Utilizing Solid Sorbent, Catalyst, Or Reactant Patents (Class 423/247)
  • Patent number: 8618020
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: December 31, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Patent number: 8591850
    Abstract: In operating the carbon monoxide removal reactor or the fuel reforming system, there is provided a technique for removing carbon monoxide in a stable manner for an extended period of time. In a method of removing carbon monoxide including an introducing step of introducing a reactant gas including mixture gas and an oxidizer added thereto to a carbon monoxide removal reactor forming in its casing a catalyst layer comprising a carbon monoxide removal catalyst for removing carbon monoxide contained in the mixture gas and an removing step of removing the carbon monoxide by causing the oxidizer to react with the mixture gas on the carbon monoxide removal catalyst, in said introducing step, the reactant gas of 100° C. or lower is introduced to the carbon monoxide removal reactor.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: November 26, 2013
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Mitsuaki Echigo, Takeshi Tabata, Osamu Yamazaki
  • Publication number: 20130309158
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 21, 2013
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Publication number: 20130280151
    Abstract: A composite structure for capturing a gaseous electrophilic species, the composite structure comprising mesoporous refractory sorbent particles on which an ionic liquid is covalently attached, wherein said ionic liquid includes an accessible functional group that is capable of binding to said gaseous electrophilic species. In particular embodiments, the mesoporous sorbent particles are contained within refractory hollow fibers. Also described is a method for capturing a gaseous electrophilic species by use of the above-described composite structure, wherein the gaseous electrophilic species is contacted with the composite structure.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 24, 2013
    Inventors: Jong Suk Lee, William J. Koros, Nitesh Bhuwania, Patrick C. Hillesheim, Sheng Dai
  • Patent number: 8529856
    Abstract: The present invention is directed to methods to sequester oxides of carbon to prevent them from entering the atmosphere as gases. More specifically, this invention is directed to methods of chemical reactions and process to decompose carbon oxides by combustion of a metal fuel with carbon oxides using a regeneration process to recover the metal fuel. The process can optionally and beneficially be coupled to other useful chemical processes for the industrial purpose of sequestering carbon oxides into useful commercial chemicals and elements like carbon, chlorine, and sodium bicarbonate.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: September 10, 2013
    Inventor: David R. Smith
  • Patent number: 8518854
    Abstract: Heterogeneous catalyst systems, methods of making these systems, and methods of using these systems, wherein catalytically active gold is deposited onto composite support media. The composite support media is formed by providing nanoporous material on at least a portion of the surfaces of carbonaceous host material. In representative embodiments, relatively fine, nanoporous guest particles are coated or otherwise provided on surfaces of relatively coarser activated carbon particles. Catalytically active gold may be deposited onto one or both of the guest or host materials either before or after the guest and host materials are combined to from the composite host material. PVD is the preferred catalyst system of depositing gold.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: August 27, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: John T. Brady, Marvin E. Jones, Larry A. Brey, Gina M. Buccellato, Craig S. Chamberlain, John S. Huberty, Allen R. Siedle, Thomas E. Wood, Badri Veeraraghavan, Duane D. Fansler
  • Patent number: 8507406
    Abstract: Disclosed herein are rod-packing robust microporous metal-organic frameworks having the repeat unit Zn4(OH)2(1,2,4-BTC)2, useful for applications such as selective gas storage, selective gas sorption and/or separation, selective sensing of chemicals, and catalysis.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: August 13, 2013
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Banglin Chen, Zhangjing Zhang
  • Patent number: 8506916
