Rare Earth Compound (at. No. 21, 39, Or 57-71) Patents (Class 423/263)
  • Publication number: 20110124488
    Abstract: A method of making a metal oxide nanoparticle comprising contacting an aqueous solution of a metal salt with an oxidant. The method is safe, environmentally benign, and uses readily available precursors. The size of the nanoparticles, which can be as small as 1 nm or smaller, can be controlled by selecting appropriate conditions. The method is compatible with biologically derived scaffolds, such as virus particles chosen to bind a desired material. The resulting nanoparticles can be porous and provide advantageous properties as a catalyst.
    Type: Application
    Filed: October 25, 2010
    Publication date: May 26, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Brian Neltner, Angela Belcher
  • Publication number: 20110117367
    Abstract: A method for synthesizing strontium cerate (SrCeO3) nanoparticles is disclosed. Initially, ammonium cerium(IV) nitrate ((NH4)2Ce(NO3)6) and n-butanol (C4H10O) are reacted to synthesize cerium-n-butoxide (Ce(OBu)4). Next, the cerium-n-butoxide, strontium acetate (Sr(CH3COO)2), and stearic acid (C18H36O2) are reacted to form a homogenous product including the strontium cerate nanoparticles. Finally, the strontium cerate nanoparticles are isolated from the homogenous product.
    Type: Application
    Filed: January 17, 2011
    Publication date: May 19, 2011
    Applicant: POOYA NANO POWDERS RESEARCH GROUP
    Inventors: Morteza Enhessari, Keyvan Ozaee, Maryam Shaterian, Elham Karamali
  • Publication number: 20110118103
    Abstract: A liquid phase reactor comprising a screw within a barrel, the screw and barrel being relatively rotatable and defining a mixing zone therebetween, the barrel having at least two inlets for introduction of components for mixing into the barrel and an outlet for discharge of a product of mixing from the barrel, the screw comprising a spiral groove whereby relative rotation of the screw and barrel is adapted to axially transport the components between the screw and barrel while mixing the components and to extrude the product through the outlet, wherein the reactor is adapted to achieve a substantially constant flow ratio of components into the barrel during operation of the reactor.
    Type: Application
    Filed: June 4, 2009
    Publication date: May 19, 2011
    Applicant: CERAMIC FUEL CELLS LIMITED
    Inventor: Roger Bolden
  • Patent number: 7943106
    Abstract: A process for the production of nanorods containing a rare earth metal is disclosed. The process comprises the steps of: (a) increasing the pH of an aqueous solution of the formula MX3, where M is a trivalent rare earth metal cation and X is a monovalent anion so as to produce a reaction product containing X anions in solution and a precipitate in the form of trivalent rare earth hydroxide nanoparticles of the formula M(OH)3, the nanoparticles having a hexagonal crystal structure; and, (b) ageing the nanoparticles of step (a) in the presence of the reaction product containing X anions in solution so as to cause rod-like anisotropic growth of the nanoparticles and form rare earth hydroxide nanorods.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: May 17, 2011
    Assignee: Antaria Limited
    Inventor: John Sydney Robinson
  • Publication number: 20110112330
    Abstract: Catalyst used in a process for preparing acrolein and acrylic acid at higher yield to convert glycerin to valuable other chemical raw materials. The glycerin dehydration catalyst consists mainly of a compound containing at least one element selected from Mo, W and V, in which protons in the heteropolyacid are exchanged at least partially with at least one cation selected from elements belonging to Group 1 to Group 16 of the Periodic Table of Elements.
    Type: Application
    Filed: April 14, 2009
    Publication date: May 12, 2011
    Applicant: NIPPON KAYAKU KABUSHIKI KAISHA
    Inventors: Yasuhiro Magatani, Kimito Okumura
  • Publication number: 20110107680
    Abstract: The present invention relates to a method for preparing cerium carbonate which enables preparation of hexagonal cerium carbonate by a simplified process, a cerium carbonate powder prepared thereby, and a method for preparing a cerium oxide powder using the same. The method for preparing cerium carbonate comprises the step of contact-reacting orthorhombic cerium carbonate with a primary alcohol aqueous solution comprising water and primary alcohol at a weight ratio of 1:0.1 or more at a temperature of 160° C. or more to form hexagonal cerium carbonate.
