Utilizing Solid Sorbent, Catalyst, Or Reactant Patents (Class 423/247)
  • Patent number: 10406507
    Abstract: In one embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles. In another embodiment, a system includes a nanoporous gold structure comprising a plurality of ligaments, and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: September 10, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Juergen Biener, Arne Wittstock, Monika M. Biener, Michael Bagge-Hansen, Marcus Baeumer, Andre Wichmann, Bjoern Neuman
  • Patent number: 10329149
    Abstract: Methods and systems for producing hydrogen from methane or other fuels that has lower input heat requirements than conventional steam reformation schemes are provided. The system has a reactor with a controlled feed of fuel, water/steam, CO and recycle gases. The methods generally use significantly high amounts of steam (water) and carbon monoxide (CO) in the feed that substantially enhances the reaction rate of the water-gas shift reaction, which transforms CO and H2O to CO2 and H2. Since this reaction is exothermic, its enhancement alters the endothermic nature of the overall reforming process to the point where the overall reforming process is no longer endothermic. The CO requirements may be met in part with the reverse water-gas shift reaction from CO2 produced by the reactor. The lower heat requirements may be satisfied with renewable sources such as solar or from hydrogen produced by the system.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: June 25, 2019
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Vasilios I. Manousiouthakis, Abdulrahman M. Albassam, Jeremy A. Conner
  • Patent number: 9991536
    Abstract: The Invention discloses a self-supplied hydrogen fuel cell system and a working method thereof, the system comprising a diesel tank, a gas separator, a fuel cell, a low-temperature separation reactor, a high-temperature separation reactor, an auto-thermal reformer, a water tank and a catalytic burner; With the high-temperature separation reactor, the low-temperature separation reactor and the auto-thermal reformer, diesel is cracked into H2 and CO; as the fuel for the fuel cell, H2 may react with O2 in the air and generate electric energy; the unreacted H2 and CO enter into the catalytic burner for combustion, ensuring that the water is heated; thus, it not only provides H2 to the fuel cell, but also provides high-temperature water to the auto-thermal converter to produce H2; electric energy can be generated without burning diesel; since no NOx or particulate matters but CO2 is generated, the goal of ultra-low emission is achieved.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: June 5, 2018
    Assignee: Beijing University of Civil Engineering and Architecture
    Inventors: Yongfeng Liu, Hongbing Chen, Jianjun Qin, Pucheng Pei, Shengzhuo Yao
  • Patent number: 9656249
    Abstract: [Summary] [Purpose] To provide an excellent exhaust gas purification catalyst with satisfactory NOx selective reductive purification performance at lower temperature, and having a satisfactory N2O formation rate. [Solution Means] A selective reduction catalyst for exhaust gas purification, represented by the formula: CoxMn(1?x)TiO3 (where x in the molar ratio is a value greater than 0 and 0.2 or less).
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: May 23, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Keiichi Minami
  • Patent number: 9463418
    Abstract: A method for cleaning a sulphur dioxide containing off-gas by selective oxidation of carbon monoxide and volatile organic compounds in the off-gas with reduced formation of sulphur trioxide comprising the step of contacting the off-gas with an oxidation catalyst consisting of palladium and vanadium oxide supported on a carrier.
    Type: Grant
    Filed: October 25, 2012
    Date of Patent: October 11, 2016
    Assignee: Haldor Topsoe A/S
    Inventors: Francesco Castellino, Niklas B. Jakobsson
  • Patent number: 9457344
    Abstract: An emission control catalyst for treating an engine exhaust includes non-precious metal group (“NPGM”) mixed phase oxide catalyst having a mullite phase containing optionally in close contact with other metal oxides. The mixed phase catalyst may be included in one or more layers or zones of a multi-layered or multi-zoned emission control catalyst and optionally in combination with precious metal catalysts such as Pt, Pd and Au.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: October 4, 2016
    Assignee: Shubin, Inc.