    Abstract: The disclosure provides methods and systems for sequestering and/or reducing sulfur oxides, nitrogen oxides and/or carbon dioxide present in industrial effluent fluid streams. A solid particulate material comprising a slag component, a binder component (distinct from the slag component), and optionally water is formed and then contacted with the effluent fluid stream to reduce at least one of the sulfur oxides, nitrogen oxides, and/or carbon dioxide. The contacting of the effluent stream may occur in a packed bed reactor with the solid dry particulate material. Methods of reducing pollutants from exhaust generated by combustion sources, lime and/or cement kilns, iron and/or steel furnaces, and the like are provided.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: August 13, 2013
    Assignee: C-Quest Technologies LLC
    Inventor: Douglas C. Comrie
  • Patent number: 8501133
    Abstract: A catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds includes a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein. The catalyst is obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying. The oxidation power of the resulting catalyst is enhanced without increasing the amount of precious metal supported thereon.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 6, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Katsumi Nochi, Masanao Yonemura, Yoshiaki Obayashi, Hitoshi Nakamura
  • Publication number: 20130183220
    Abstract: The preparation of bimetallic gold-silver cerium dioxide-supported catalysts and the process of oxidation of carbon monoxide (CO) in air to remove CO using the gold-silver cerium dioxide-supported catalysts are disclosed. The gold loading is between 0.5 and 5 wt. %. Gold and silver particle sizes are between 1 and 3 nm, and Au/Ag weight ratio is between 1 and 10. Oxidation of CO in air over these catalysts is carried out in a fixed bed reactor to remove CO.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 18, 2013
    Applicant: NATIONAL CENTRAL UNIVERSITY
    Inventor: NATIONAL CENTRAL UNIVERSITY
  • Publication number: 20130183221
    Abstract: A preparation method of nano-gold catalysts supported on copper oxide-cerium oxide (CuO—CeO2) and a process of preferential oxidation of carbon monoxide by oxygen in hydrogen stream with the nano-gold catalysts are disclosed. CuO—CeO2 is prepared by either coprecipitation or incipient-wetness impregnation method, and gold is deposited thereon by deposition-precipitation. After adding CuO into Au/CeO2, the interaction between the nano-gold and the support is increased, thereby enhancing the stability of the gold particle and the activity of the catalysts. Preferential oxidation of CO in hydrogen stream (with O2 existing) over these catalysts is carried out in a fixed bed reactor. The O2/CO ratio should be between 0.5 and 4. The catalyst is applied to remove CO (to lower than 10 ppm) in hydrogen stream in fuel cell to prevent from poisoning of the electrode of the fuel cell.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 18, 2013
    Applicant: NATIONAL CENTRAL UNIVERSITY
    Inventor: NATIONAL CENTRAL UNIVERSITY
  • Patent number: 8486495
    Abstract: A method of forming a photocatalyst device includes depositing a layer of UV photocatalyst and depositing islands of a sequestering agent on a surface of the layer of the UV photocatalyst.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: July 16, 2013
    Assignee: Carrier Corporation
    Inventors: Wayde R. Schmidt, Treese Hugener-Campbell, Tania Bhatia
  • Patent number: 8480984
    Abstract: A selective catalytic reduction system and method for reducing nitrogen oxide (NOx) emissions comprising a boiler producing flue gas emissions, a particulate control device receiving flue gas emissions from the boiler, a selective catalytic reduction unit (SCR) receiving flue gas emissions from the particulate control device and reducing nitrogen oxide (NOx) emissions, and a heat exchanger located downstream of the selective catalytic reduction unit (SCR) for removing heat from the flue gas for preheating at least one of boiler feed water and combustion air for the boiler.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: July 9, 2013
    Assignee: 2E Environmental, LLC
    Inventor: Robert Ellery
  • Patent number: 8475755
    Abstract: An oxidation catalyst deposited on a substrate is described for the destruction of CO and volatile organic compounds, in particular halogenated organic compounds, from an emissions stream at temperatures from 250° C. to 450° C. The oxidation catalyst includes at least two platinum group metals, one of which is either platinum or ruthenium, supported on refractory oxides, such as a solid solution of CeO2 and ZrO2, and tin oxide and/or silica.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: July 2, 2013
    Assignee: Sub-Chemie Inc.