    Type: Application
    Filed: March 18, 2009
    Publication date: May 12, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Sang-Soon Choi, Myoung-Hwan Oh, Seung-Beom Cho
  • Publication number: 20110110817
    Abstract: The present disclosure is directed to a method and system for contacting a colorant-contaminated aqueous solution with a rare earth-containing composition to form a treated solution substantially depleted of the colorant.
    Type: Application
    Filed: November 9, 2010
    Publication date: May 12, 2011
    Applicant: MOLYCORP MINERALS, LLC
    Inventors: Joseph A. Lupo, Joseph R. Pascoe
  • Patent number: 7939041
    Abstract: An improved method for the formation of composite hydroxides or oxides comprising, on an oxide basis, Al2O3 and ZrO2, and optionally CeO2, La2O3, Nd2O3, Pr6O11, Sm2O3, Y2O3, and other rare earth oxides, comprising the steps of preparing an aqueous metal salt solution and forming a hydroxide precipitate slurry by combining the aqueous metal salt solution with an aqueous solution of a caustic alkali at a pH greater than 8.5 to precipitate out all the metal species. The variation in pH during the precipitation reaction is ±1. The invention also relates to composites formed by this method comprising 20-70 wt % Al2O3, 10-77 wt % ZrO2, 0-34 wt % CeO2 and 0-22 wt % REOs other than CeO2, and to composites per se comprising, on an oxide basis, 42-70 wt % Al2O3, 10-48 wt % ZrO2, 2-34 wt % CeO2 and 0-9 wt % REOs other than CeO2 and having the following properties after heating to 850° C. over four hours and holding at 850° C.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: May 10, 2011
    Assignee: Magnesium Elektron Limited
    Inventor: John G. Darab
  • Patent number: 7939040
    Abstract: The inventive composition is based on cerium oxide and on zirconium oxide in an atomic proportion Ce/Zr of at least 1, and has a reducibility rate of at least 70% and a surface area of at least 15 m; 2; /g. This composition is obtained by a method in which: a mixture is made containing cerium and zirconium compounds; this mixture is provided with a basic compound whereby obtaining a precipitate that is heated in an aqueous medium; a surfactant-type additive or a polyethylene glycol or a carboxylic acid is added to this medium or to the separated precipitate; the mixture is ground; the precipitate obtained thereof is calcined under inert gas or vacuum, in a first period of time, at a temperature of at least 850° C. and then under an oxidizing atmosphere, in a second period of time, at a temperature of at least 400° C.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: May 10, 2011
    Assignee: Rhodia Operations
    Inventors: Olivier Larcher, Emmanuel Rohart
  • Publication number: 20110101273
    Abstract: Methods for synthesizing a phosphor which is capable of upconversion fluorescence. One exemplary method includes forming a rare earth hydroxide and exposing the rare earth hydroxide to a fluorine source to produce a rare earth fluoride. Another exemplary method includes fluorinating a rare earth hydroxide without use of F2 or HF to produce a rare earth fluoride and purifying the rare earth fluoride.