    Inventors: Geoffrey McCool, Xianghong Hao, Deepak Srivastava, Bulent Yavuz
  • Patent number: 9341311
    Abstract: A compressed air supply apparatus includes an air compressor for compressing air to at least atmospheric pressure, a tank for storing the compressed air and supplying the compressed air, via a supply port, to various devices that use the compressed air as a working fluid, a first pipe that connects the air compressor to the tank, a heat pump including an evaporator for cooling at least a part of the first pipe, a selection device for selecting whether a cool air cooled by the evaporator, which is fluidly distinct from the compressed air, is introduced into a vehicle interior or discharged outside of the vehicle interior, and a control device configured to control the selection device so that the cool air is introduced into the vehicle interior when an air conditioner switch is turned ON and discharged outside of the vehicle interior when the air conditioner switch is turned OFF.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: May 17, 2016
    Assignee: UD TRUCKS CORPORATION
    Inventor: Shohji Itadani
  • Publication number: 20150147251
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat with a Cu—Mn spinel structure and an overcoat that includes PGM supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under stoichiometric operating conditions and especially under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system also enhances the reduction of carbon monoxide and hydrocarbon within catalytic converters. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalyst activity compared to commercial PGM catalyst system, showing that there is a synergistic effect among PGM catalyst and Cu—Mn spinel within the disclosed SPGM catalyst system.
    Type: Application
    Filed: September 29, 2014
    Publication date: May 28, 2015
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 8992871
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) contained in gas. The CO shift catalyst is prepared from one or both of molybdenum (Mo) and cobalt (Co) as an active ingredient and an oxide of one of, or a mixture or a compound of, titanium (Ti), silicon (Si), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: March 31, 2015
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
  • Publication number: 20150086459
    Abstract: A gas treatment apparatus, suitable for use in an air purifying apparatus for the production of breathable air, includes a catalyst including palladium and iron oxide and a source of a volatile nitrogen-containing compound. The apparatus is useful in gas masks, emergency escape hoods and static air treatment apparatus.
    Type: Application
    Filed: November 6, 2012
    Publication date: March 26, 2015
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Stephen Poulston, Andrew William John Smith, Stephen Charles Bennett, Elizabeth Rowsell
  • Patent number: 8961817
    Abstract: A getter device containing a combination of getter materials is described. The device has a mixture of cerium oxide, copper oxide and metallic palladium for the removal of hydrogen and carbon monoxide in vacuum applications, particularly suitable to be used in vacuum insulation applications. This combination of getter materials is preferably added to powders of other getter materials such as alkali metals hydroxides and desiccant materials that are effective for maintaining the vacuum in thermal insulation systems.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: February 24, 2015
    Assignee: SAES Getters S.p.A.
    Inventors: Luca Toia, Marco Visconti
  • Patent number: 8939761
    Abstract: For the purification of waste gas containing nitrogen oxides in combination with CO, VOCs or nitrous oxide, in particular waste gas resulting from the production of cement clinker, nitric acid, adipic acid, fertilizers and uranium trioxide, a regenerative thermal post-combustion system with at least two regenerators (A, B) is used by means of which the CO, VOCs and nitrous oxide are thermally purified in the combustion chamber (1) at a temperature of 800 to 1000° C. and the nitrogen oxides are thermally reduced with the SCR catalyst (6) by adding a nitrogen-hydrogen compound, wherein the waste gas already thermally purified is removed from the respective two-part regenerator (A or B) at a suitable place at a temperature of approx. 300° C., guided via the SCR catalyst (6) in a constant direction of flow and subsequently fed back to the remaining section (A?, B?) of the regenerator (A or B).