    Inventors: Zhongyuan Dang, Nirmal Singh, Martin Morrill, Greg Cullen
  • Patent number: 8470273
    Abstract: A combustion exhaust gas processing device comprises: a dust collector collecting dust in a cement kiln combustion exhaust gas: a wet dust collector as a catalyst-poisoning-substance stripper removing a catalyst-poisoning substance from a combustion exhaust gas which passed the wet dust collector; and a catalyst device from which NOx, a persistent organic pollutant, etc. in the preheated combustion exhaust gas, are removed. A titanium-vanadium catalyst etc. as an oxide catalyst is used upstream of the catalyst device, and a platinum catalyst etc. as a noble-metal catalyst downstream of the catalyst device. The temperature of the combustion exhaust gas after the catalyst-poisoning substance is removed is increased up to 140° C. or more with the preheaters to prevent decline in denitration efficiency of and the decomposition efficiency of a volatile organic compound.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: June 25, 2013
    Assignees: Taiheiyo Cement Corporation, Nippon Shokubai Co., Ltd.
    Inventors: Shinichiro Saito, Yasuhiro Uchiyama, Junichi Terasaki, Hisashi Kondo, Mitsuharu Hagi, Shinyuki Masaki
  • Patent number: 8445402
    Abstract: An improved catalyst suitable as a preferential oxidation catalyst is obtained by adding platinum, copper, and iron to a support.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: May 21, 2013
    Assignee: BASF Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Publication number: 20130116345
    Abstract: A catalyst comprising NiO, a metal mixture comprising at least one of MoO3 or WO3, a mixture comprising at least one of SiO2 and Al2O3, and P2O5. In this embodiment the metal sites on the catalyst are sulfided and the catalyst is capable of removing tar from a synthesis gas while performing methanation and water gas shift reactions at a temperature range from 300° C. to 600° C.
    Type: Application
    Filed: September 13, 2011
    Publication date: May 9, 2013
    Applicant: PHILLIPS 66 COMPANY
    Inventors: Sourabh S. Pansare, Joe D. Allison, Steven E. Lusk, Albert C. Tsang
  • Patent number: 8404201
    Abstract: The oxidation of nitrogen oxide (NO) in an oxygen-containing exhaust gas flow from a diesel or other lean-burn engine may be catalyzed using particles of co-precipitated and calcined manganese (Mn), cerium (Ce) and zirconium (Zr) mixed oxides. In preferred embodiments, the molar ratios of Mn, Ce and Zr to the total amount of base metals in the ternary mixed oxide catalyst are in the range of 0.25-0.35, 0.40-0.50 and 0.20-0.25, respectively. Further, this ternary mixed oxide catalyst is less susceptible to sulfur poisoning than previously-disclosed binary mixed oxide catalysts. The ternary mixed oxide catalyst may also be regenerated—and the inhibiting effect of SO2 reversed—by briefly exposing the catalyst to a reducing exhaust gas environment.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: March 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Gongshin Qi, Wei Li
  • Patent number: 8361420
    Abstract: Systems and methods for treating a fluid with a body are disclosed. Various aspects involve treating a fluid with a porous body. In select embodiments, a body comprises ash particles, and the ash particles used to form the body may be selected based on their providing one or more desired properties for a given treatment. Various bodies provide for the reaction and/or removal of a substance in a fluid, often using a porous body comprised of ash particles. Computer-operable methods for matching a source material to an application are disclosed. Certain aspects feature a porous body comprised of ash particles, the ash particles have a particle size distribution and interparticle connectivity that creates a plurality of pores having a pore size distribution and pore connectivity, and the pore size distribution and pore connectivity are such that a first fluid may substantially penetrate the pores.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: January 29, 2013
    Assignee: Errcive, Inc.