    Type: Application
    Filed: December 10, 2010
    Publication date: May 5, 2011
    Inventor: Robert Rewick
  • Patent number: 7935325
    Abstract: Rare earth-activated aluminum nitride powders are made using a solution-based approach to form a mixed hydroxide of aluminum and a rare earth metal, the mixed hydroxide is then converted into an ammonium metal fluoride, preferably a rare earth-substituted ammonium aluminum hexafluoride ((NH4)3Al1-xRExF6), and finally the rare earth-activated aluminum nitride is formed by ammonolysis of the ammonium metal fluoride at a high temperature. The use of a fluoride precursor in this process avoids sources of oxygen during the final ammonolysis step which is a major source of defects in the powder synthesis of nitrides. Also, because the aluminum nitride is formed from a mixed hydroxide co-precipitate, the distribution of the dopants in the powder is substantially homogeneous in each particle.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: May 3, 2011
    Assignees: OSRAM SYLVANIA Inc., The Regents of the University of California
    Inventors: Bing Han, Jonathan H. Tao, Madis Raukas, Keith A. Klinedinst, Jan B. Talbot, Kailash A. Mishra
  • Publication number: 20110091368
    Abstract: State-of-the-art electronic structure calculations yield results consistent with the observed compound SiLi2Mg and provide likelihood of the availability of IrLi2Mg and RhLi2Mg. Similar calculations provide likelihood of the availability of YLi2MgHn, ZrLi2MgHn, NbLi2MgHn, MoLi2MgHn, TcLi2MgHn, RuLi2MgHn, RhLi2MgHn, LaLi2MgHn, Ce4+Li2MgHn, Ce3+Li2MgHn, PrLi2MgHn, NdLi2MgHn, PmLi2MgHn, SmLi2MgHn, EuLi2MgHn, GdLi2MgHn, TbLi2MgHn, DyLi2MgHn, HoLi2MgHn, ErLi2MgHn, TmLi2MgHn, YbLi2MgHn, LuLi2MgHn, HfLi2MgHn, TaLi2MgHn, ReLi2MgHn, OsLi2MgHn, and IrLi2MgHn (here n is an integer having a value in a particular compound of 4-7) as solid hydrides for the storage and release of hydrogen. Different hydrogen contents may be obtained in compounds having the same XLi2Mg crystal structures. These materials offer utility for hydrogen storage systems.
    Type: Application
    Filed: October 19, 2009
    Publication date: April 21, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jan F. Herbst, Martin S. Meyer, James R. Salvador
  • Patent number: 7927391
    Abstract: The invention is directed to a process for the manufacture of a ceria based polishing composition, comprising (a) suspending an inorganic cerium salt or cerium hydroxide with a cerium content calculated as cerium oxide in the range of 50%-100% based on Total rare earth oxide (TREO) in an aqueous medium thereby obtaining an aqueous suspension, (b) treating said aqueous suspension with an acid or a salt of an acid selected from the group of HF, H3PO4 and H2SO4, thereby obtaining a solid suspended in said aqueous medium, (c) separating said solid from said aqueous medium, and (d) calcining the separated solid at a temperature between 750° C. and 1,200° C. and grinding the calcined solid to grain sizes in the range of 0.5 ?m to 5.0 ?m.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: April 19, 2011
    Assignee: Treibacher Industrie AG
    Inventors: Karl Schermanz, Johann Schönfelder
  • Patent number: 7927569
    Abstract: Metallic clusters can be produced by contacting a metal salt such as a metal nitrate with an organic reducing agent. Metals can be selected from a group consisting of metals exhibiting octahedral coordination, and nitrates of the selected metal or metals are contacted with, for example nitrosobenzene. Binary, tertiary, or other clusters can be produced.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: April 19, 2011
    Assignee: State of Oregon Acting By and Through the State Board of Higher Education on Behalf of the University of Oregon
    Inventors: Darren W. Johnson, Elisabeth Rather Healey, Jason T. Gatlin, Zachary L. Mensinger
  • Publication number: 20110084326
    Abstract: A method of forming a film of lanthanide oxide nanoparticles. In one embodiment of the present invention, the method includes the steps of: (a) providing a first substrate with a conducting surface and a second substrate that is positioned apart from the first substrate, (b) applying a voltage between the first substrate and the second substrate, (c) immersing the first substrate and the second substrate in a solution that comprises a plurality of lanthanide oxide nanoparticles suspended in a non-polar solvent or apolar solvent for a first duration of time effective to form a film of lanthanide oxide nanoparticles on the conducting surface of the first substrate, and (d) after the immersing step, removing the first substrate from the solution and exposing the first substrate to air while maintaining the applied voltage for a second duration of time to dry the film of lanthanide oxide nanoparticles formed on the conducting surface of the first substrate.
