appropriate for use in another industrial process.
    Type: Application
    Filed: November 5, 2002
    Publication date: April 3, 2003
    Inventors: Edward Carroll Hale, John E. Wildey
  • Patent number: 6537510
    Abstract: One embodiment of the present invention provides a conductive pigment powder, which includes indium oxide, tin and gold, and having a purple color tone. Other embodiments of the present invention provide a method of producing a conductive pigment powder; a dispersion solution and a transparent conductive film, which include the above-mentioned conductive pigment powder; a method of forming a transparent conductive film; and a cathode ray tube, which includes the above-mentioned transparent conductive film and a transparent substrate.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: March 25, 2003
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiharu Hayashi, Hiroshi Yamaguchi, Daisuke Shibuta
  • Patent number: 6524499
    Abstract: The transparent conductive film of the present invention is formed to have a conductive layer containing at least ruthenium fine particles, gold fine particles and silver fine particles, the weight ratio of ruthenium fine particles and gold fine particles in the conductive layer being within the range of 40:60 to 99:1. As a result, this transparent conductive film and a display device having this transparent conductive film have superior electromagnetic wave shielding effects and anti-reflection effects, high chemical stability and superior visibility.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: February 25, 2003
    Assignee: Sumitomo Osaka Cement Co., Ltd.
    Inventors: Naoki Takamiya, Hideki Horikoshi, Kazutomo Mori, Tadashi Neya
  • Patent number: 6503468
    Abstract: A method of doping vanadium pentoxide with silver comprising the steps of: providing vanadium pentoxide gel providing stable colloidal silver and combining the vanadium pentoxide gel and the colloidal silver at room temperature for a period sufficient for vanadium (+5) to be electrochemically reduced to vanadium (+4) and for silver to be oxidized (+1).
    Type: Grant
    Filed: January 9, 2002
    Date of Patent: January 7, 2003
    Assignee: Eastman Kodak Company
    Inventors: James R. Sandifer, David S. Uerz
  • Patent number: 6494932
    Abstract: Methods for recovery of naturally occurring nanoclusters are provided involving providing an aqueous nanocluster slurry and desorbing the nanoclusters from the surface of host substrate on which the nanoclusters are bound, followed by isolating the desorbed nanoclusters, and the isolated naturally occurring nanoclusters obtained thereby.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: December 17, 2002
    Assignee: Birch Mountain Resources, Ltd.
    Inventor: Hugh J. Abercrombie
  • Patent number: 6476287
    Abstract: A method of treating metal-contaminated spent foundry sand, or other industrial waste, by combining the sand with a sulfite to produce insoluble metal sulfur oxide complexes that do not leach from the sand. The treated waste may also be processed to reduce “clumping,” thereby rendering the treated waste appropriate for use in another industrial process.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: November 5, 2002
    Inventors: Edward Carroll Hale, III, John E. Wildey
  • Patent number: 6461581
    Abstract: The present invention provides a clathrate compound which can be used as a thermoelectric material, a hard material, or a semiconductor material. Silicon or carbon are formed into a clathrate lattice, and a clathrate compound is then formed in which specified doping atoms are encapsulated within the clathrate lattice, and a portion of the atoms of the clathrate lattice are substituted with specified substitution atoms. The clathrate lattice is, for example, a silicon clathrate 34 (Si34) mixed lattice of a Si20 cluster including a dodecahedron of Si atoms, and a Si28 cluster including a hexahedron of Si atoms. Suitable doping atoms are atoms from group 1A, group 2A, group 3A, group 1B, group 2B, group 3B, group 4A, group 5A, group 6A, and group 8, and suitable substitution atoms are atoms from group 1A, group 2A, group 3A, group 1B, group 2B, group 3B, group 5A, group 6A, group 7A, group 5B, group 6B, group 7B, and group 8 of the periodic table.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: October 8, 2002
    Assignees: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Haruki Eguchi, Akihiko Suzuki, Satoshi Takahashi, Kaoru Miyahara, Tohru Tanaka, Shigemitsu Kihara, Kazuo Tsumuraya