    Inventors: Charles E. Ramberg, Stephen A. Dynan, Jack A. Shindle
  • Patent number: 8323602
    Abstract: Carbon monoxide (CO) may be removed from flue gas generated by oxyfuel combustion of a hydrocarbon or carbonaceous fuel, by contacting the flue gas, or a CO-containing gas derived therefrom, at a first elevated temperature, e.g. at least 80° C., and at a first elevated pressure, e.g. at least 2 bar (0.2 MPa), with at least one catalyst bed comprising a CO-oxidation catalyst in the presence of oxygen (O2) to convert CO to carbon dioxide and produce carbon dioxide-enriched gas. The carbon dioxide produced from the CO may be recovered from the carbon dioxide-enriched gas using conventional carbon dioxide recovery techniques. NO in the flue gas may also be oxidized to nitrogen dioxide (NO2) and removed using conventional NO2 removal techniques, or may be reduced in the presence of a reducing gas to nitrogen (N2) which does not have to be removed from the gas.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 4, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Vincent White, Timothy Christopher Golden
  • Patent number: 8323601
    Abstract: Embodiments of the present disclosure include a catalyst for the conversion of CO and/or hydrocarbons in an exhaust stream including a Sn compound selected from the group consisting of a binary composition comprising Sn and Ti, a ternary composition comprising Sn, Ti and Zr, and mixtures of any thereof. In those embodiments, the binary composition may include Sn(X)Ti(y)O2, wherein x+y=1, 0.85>y>0. In other embodiments of the present disclosure, the Sn compound includes a ternary composition including Sn(a)Ti(b)Zr(c)O2, wherein a is 0.25, b is 0.25 and c is 0.5. Certain embodiments of this disclosure include a method for the conversion of CO in an exhaust stream, including contacting an exhaust stream containing CO with the catalyst described above containing a Sn compound. In other embodiments, the exhaust stream includes hydrocarbons.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 4, 2012
    Assignees: Catalytic Solutions, Inc., ECS Holdings, Inc.
    Inventors: Rachelle Justice, Rajashekharam Malyala, Svetlana Iretskaya, Dylan Trandal, Dien To, Jason Pless, Stephen Golden, Jiho Yoo
  • Patent number: 8318115
    Abstract: The invention provides a system for regenerative selective catalytic reduction including a catalyst chamber that contains a catalyst for reducing NOX in a gas stream passing therethrough. The system also includes a reactant injector, first and second heat exchangers, and a valve manifold adapted to direct a substantially continuous gas stream through the heat exchangers and catalyst chamber in such a manner as to flow through the catalyst chamber in the same flow direction during each cycle of the system. The invention also provides a process of regenerative selective catalytic reduction wherein the gas stream through the catalyst chamber flows in the same flow direction during each cycle of the process.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: November 27, 2012
    Assignee: Babcock Power Environmental, Inc.
    Inventors: John R. Harold, James D. Dougherty
  • Publication number: 20120294789
    Abstract: A CO shift catalyst according to the present invention is one that reforms carbon monoxide (CO) in gas. The CO shift catalyst includes: active ingredients including one of molybdenum (Mo) and iron (Fe) as a main ingredient and one of nickel (Ni) and ruthenium (Ru) as an accessory ingredient; and one or at least two oxides of titanium (Ti), zirconium (Zr), and cerium (Ce) as a carrier supporting the active ingredients. The CO shift catalyst can be used for a CO shift reactor 20 that converts CO in gasified gas 12 produced in a gasifier 11 into CO2.
    Type: Application
    Filed: February 24, 2011
    Publication date: November 22, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toshinobu Yasutake, Masanao Yonemura, Tetsuya Imai
  • Patent number: 8313700
    Abstract: The water gas shift reactor includes a gas reaction tank including a reaction chamber formed in the shape of a hollow body provided with a porous plate installed therein to divide the inside of the reaction chamber into an upper reaction space and a lower collection space and a catalyst stacked on the upper surface of the porous plate to convert carbon monoxide into hydrogen, and an insulating layer provided at the outer surface of the reaction chamber, a syngas storage tank to store the syngas, a syngas supply pipe to supply the syngas to the gas reaction tank, after the syngas is heated by a preheater, a steam supply pipe to supply steam generated from a steam generator to the gas reaction tank such that the steam reacts with the syngas, after the steam is heated by a preheater, and a reaction gas discharge pipe.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: November 20, 2012
    Assignee: Korea Institute of Energy Research
    Inventors: See Hoon Lee, Jae Ho Kim, Jae Goo Lee
  • Patent number: 8314048
    Abstract: Use of physical vapor deposition methodologies to deposit nanoscale gold on activating support media makes the use of catalytically active gold dramatically easier and opens the door to significant improvements associated with developing, making, and using gold-based, catalytic systems. The present invention, therefore, relates to novel features, ingredients, and formulations of gold-based, heterogeneous catalyst systems generally comprising nanoscale gold deposited onto a nanoporous support.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: November 20, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Larry A. Brey, Thomas E. Wood, Gina M. Buccellato, Marvin E. Jones, Craig S. Chamberlain, Allen R. Siedle
  • Publication number: 20120288430
    Abstract: This invention concerns a procedure for the formation of a bimetallic composition by means of the subsequent depositing of Co(0) and Pd(0) on an inert support, a composition obtained by means of said procedure and the use of said bimetallic composition as a catalyst. Another aspect of this invention is a catalytic device that includes said bimetallic composition.