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: January 27, 2015
    Assignee: Chemisch Thermische Prozesstechnik GmbH
    Inventor: Christian Mülleder
  • Patent number: 8940263
    Abstract: Hydrogen and carbon monoxide impurities are removed from a dry gas comprising the impurities, wherein the dry gas is at least substantially free of carbon dioxide, by passing the dry gas with sufficient residence time, e.g. at least 1.5 s, through a layer of catalyst comprising a mixture of manganese oxide and copper oxide. The use of expensive noble metal catalysts to remove hydrogen may thereby be avoided. In addition, regeneration of the catalyst using oxygen-containing regeneration gas does not reduce the effectiveness of the catalyst.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: January 27, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Jeffrey Raymond Hufton, Mohammad Ali Kalbassi, Garret C. Lau, Christine Waweru, Christopher James Raiswell, Christopher Suggitt, Daniel Patrick Zwilling
  • Publication number: 20150017082
    Abstract: Systems and Methods for manufacturing ZPGM catalysts systems that may allow the prevention of formation or the conversion of corrosion causing compounds, such as hexavalent chromium compounds, within ZPGM catalyst systems are disclosed. ZPGM catalysts systems, may include metallic substrate, which may include alloys of iron and chromium, a washcoat and an overcoat. Disclosed manufacturing processes may include a thermal decomposition of hexavalent chromium compounds which may allow the decomposition of such compounds into trivalent chromium compounds, and may also produce metallic catalyst, such as silver.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Applicant: CDTI
    Inventor: Zahra Nazarpoor
  • Publication number: 20140378299
    Abstract: This invention relates to a titanium dioxide catalyst particle, the catalyst particle comprising ruffle nanorods having metal nanoparticles deposited at or near the free ends of the nanorods, which is suitable to catalyse reactions after exposure to temperatures above 550 deg C. The invention also provides for the use of a catalyst particle in catalysing reactions and a method of catalysing reactions, the catalyst particle being suitable to catalyse reactions after exposure to temperatures above 550 deg C.
    Type: Application
    Filed: August 19, 2012
    Publication date: December 25, 2014
    Applicant: University of the Witwatersrand, Johannesburg
    Inventors: Dean Howard Barrett, Paul John Franklyn
  • Publication number: 20140308176
    Abstract: Hydrogen and carbon monoxide impurities are removed from a dry gas comprising the impurities, wherein the dry gas is at least substantially free of carbon dioxide, by passing the dry gas with sufficient residence time, e.g. at least 1.5 s, through a layer of catalyst comprising a mixture of manganese oxide and copper oxide. The use of expensive noble metal catalysts to remove hydrogen may thereby be avoided. In addition, regeneration of the catalyst using oxygen-containing regeneration gas does not reduce the effectiveness of the catalyst.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: Air Products and chemicals, Inc.
    Inventors: Timothy Christopher Golden, Jeffrey Raymond Hufton, Mohammad Ali Kalbassi, Garret C. Lau, Christine Waweru, Christopher James Raiswell, Christopher Suggitt, Daniel Patrick Zwilling
  • Publication number: 20140301931
    Abstract: Disclosed here are material formulations of use in the conversion of exhaust gases, where the formulations may include Iron (Fe), Cobalt (Co), Manganese (Mn), Cerium (Ce), Lanthanum and combinations thereof.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 9, 2014
    Applicant: CDTi
    Inventor: Zahra Nazarpoor
  • Patent number: 8845987
    Abstract: Synergized Platinum Group Metals (SPGM) catalyst system for TWC application is disclosed. Disclosed SPGM catalyst system may include a washcoat with a Cu—Mn spinel structure and an overcoat that includes PGM supported on carrier material oxides, such as alumina. SPGM catalyst system shows significant improvement in nitrogen oxide reduction performance under stoichiometric operating conditions and especially under lean operating conditions, which allows a reduced consumption of fuel. Additionally, disclosed SPGM catalyst system also enhances the reduction of carbon monoxide and hydrocarbon within catalytic converters. Furthermore, disclosed SPGM catalyst systems are found to have enhanced catalyst activity compared to commercial PGM catalyst system, showing that there is a synergistic effect among PGM catalyst and Cu—Mn spinel within the disclosed SPGM catalyst system.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: September 30, 2014
    Assignee: Clean Diesel Technologies Inc. (CDTI)
    Inventors: Zahra Nazarpoor, Stephen J. Golden
  • Patent number: 8828339
    Abstract: A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshinobu Yasutake, Masanao Yonemura, Tetsuya Imai
  • Patent number: 8808652
    Abstract: A selective catalytic reduction system and method for reducing nitrogen oxide (NOx) emissions comprising a boiler producing flue gas emissions, a particulate control device receiving flue gas emissions from the boiler, a selective catalytic reduction unit (SCR) receiving flue gas emissions from the particulate control device and reducing nitrogen oxide (NOx) emissions, and a heat exchanger located downstream of the selective catalytic reduction unit (SCR) for removing heat from the flue gas for preheating at least one of boiler feed water and combustion air for the boiler.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: August 19, 2014
    Assignee: 2E Environmental, LLC
    Inventor: Robert Ellery
  • Patent number: 8758710
    Abstract: A process for treating a flue gas is provided. The process comprises burning an amount of elemental magnesium in the flue gas, optionally to produce magnesium oxide and elemental carbon. A process for regenerating elemental magnesium from magnesium oxide is also provided, in addition to processes for producing energy from the elemental carbon.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: June 24, 2014
    Assignee: E.T. Energy Corp.