    Type: Application
    Filed: October 5, 2010
    Publication date: April 14, 2011
    Applicant: VANDERBILT UNIVERSITY
    Inventors: James Dickerson, Sameer V. Mahajan
  • Publication number: 20110085957
    Abstract: The process produces a scintillation material of formula LnX3 or LnX3:D, wherein Ln is at least one rare earth element, X is F, Cl, Br, or I; and D is at least one cationic dopant selected from the group consisting of Y, Zr, Pd, Hf and Bi. The at least one cationic dopant is present in the scintillation material in an amount of 10 ppm to 10,000 ppm. The process includes optionally mixing the compound of the general empirical formula LnX3 with the at least one cationic dopant, heating the compound or the mixture obtained by the optional mixing to a melting temperature thereof, then growing the crystal or crystalline structure and cooling the resulting crystal or crystalline structure from a growing temperature to a temperature of 100° C. at a cooling rate of less than 20 K/h.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 14, 2011
    Inventors: Johann-Christoph Von Saldern, Christoph Seitz, Lutz Parthier, Jochen Alkemper
  • Publication number: 20110084234
    Abstract: The scintillation material has a maximum oxygen content of 2,500 ppm and is a compound of formula LnX3 or LnX3:D, wherein Ln is at least one rare earth element, X is F, Cl, Br, or I; and D is at least one cationic dopant of one or more of the elements Y, Zr, Pd, Hf and Bi and, if present, is present in an amount of 10 ppm to 10,000 ppm. The process of making the scintillation material includes optionally mixing the compound of the formula LnX3 with the at least one cationic dopant, heating the compound or the mixture so obtained to a melting temperature to form a melt, adding one or more carbon halides and then cooling the melt to form a crystal or crystalline structure. The maximum oxygen content of the scintillation material is preferably 1000 ppm.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 14, 2011
    Inventors: Johann-Christoph Von Saldern, Christoph Seitz, Lutz Parthier, Jochen Alkemper
  • Publication number: 20110076212
    Abstract: An after-treatment system architecture and method for oxidizing the nitric oxide component of a gas stream.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 31, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Steven J. Schmieg, Chang H. Kim, Gongshin Qi, Wei Li, David B. Brown
  • Publication number: 20110076217
    Abstract: The process for growing a rare earth aluminum or gallium garnet crystal from a melt includes melting an aluminum or gallium garnet of at least one rare earth, preferably Lu or Y, or a mixture of oxides of formula Me2O3, wherein Me represents the rare earth or aluminum or gallium. The melt also includes a fluoride anion acting as a counter ion for the rare earth and the aluminum or gallium. The components comprising the rare earth and aluminum or gallium are introduced in the melt so that the amounts of the rare earth and aluminum or gallium are defined by the formula: SE(3-x)X(5-y)O(12-2x-2y)F(x+y), wherein 0?x?0.2 and 0?y?0.2 and 0<x+y?0.4, and X is aluminum or gallium. The resulting crystals are used for optical elements at 193 nm, such as lenses, and as scintillation materials.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 31, 2011
    Inventors: Lutz Parthier, Tilo Aichele, Gunther Wehrhan, Christoph Seitz, Johann-Christoph Von Saldern
  • Patent number: 7914755
    Abstract: Wet-chemical methods involving the use of water-soluble hydrolytically stable metal-ion chelate precursors and the use of a nonmetal-ion-containing strong base can be used in a coprecipitation procedure for the preparation of ceramic powders. Examples of the precipitants used include tetraalkylammonium hydroxides. A composition-modified barium titanate is one of the ceramic powders that can be produced. Certain metal-ion chelates can be prepared from 2-hydroxypropanoic acid and ammonium hydroxide.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: March 29, 2011
    Assignee: EEStor, Inc.