    Type: Application
    Filed: December 28, 2010
    Publication date: November 15, 2012
    Applicant: QID S.R.L.
    Inventors: Valentina Bello, Helmut Boen-Nemann, Paolo Canu, Massimo Centazzo, Luca Conte, Daniela Dalle Nogare, Giovanni Mattei, Renzo Rosei
  • Publication number: 20120275979
    Abstract: A method for oxidizing carbon monoxide by a water-gas shift (WGS) reaction and a method for reducing carbon dioxide by a reverse water-gas shift (RWGS) reaction, both using a catalyst of the formula xMZLn2O2SOy, in which M, Ln, x, and y are as defined herein. Also disclosed are novel compositions for use as catalysts for both the WGS and RWGS reactions.
    Type: Application
    Filed: November 9, 2010
    Publication date: November 1, 2012
    Applicant: Tufts University
    Inventors: Maria Flytzani-Stephanopoulos, Ioannis Valsamakis
  • Patent number: 8277767
    Abstract: The present invention relates to a method and a multi-component system for adsorbing contaminants and/or pollutants from a contaminated hot fluid by using a turbulent air stream, to adiabatically cool the temperature of the fluid, in association with one or more adsorbents. The system of the present invention can also be coupled to a recovery and recycling unit to recover and recycle the contaminant and/or pollutant and the adsorbent material.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: October 2, 2012
    Inventor: Parisa A. Ariya-Far
  • Patent number: 8263032
    Abstract: An oxidation catalyst comprises an extruded solid body comprising: 10-95% by weight of at least one binder/matrix component; 5-90% by weight of a zeolitic molecular sieve, a non-zeolitic molecular sieve or a mixture of any two or more thereof; and 0-80% by weight optionally stabilized ceria, which catalyst comprising at least one precious metal and optionally at least one non-precious metal, wherein: (i) a majority of the at least one precious metal is located at a surface of the extruded solid body; (ii) the at least one precious metal is carried in one or more coating layer(s) on a surface; (iii) at least one metal is present throughout the extruded solid body and in a higher concentration at a surface; (iv) at least one metal is present throughout the extruded solid body and in a coating layer(s) on a surface; or (v) a combination of (ii) and (iii).
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: September 11, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul Joseph Andersen, Todd Ballinger, David Bergeal, Hsiao-Lan Chang, Hai-Ying Chen, Julian Cox, Ralf Dotzel, Rainer Leppelt, Jörg Werner Münch, Hubert Schedel, Duncan John William Winterborn
  • Patent number: 8246922
    Abstract: Provided are catalyst articles, emission treatment systems and methods for simultaneously remediating the carbon monoxide, nitrogen oxides (NOx), particulate matter, and gaseous hydrocarbons present in diesel engine exhaust streams. The emission treatment system of specific embodiment effectively treats diesel engine exhaust with a single catalyst article.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: August 21, 2012
    Assignee: BASF Corporation
    Inventors: R. Samuel Boorse, Martin Dieterle
  • Patent number: 8236261
    Abstract: A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: August 7, 2012
    Assignee: Caterpillar Inc.