    Inventor: Petr Gladkov
  • Patent number: 8758713
    Abstract: The invention provides a method for oxidizing carbon monoxide present in an oxygen-containing gas phase to carbon dioxide which comprises: adsorbing the carbon monoxide onto porous silica; and irradiating the porous silica with ultraviolet ray. In the invention, mesoporous silica or amorphous silica is used as the porous silica. In particular, silica gel that is amorphous silica is preferably used.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: June 24, 2014
    Assignee: The Honjo Chemical Corporation
    Inventors: Gohei Yoshida, Yuuichi Hayashi
  • Publication number: 20140170046
    Abstract: Disclosed is a method and apparatus for the reduction of organic compounds and other emissions from an industrial plant utilizing a cement or minerals kiln that has a high level of organic compound emissions. The invention consists of a filter for the control of particulate emissions which has been treated with a catalyst to provide catalytic destruction of gaseous emissions as process gases are passed through the porous medium of the filter.
    Type: Application
    Filed: July 16, 2012
    Publication date: June 19, 2014
    Inventors: Iver Schmidt, Jørn Møller Rasmussen, Peter T. Paone, III, John S. Salmento
  • Patent number: 8753108
    Abstract: A method and apparatus for treatment of unburnts in a flue stream 9 of a chemical looping combustion system. Unburnts present in the flue stream 9 are treated after CO2 is removed from the flue stream in a gas processing unit 13. As shown in FIG. 2, oxidation of the unburnts occurs primarily in an air reactor 2 in the presence of air 1, allowing the system to maintain CO2 capture effectiveness and removing the need for creation of enriched or pure oxygen 11.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: June 17, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Marc Ajhar, Jörgen Grubbström
  • Publication number: 20140147362
    Abstract: A gas purification method is disclosed for a coal gasifier plant, with which energy loss accompanying recovery of CO2 can be suppressed and soundness of a CO shift catalyst can be maintained in the plant. The method includes a scrubbing step for a product gas produced by gasification of a carbon-containing solid fuel and containing at least CO and H2S to remove water-soluble substances contained in the product gas; a CO shift step to react CO in the product gas after scrubbing with steam using a shift catalyst and converting the gas into CO2 and H2; and a CO2/H2S recovery to remove CO2 and H2S from the product gas after the CO shift step, wherein the CO shift step is constituted by a multistage shift reactor which includes multiple stages of shift reactors, and shift reactors upstream and downstream have high- and low-temperature shift catalysts, respectively.
    Type: Application
    Filed: November 15, 2013
    Publication date: May 29, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Takashi SASAKI, Tomoko AKIYAMA
  • Publication number: 20140061540
    Abstract: Metal-organic frameworks of the family M2 (2,5-dioxido-1,4-benzenedicarboxylate) wherein M=Mg, Mn, Fe, Co, Cu, Ni or Zn are a group of porous crystalline materials formed of metal cations or clusters joined by multitopic organic linkers that can be used to isolate individual gases from a stream of combined gases. This group of adsorbant materials incorporates a high density of coordinatively-unsaturated MII centers lining the pore surfaces. These adsorbents are particularly suited for selective carbon dioxide/monoxide adsorption via pressure swing adsorption near temperatures of 313 K since they selectively adsorb carbon dioxide at high pressures in the presence of hydrogen, and desorb carbon dioxide upon a pressure decrease. The redox-active FeII centers in Fe2(dobdc) can be used for the separation of O2 from N2 and other separations based on selective, reversible electron transfer reactions.