    Inventors: Richard D. Weir, Carl W. Nelson
  • Publication number: 20110067315
    Abstract: The present invention relates to a method for preparing cerium carbonate-based compound, which is capable of easily controlling the crystalline structure, size, shape, or etc. of the cerium carbonate-based compound, and of preparing the cerium carbonate-based compound efficiently at low cost. The method for preparing cerium carbonate-based compound includes comprising the steps of reacting Lanthanite-(Ce) at an elevated temperature to form cerium oxycabonate hydrate (Ce2O(CO3)2.H2O) with orthorhombic crystal structure, or cerium hydroxycarbonate (Ce(OH).(CO3)) with hexagonal crystal structure.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 24, 2011
    Applicant: LG CHEM, LTD.
    Inventors: Seung-Beom CHO, Sang-Soon CHOI, Jun-Yeon CHO
  • Publication number: 20110070737
    Abstract: The present invention relates to a method of preparing a cerium oxide powder for a CMP slurry and a method of preparing a CMP slurry using the same, and more particularly, to a method of preparing a cerium oxide powder for a CMP slurry and a method of preparing a CMP slurry using the same in which the specific surface area of the powder is increased by preparing a cerium precursor, and then decomposing and calcinating the prepared cerium precursor. The pore distribution is controlled to increase the chemical contact area between a polished film and a polishing material, thereby reducing polishing time while the physical strength of powder is decreased, which remarkably reduces scratches on a polished film.
    Type: Application
    Filed: November 30, 2010
    Publication date: March 24, 2011
    Inventors: Myoung-hwan Oh, Jun-seok Nho, Jang-yul Kim, Jong-pil Kim, Seung-beom Cho, Min-Jin Ko
  • Patent number: 7910084
    Abstract: A compound oxide manufacturing method includes: dispersing micelles, in each of which an aqueous phase is formed, in an oil phase; producing primary particles of a precursor of compound oxide in the aqueous phases in the micelles; synthesizing secondary particles by causing the primary particles to aggregate; and causing the secondary particles to aggregate by breaking the dispersion state of the micelles, or by causing the micelles to coalesce. In particular, polarization is produced in each of the micelles with the use of a cation having an ionic radius larger than that of a metal ion at least when the secondary particles are synthesized in the micelles.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: March 22, 2011
    Assignee: Toyota Jidoshi Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Akio Koyama
  • Publication number: 20110062430
    Abstract: Methods for the production of a blue light emitting nanomaterial are provided comprising nitriding Group 13 metals to produce nitrided Group 13 metals and doping the nitrided Group 13 metals with a dopant, particularly an M2+ dopant, such as Mg2+ or Zn2+, to produce doped nanoparticles. Blue light emitting nanocomposites on other materials, such as SiO2 or TiO2, are also provided. Blue light emitting nanomaterials and nanocomposites also can be coupled to photonic crystals. Nanocrystal-based electroluminescence device are also disclosed.
    Type: Application
    Filed: June 1, 2009
    Publication date: March 17, 2011
    Inventors: Franciscus Cornelis Jacobus Maria van Veggel, Mingqian Tan, Venkataramanan Mahalingam, Vasanthakumaran Sudarsan
  • Publication number: 20110064639
    Abstract: A composite oxide is provided which has large oxygen absorption and desorption over a wide temperature range, in particular in a higher temperature range of not lower than 700° C. and/or in a lower temperature range of not higher than 400° C. The composite oxide contains oxygen, R composed of at least one of Ce and Pr, and Zr at a particular ratio, and optionally a particular ratio of M composed of at least one element selected from alkaline earth metals and the like.
    Type: Application
    Filed: February 12, 2009
    Publication date: March 17, 2011
    Applicant: SANTOKU CORPORATION
    Inventor: Tadatoshi Murota
  • Publication number: 20110061587
    Abstract: [Problem] To provide a method of producing a pretreated metal fluoride containing impurities such as oxygen in decreased amounts and a fluoride crystal containing impurities such as oxygen in decreased amounts and having excellent optical properties such as transparency. [Means for Solution] A metal fluoride is heated in a temperature range of not lower than 300° K. but not higher than 1780° K in the co-presence of a carbonyl fluoride of an amount of not less than 1/100 mol per mol of the metal fluoride to thereby obtain a pretreated metal fluoride while removing oxygen and water from the starting metal fluoride and from the interior of the production furnace. Further, the pretreated metal fluoride as a starting material is heated and melted, and a fluoride crystal of a high quality is obtained from the obtained melt by a crystal growing method such as a melt pull-up method or a melt pull-down method.