    Inventors: Christie Susan Ragle, Ronald G. Silver, Svetlana Mikhailovna Zemskova, Colleen J. Eckstein
  • Patent number: 8236264
    Abstract: Carbon monoxide is removed from material streams by adsorption to an adsorption composition comprising oxides of copper, zinc and aluminum, the copper-comprising fraction of which has a degree of reduction, expressed as weight ratio of metallic copper to the sum of metallic copper and copper oxides, calculated as CuO, of at most 60%.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: August 7, 2012
    Assignee: BASF SE
    Inventors: Stephan Hatscher, Michael Hesse
  • Patent number: 8226918
    Abstract: A method of carbon monoxide (CO) removal comprises providing an oxidation catalyst comprising cobalt supported on an inorganic oxide. The method further comprises feeding a gaseous stream comprising CO, and oxygen (O2) to the catalyst system, and removing CO from the gaseous stream by oxidizing the CO to carbon dioxide (CO2) in the presence of the oxidation catalyst at a temperature between about 20 to about 200° C.
    Type: Grant
    Filed: April 26, 2006
    Date of Patent: July 24, 2012
    Assignee: The Ohio State University
    Inventors: Umit S. Ozkan, Erik M. Holmgreen, Matthew M. Yung
  • Patent number: 8227373
    Abstract: A catalyst and its use for the abatement of carbon monoxide and unburned hydrocarbons in the exit stream of a combustion device, such as an automobile and spray paint booths are disclosed.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: July 24, 2012
    Assignee: The University of Toledo
    Inventors: Abdul-Majeed Azad, Desikan Sundararajan
  • Patent number: 8226751
    Abstract: A composite membrane material characterized by comprising a hydrogen-permeable membrane which is selectively permeable to hydrogen and is formed by rolling to a thickness of 30 ?m or less which is difficult for the membrane by itself to retain its shape, and a shape-retention mesh which is disposed on at least one side of the hydrogen-permeable membrane and is composed of a wire of a high-melting metal which does not cause thermal diffusion into the hydrogen-permeable membrane, wherein the hydrogen-permeable membrane and the shape-retention mesh are superposed and subjected to a pleat processing in a non-bonded state so that they are separable and the hydrogen-permeable membrane has a surface area increased at least 3 times per unit area. This material is used to constitute a hydrogen separation element.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: July 24, 2012
    Assignee: Nippon Seisen Co., Ltd.
    Inventors: Hideomi Ishibe, Hiroyasu Taga
  • Patent number: 8221693
    Abstract: A two stage-carbon monoxide preferential oxidation article and method that uses a single injection of an O2-containing gas.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: July 17, 2012
    Assignee: BASF Corporation
    Inventors: Lawrence Shore, Robert J. Farrauto
  • Patent number: 8211391
    Abstract: A selective catalytic reduction system and method for reducing nitrogen oxide (NOx) emissions comprising a boiler producing flue gas emissions, a particulate control device receiving flue gas emissions from the boiler, a selective catalytic reduction unit (SCR) receiving flue gas emissions from the particulate control device and reducing nitrogen oxide (NOx) emissions, and a heat exchanger located downstream of the selective catalytic reduction unit (SCR) for removing heat from the flue gas for preheating at least one of boiler feed water and combustion air for the boiler.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: July 3, 2012
    Assignee: 2E Environmental, LLC
    Inventor: Robert Ellery
  • Patent number: 8193114
    Abstract: Catalysts, catalyst systems, and methods for removing ammonia and/or carbon monoxide in flue gases are provided where ammonia is used with a selective catalytic reduction catalyst for reducing oxides of nitrogen. A dual oxidation catalyst generally comprises an alkali component, a transition metal, and a metal oxide support. This catalyst is also substantially free from precious metal components and effective for substantially simultaneously oxidizing ammonia (NH3) and carbon monoxide (CO) when placed in an exhaust gas stream. The catalyst is effective to provide low ammonia to nitrogen oxides selectivity.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: June 5, 2012
    Assignee: BASF Catalysts LLC
    Inventors: Ahmad Moini, Gerald S. Koermer, Pascaline Harrison Tran, Jacqueling S. Curran
  • Publication number: 20120128564
    Abstract: In accordance to multiple embodiments the CMRS uses calcium carbonate to reduce carbon monoxide and carbon emission. Using three lines and three embodiments with an input and output, all embodiments are enclosed. The lines connect the three embodiments and the source of carbon monoxide. One embodiment is an enclosed tank(s) with burner(s) which heats a liquid mixture of calcium carbonate and additives. The second is framed with filter(s), burner(s), and calcium carbonate inside, which is heated. The three lines connect the two embodiments. As carbon monoxide flows through the embodiments' inside, and out.