    Type: Application
    Filed: August 12, 2013
    Publication date: March 6, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Jeffrey R. Long, Zoey R. Herm, Joseph A. Swisher, Berend Smit, Rajamani Krishna, Eric Bloch, Leslie Murray
  • Patent number: 8664147
    Abstract: This invention concerns a procedure for the formation of a bimetallic composition by means of the subsequent depositing of Co(0) and Pd(0) on an inert support, a composition obtained by means of said procedure and the use of said bimetallic composition as a catalyst. Another aspect of this invention is a catalytic device that includes said bimetallic composition.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: March 4, 2014
    Assignee: QID S.R.L.
    Inventors: Valentina Bello, Helmut Boen-Nemann, Paolo Canu, Massimo Centazzo, Luca Conte, Daniela Dalle Nogare, Giovanni Mattei, Renzo Rosei
  • Patent number: 8640440
    Abstract: Disclosed herein is a catalytically active particulate filter, an exhaust gas cleaning system and a process for cleaning the exhaust gases of predominantly stoichiometrically operated internal combustion engines, which are suitable, as well as the gaseous CO, HC and NOx pollutants, also for removing particulates from the exhaust gas. The particulate filter comprises a filter body and a catalytically active coating consisting of two layers. The first layer is in contact with the incoming exhaust gas, the second layer with the outgoing exhaust gas. Both layers contain alumina. The first layer contains palladium. The second layer contains, in addition to rhodium, an oxygen-storing cerium/zirconium mixed oxide.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: February 4, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Raoul Klingmann, Martin Roesch, Dieter Lindner
  • Publication number: 20140030176
    Abstract: A method of making composite nanoscale particles comprising subjecting a starting material to laser energy so as to form a vapor and condensing the vapor so as to form the composite nanoscale particles, wherein said composite nanoscale particles comprise a first metal and/or a first metal oxide incorporated in nanoscale particles of an oxide of a second metal, the first metal being different than the second metal. The starting material can comprise first and second metals or compounds of the first and second metals. The composite nanoscale particles can be formed in a reaction chamber wherein a temperature gradient is provided. The atmosphere in the chamber can be an inert atmosphere comprising argon or a reactive atmosphere comprising oxygen. The composite nanoscale particles are useful for low-temperature and near-ambient temperature catalysis.
    Type: Application
    Filed: June 21, 2013
    Publication date: January 30, 2014
    Applicant: Philip Morris USA Inc.
    Inventors: Sarojini Deevi, Rangaraj S. Sundar, Yezdi B. Pithawalla
  • Patent number: 8632741
    Abstract: A system and method according to which exhaust is directed from a stationary exhaust source and through a burner, and a combustible fluid is vented from at least one combustible fluid source other than the stationary exhaust source. The combustible fluid is captured and directed to flow from the combustible fluid source and towards the burner, and at least air is mixed with the captured combustible fluid to form a mixture. The mixture is introduced into the burner and burned therein to thereby pre-heat the exhaust flowing therethrough. The pre-heated exhaust contacts a catalyst.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: January 21, 2014
    Assignee: Dresser-Rand Company
    Inventors: Jon K. Tice, Loran Novacek
  • Patent number: 8628744
    Abstract: A method for oxidizing carbon monoxide by a water-gas shift (WGS) reaction and a method for reducing carbon dioxide by a reverse water-gas shift (RWGS) reaction, both using a catalyst of the formula xMZLn2O2SOy, in which M, Ln, x, and y are as defined herein. Also disclosed are novel compositions for use as catalysts for both the WGS and RWGS reactions.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: January 14, 2014
    Assignee: Tufts University
    Inventors: Maria Flytzani-Stephanopoulos, Ioannis Valsamakis
  • Patent number: 8618020
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 31, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Patent number: 8591850
    Abstract: In operating the carbon monoxide removal reactor or the fuel reforming system, there is provided a technique for removing carbon monoxide in a stable manner for an extended period of time. In a method of removing carbon monoxide including an introducing step of introducing a reactant gas including mixture gas and an oxidizer added thereto to a carbon monoxide removal reactor forming in its casing a catalyst layer comprising a carbon monoxide removal catalyst for removing carbon monoxide contained in the mixture gas and an removing step of removing the carbon monoxide by causing the oxidizer to react with the mixture gas on the carbon monoxide removal catalyst, in said introducing step, the reactant gas of 100° C. or lower is introduced to the carbon monoxide removal reactor.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: November 26, 2013
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Mitsuaki Echigo, Takeshi Tabata, Osamu Yamazaki
  • Publication number: 20130309158
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 21, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Publication number: 20130280151
    Abstract: A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Inventors: Jong Suk Lee, William J. Koros, Nitesh Bhuwania, Patrick C. Hillesheim, Sheng Dai