    Type: Application
    Filed: May 15, 2009
    Publication date: March 17, 2011
    Inventors: Sumito Ishizu, Akira Sekiya, Kentaro Fukuda, Toshihisa Suyama
  • Publication number: 20110056123
    Abstract: A method of making cerium dioxide nanoparticles includes: a) providing an aqueous reaction mixture having a source of cerous ion, a source of hydroxide ion, a nanoparticle stabilizer, and an oxidant at an initial temperature no higher than about 20° C.; b) mechanically shearing the mixture and causing it to pass through a perforated screen, thereby forming a suspension of cerium hydroxide nanoparticles; and c) raising the initial temperature to achieve oxidation of cerous ion to eerie ion and thereby form cerium dioxide nanoparticles having a mean diameter in the range of about 1 nm to about 15 nm. The cerium dioxide nanoparticles may be formed in a continuous process.
    Type: Application
    Filed: September 4, 2007
    Publication date: March 10, 2011
    Applicant: CERION TECHNOLOGY, INC.
    Inventors: Albert Gary Difrancesco, Richard K. Hailstone, Andreas Langner, Kenneth J. Reed
  • Patent number: 7901657
    Abstract: The invention relates to amphiphilic, nanoscalar particles comprising lipophilic hydrolyzable groups on their surface. The invention also relates to methods for producing amphiphilic, nanoscalar particles and to compositions containing said particles.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: March 8, 2011
    Assignee: Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige GmbH
    Inventors: Ertugrul Arpac, Helmut Schmidt, Murat Akarsu
  • Patent number: 7901798
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials, methods for making these articles and materials, and methods for protecting articles using coatings made from these materials. One particular embodiment is an article that comprises a coating having a surface connected porosity content of up to about 5 percent by volume. The coating comprises a material that comprises a primary oxide and a secondary oxide, wherein (i) the primary oxide comprises a cation selected from the group consisting of cerium, praseodymium, terbium, and hafnium, and (ii) the secondary oxide comprises a cation selected from the group consisting of the rare earth elements, yttrium, and scandium. The material is transparent to electromagnetic radiation of at least one type selected from the group consisting of ultraviolet radiation, visible light, and infrared radiation.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: March 8, 2011
    Assignee: General Electric Company
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Mohan Manoharan
  • Publication number: 20110052472
    Abstract: The process for the preparation of an yttrium and at least one rare earth mixed oxide comprises the following steps: a. mixing a precursor of the yttrium and at least one rare earth mixed oxide with a flux comprising a barium halide and a boron compound; b. calcining the mixture of step a to obtain said mixed oxide. This mixed oxide may be used as a phosphor in the manufacture of coloured fluorescent lamps, cathode ray tubes and plasma display panels.
    Type: Application
    Filed: July 18, 2008
    Publication date: March 3, 2011
    Applicant: RHODIA CHINA CO., LTD.