    Type: Application
    Filed: November 23, 2010
    Publication date: May 24, 2012
    Inventor: Kentjuan Bowens
  • Publication number: 20120118302
    Abstract: Supported catalyst particles, which can be incorporated in the tobacco cut filler, cigarette wrapper and/or cigarette filter of a cigarette, are useful for low-temperature and near-ambient temperature catalysis of carbon monoxide and/or nitric oxide. The supported catalyst comprises catalyst particles that are supported on particles of an electrically conductive support selected from the group consisting of graphitic carbon and a partially reduced oxide.
    Type: Application
    Filed: January 20, 2012
    Publication date: May 17, 2012
    Applicant: Philip Morris USA Inc.
    Inventors: Donald Miser, Diane Gee
  • Patent number: 8173087
    Abstract: Provided are exhaust systems and components suitable for use in conjunction with gasoline direct injection (GDI) engines to capture particulates in addition to reducing gaseous emission such as hydrocarbons, nitrogen oxides, and carbon monoxides. Exhaust treatment systems comprising a three-way conversion (TWC) catalyst located on a particulate trap are provided. An exemplary particulate trap is a soot filter. Additional treatment components can be added downstream of the particulate trap, including NOx traps and SCR catalysts. The TWC catalyst can be coated on both the inlet side and the outlet side of the particulate trap. Alternatively, an oxidation catalyst can be deposited on a particulate trap. Methods of making and using the same are also provided.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: May 8, 2012
    Assignee: BASF Corporation
    Inventors: Junmei Wei, Knut Wassermann, Yeujin Li
  • Patent number: 8157900
    Abstract: Hydrogen-processing assemblies, components of hydrogen-processing assemblies, and fuel-processing and fuel cell systems that include hydrogen-processing assemblies. The hydrogen-processing assemblies include a hydrogen-separation assembly positioned within the internal volume of an enclosure in a spaced relation to at least a portion of the internal perimeter of the body of the enclosure.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 17, 2012
    Assignee: Idatech, LLC
    Inventors: William A. Pledger, Vernon Wade Popham, R. Todd Studebaker, Kyle Taylor
  • Patent number: 8153090
    Abstract: A system to control the emissions of a fluid stream in a cyclical fashion utilizing an up-flow cycle and a down-flow cycle. The system may include a first inlet and a first outlet at a first end of the system and a second inlet and a second outlet at a second end of the system, a catalyst zone between the first end and second end, two heat transfer zones, at least one heat transfer zone positioned between the catalyst zone and the first end of the system and between the catalyst zone and the second end of the system, and two heating zones, at least one heating zone positioned between the catalyst zone and each of the at least one heat transfer zones. The symmetrical arrangement permits a bi-directional fluid cycle to recover a portion of the energy supplied to the system during each cycle.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: April 10, 2012
    Assignee: OnQuest, Inc.
    Inventor: Anu Vij
  • Patent number: 8142744
    Abstract: An air pollution control system includes an emission treatment system configured to receive flue gas, to reduce at least one pollutant therefrom, and to output emission treated flue gas. A first air heater in fluid communication with the emission treatment system includes a heat exchanger for heating forced air introduced thereto above a base temperature and thereby cooling emission treated flue gas from the emission treatment system to a stack discharge temperature. A second air heater in fluid communication with the first air heater to receive heated forced air therefrom includes a heat exchanger for heating forced air introduced thereto to a preheat temperature for combustion in a boiler and thereby cooling flue gas introduced from a boiler to the second air heater to an emission treatment temperature. The second air heater is in fluid communication with the emission treatment system to introduce cooled flue gas thereto.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: March 27, 2012
    Assignee: Babcock Power Environmental Inc.