  • Patent number: 8529856
    Abstract: The present invention is directed to methods to sequester oxides of carbon to prevent them from entering the atmosphere as gases. More specifically, this invention is directed to methods of chemical reactions and process to decompose carbon oxides by combustion of a metal fuel with carbon oxides using a regeneration process to recover the metal fuel. The process can optionally and beneficially be coupled to other useful chemical processes for the industrial purpose of sequestering carbon oxides into useful commercial chemicals and elements like carbon, chlorine, and sodium bicarbonate.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: September 10, 2013
    Inventor: David R. Smith
  • Patent number: 8518854
    Abstract: Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: August 27, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: John T. Brady, Marvin E. Jones, Larry A. Brey, Gina M. Buccellato, Craig S. Chamberlain, John S. Huberty, Allen R. Siedle, Thomas E. Wood, Badri Veeraraghavan, Duane D. Fansler
  • Patent number: 8506916
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: August 13, 2013
    Assignee: C-Quest Technologies LLC
    Inventor: Douglas C. Comrie
  • Patent number: 8507406
    Abstract: Disclosed herein are rod-packing robust microporous metal-organic frameworks having the repeat unit Zn4(OH)2(1,2,4-BTC)2, useful for applications such as selective gas storage, selective gas sorption and/or separation, selective sensing of chemicals, and catalysis.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: August 13, 2013
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Banglin Chen, Zhangjing Zhang
  • Patent number: 8501133
    Abstract: A catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds includes a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein. The catalyst is obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying. The oxidation power of the resulting catalyst is enhanced without increasing the amount of precious metal supported thereon.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Yoshiaki Obayashi, Hitoshi Nakamura
  • Publication number: 20130183220
    Abstract: The preparation of bimetallic gold-silver cerium dioxide-supported catalysts and the process of oxidation of carbon monoxide (CO) in air to remove CO using the gold-silver cerium dioxide-supported catalysts are disclosed. The gold loading is between 0.5 and 5 wt. %. Gold and silver particle sizes are between 1 and 3 nm, and Au/Ag weight ratio is between 1 and 10. Oxidation of CO in air over these catalysts is carried out in a fixed bed reactor to remove CO.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 18, 2013
    Applicant: NATIONAL CENTRAL UNIVERSITY
    Inventor: NATIONAL CENTRAL UNIVERSITY
  • Publication number: 20130183221
    Abstract: A preparation method of nano-gold catalysts supported on copper oxide-cerium oxide (CuO—CeO2) and a process of preferential oxidation of carbon monoxide by oxygen in hydrogen stream with the nano-gold catalysts are disclosed. CuO—CeO2 is prepared by either coprecipitation or incipient-wetness impregnation method, and gold is deposited thereon by deposition-precipitation. After adding CuO into Au/CeO2, the interaction between the nano-gold and the support is increased, thereby enhancing the stability of the gold particle and the activity of the catalysts. Preferential oxidation of CO in hydrogen stream (with O2 existing) over these catalysts is carried out in a fixed bed reactor. The O2/CO ratio should be between 0.5 and 4. The catalyst is applied to remove CO (to lower than 10 ppm) in hydrogen stream in fuel cell to prevent from poisoning of the electrode of the fuel cell.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 18, 2013
    Applicant: NATIONAL CENTRAL UNIVERSITY
    Inventor: NATIONAL CENTRAL UNIVERSITY
  • Patent number: 8486495
    Abstract: A method of forming a photocatalyst device includes depositing a layer of UV photocatalyst and depositing islands of a sequestering agent on a surface of the layer of the UV photocatalyst.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 16, 2013
    Assignee: Carrier Corporation
    Inventors: Wayde R. Schmidt, Treese Hugener-Campbell, Tania Bhatia
  • Patent number: 8480984
    Abstract: A selective catalytic reduction system and method for reducing nitrogen oxide (NOx) emissions comprising a boiler producing flue gas emissions, a particulate control device receiving flue gas emissions from the boiler, a selective catalytic reduction unit (SCR) receiving flue gas emissions from the particulate control device and reducing nitrogen oxide (NOx) emissions, and a heat exchanger located downstream of the selective catalytic reduction unit (SCR) for removing heat from the flue gas for preheating at least one of boiler feed water and combustion air for the boiler.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: July 9, 2013
    Assignee: 2E Environmental, LLC
    Inventor: Robert Ellery
  • Patent number: 8475755
    Abstract: An oxidation catalyst deposited on a substrate is described for the destruction of CO and volatile organic compounds, in particular halogenated organic compounds, from an emissions stream at temperatures from 250° C. to 450° C. The oxidation catalyst includes at least two platinum group metals, one of which is either platinum or ruthenium, supported on refractory oxides, such as a solid solution of CeO2 and ZrO2, and tin oxide and/or silica.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: July 2, 2013
    Assignee: Sub-Chemie Inc.