    Inventors: Richard F. Abrams, Mark R. Lewis, Jeffrey Penterson
  • Publication number: 20120058036
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) and is prepared from one or a mixture of platinum (Pt), ruthenium (Ru), iridium (Ir), and rhodium (Rh) as an active ingredient and at least one of titanium (Ti), aluminum (Al), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.
    Type: Application
    Filed: May 15, 2009
    Publication date: March 8, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
  • Publication number: 20120051992
    Abstract: A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.
    Type: Application
    Filed: October 6, 2011
    Publication date: March 1, 2012
    Applicant: Caterpillar Inc.
    Inventors: Christie Susan Ragle, Ronald G. Silver, Svetlana Mikhailovna Zemskova, Colleen J. Eckstein
  • Publication number: 20120027659
    Abstract: A CO shift catalyst according to the present invention reforms carbon monoxide (CO) contained in gas. The CO shift catalyst is prepared from one or both of molybdenum (Mo) and cobalt (Co) as an active ingredient and an oxide of one of, or a mixture or a compound of, titanium (Ti), silicon (Si), zirconium (Zr), and cerium (Ce) as a carrier for supporting the active ingredient. The CO shift catalyst can be used in a halogen-resistant CO shift reactor (15) that converts CO contained in gasified gas (12) generated in a gasifier (11) into CO2.
    Type: Application
    Filed: April 10, 2009
    Publication date: February 2, 2012
    Applicant: Mitsubishi Heavy Industries, Ltd.
    Inventors: Toshinobu Yasutake, Tetsuya Imai, Masanao Yonemura, Susumu Okino, Keiji Fujikawa, Shinya Tachibana
  • Publication number: 20120027658
    Abstract: A catalytic sorbent material includes a porous support composed of a hydroxylated metal oxide, preferably hydroxylated zirconia, and catalytic metal nanoparticles, preferably gold nanoparticles, loaded on the porous support. These catalysts can be utilized to convert carbon monoxide into carbon dioxide at relatively low temperatures.
    Type: Application
    Filed: March 18, 2011
    Publication date: February 2, 2012
    Inventors: Christopher J. Karwacki, Yury Gogotsi, Gregory W. Peterson
  • Patent number: 8101304
    Abstract: The present invention relates to a process for the concentration of noble metals from fluorine-containing components of fuel cells, for example from PEM fuel cell stacks, DMFC fuel cells, catalyst-coated membranes (CCMs), membrane electrode assemblies (MEAs), catalyst pastes, etc. The process is based on an optionally multi-step heat treatment process comprising a combustion and/or a melting process. It allows an inexpensive, simple concentration of noble materials. The hydrogen fluoride formed during the heat treatment of fluorine-containing components is bound by an inorganic additive so that no harmful hydrogen fluoride emissions occur. The process can be used for the recovery of noble metals that are present as components in fuel cells, electrolysis cells, batteries, and the like.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: January 24, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Christian Hagelüken, Bernd Kayser, José-Manuel Romero-Ojeda, Ingo Kleinwächter
  • Patent number: 8101542
    Abstract: Provided are a catalyst for oxidizing carbon monoxide and a method of preparing the same. The catalyst for oxidizing carbon monoxide includes platinum and a transition metal which exists in a bimetallic phase, and the bimetallic phase of the platinum and the transition metal is supported by a support including a vacancy of oxygen. The catalyst for oxidizing carbon monoxide shows much higher activity than a conventional catalyst for oxidizing carbon monoxide even at a relatively low temperature.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: January 24, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hyun-chul Lee, Soon-ho Kim, Doo-hwan Lee, Eun-duck Park, Eun-yong Ko