    Inventors: Zhongyuan Dang, Nirmal Singh, Martin Morrill, Greg Cullen
  • Patent number: 8470273
    Abstract: A combustion exhaust gas processing device comprises: a dust collector collecting dust in a cement kiln combustion exhaust gas: a wet dust collector as a catalyst-poisoning-substance stripper removing a catalyst-poisoning substance from a combustion exhaust gas which passed the wet dust collector; and a catalyst device from which NOx, a persistent organic pollutant, etc. in the preheated combustion exhaust gas, are removed. A titanium-vanadium catalyst etc. as an oxide catalyst is used upstream of the catalyst device, and a platinum catalyst etc. as a noble-metal catalyst downstream of the catalyst device. The temperature of the combustion exhaust gas after the catalyst-poisoning substance is removed is increased up to 140° C. or more with the preheaters to prevent decline in denitration efficiency of and the decomposition efficiency of a volatile organic compound.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: June 25, 2013
    Assignees: Taiheiyo Cement Corporation, Nippon Shokubai Co., Ltd.
    Inventors: Shinichiro Saito, Yasuhiro Uchiyama, Junichi Terasaki, Hisashi Kondo, Mitsuharu Hagi, Shinyuki Masaki
  • Patent number: 8445402
    Abstract: An improved catalyst suitable as a preferential oxidation catalyst is obtained by adding platinum, copper, and iron to a support.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: May 21, 2013
    Assignee: BASF Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Publication number: 20130116345
    Abstract: A catalyst comprising NiO, a metal mixture comprising at least one of MoO3 or WO3, a mixture comprising at least one of SiO2 and Al2O3, and P2O5. In this embodiment the metal sites on the catalyst are sulfided and the catalyst is capable of removing tar from a synthesis gas while performing methanation and water gas shift reactions at a temperature range from 300° C. to 600° C.
    Type: Application
    Filed: September 13, 2011
    Publication date: May 9, 2013
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Sourabh S. Pansare, Joe D. Allison, Steven E. Lusk, Albert C. Tsang
  • Patent number: 8404201
    Abstract: The oxidation of nitrogen oxide (NO) in an oxygen-containing exhaust gas flow from a diesel or other lean-burn engine may be catalyzed using particles of co-precipitated and calcined manganese (Mn), cerium (Ce) and zirconium (Zr) mixed oxides. In preferred embodiments, the molar ratios of Mn, Ce and Zr to the total amount of base metals in the ternary mixed oxide catalyst are in the range of 0.25-0.35, 0.40-0.50 and 0.20-0.25, respectively. Further, this ternary mixed oxide catalyst is less susceptible to sulfur poisoning than previously-disclosed binary mixed oxide catalysts. The ternary mixed oxide catalyst may also be regenerated—and the inhibiting effect of SO2 reversed—by briefly exposing the catalyst to a reducing exhaust gas environment.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: March 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Gongshin Qi, Wei Li
  • Patent number: 8361420
    Abstract: Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 29, 2013
    Assignee: Errcive, Inc.
    Inventors: Charles E. Ramberg, Stephen A. Dynan, Jack A. Shindle