    Inventor: Xinming Wan
  • Patent number: 7897271
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials, methods for making these articles and materials, and methods for protecting articles using coatings made from these materials. One embodiment is an article comprising a material that is transparent to electromagnetic radiation of at least one type selected from the group consisting of ultraviolet radiation, visible light, and infrared radiation. The material comprises a primary oxide and a secondary oxide. The primary oxide comprises cerium and hafnium. The secondary oxide comprises a secondary oxide cation selected from the group consisting of the rare earth elements, yttrium, and scandium. Another embodiment is an article comprising a material that is transparent to electromagnetic radiation of at least one type selected from the group consisting of ultraviolet radiation, visible light, and infrared radiation.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: March 1, 2011
    Assignee: General Electric Company
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Mohan Manoharan
  • Patent number: 7897136
    Abstract: A method is described for the manufacture of hydrotalcites by using at least one compound of a bivalent metal (Component A) and at least one compound of a trivalent metal (Component B), wherein at least one of these components is not used in the form of a solution, characterized in that a) at least one of the Components A and/or B which is not used in the form of a solution, shortly before or during mixing of the components, and/or b) the mixture containing the Components A and B is subjected to intensive grinding until an average particle size (D50) in the range of approx. 0.1 to 5 ?m is obtained, and optionally, after aging treatment or hydrothermal treatment, the resulting hydrotalcite product is separated, dried, and optionally calcinated.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 1, 2011
    Assignee: Sud-Chemie AG
    Inventors: Max Eisgruber, Jürgen Ladebeck, Jürgen Koy, Hubert Schiessling, Wolfgang Buckl, Herrmann Ebert
  • Patent number: 7897128
    Abstract: The present invention provides a process for making a complex metal oxide comprising the formula AxByOz. The process comprises the steps of: (a) reacting in solution at a temperature of between about 75° C. to about 100° C. at least one water-soluble salt of A, at least one water-soluble salt of B and a stoichiometric amount of a carbonate salt or a bicarbonate salt required to form a mole of a carbonate precipitate represented by the formula AxBy(CO3)n, wherein the reacting is conducted in a substantial absence of carbon dioxide to form the carbonate precipitate and wherein the molar amount of carbonate salt or bicarbonate salt is at least three times the stoichiometric amount of carbonate or bicarbonate salt required to form a mole of the carbonate precipitate; and (b) reacting the carbonate precipitate with an oxygen containing fluid under conditions to form the complex metal oxide.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: March 1, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert Quinn, Diwakar Garg, Frederick Carl Wilhelm, Terry Lee Slager
  • Publication number: 20110044876
    Abstract: A method for the decomposition of one or more metal oxide precursor compounds, at least one of which is a metal carboxylate salt, to a metal oxide or mixed metal oxide by contacting the metal oxide precursor compound or compounds with an aqueous reaction mixture at a pH, pressure and temperature effective to decompose all metal oxide precursor compounds, wherein the temperature is between about room temperature and about 350° C. and the contact duration is effective to decompose all metal oxide precursor compounds to form an essentially pure metal oxide or mixed metal oxide.
    Type: Application
    Filed: November 26, 2008
    Publication date: February 24, 2011
    Applicant: Rutgers University
    Inventors: Richard E. Riman, Vahit Atakan
  • Patent number: 7892660
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials, methods for making these articles and materials, and methods for protecting articles using coatings made from these materials. One particular embodiment is an article that comprises a coating having a surface connected porosity content of up to about 5 percent by volume. The coating comprises a material that comprises a primary oxide and a secondary oxide, wherein (i) the primary oxide comprises a cation selected from the group consisting of cerium, praseodymium, terbium, and hafnium, and (ii) the secondary oxide comprises a cation selected from the group consisting of the rare earth elements, yttrium, and scandium.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 22, 2011
    Assignee: General Electric Company
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Mohan Manoharan
  • Publication number: 20110038776
    Abstract: State-of-the-art electronic structure calculations provide the likelihood of the availability of AlLi2MgHn, ScLi2MgHn, TiLi2MgHn, VLi2MgHn, CrLi2MgHn, MnLi2MgHn, FeLi2MgHn, CoLi2MgHn, NiLi2MgHn, CuLi2MgHn, ZnLi2MgHn, GaLi2MgHn, GeLi2MgHn, PdLi2MgHn, AgLi2MgHn, CdLi2MgHn, InLi2MgHn, SnLi2MgHn, SbLi2MgHn, PtLi2MgHn, AuLi2MgHn, HgLi2MgHn, TlLi2MgHn, PbLi2MgHn, and BiLi2MgHn (here n is an integer having a value in a particular compound of 4-7) as solid hydrides for the storage and release of hydrogen. Different hydrogen contents may be obtained in compounds having the same XLi2Mg crystal structures. These materials offer utility for hydrogen storage systems.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Jan F. Herbst
  • Patent number: 7887934
    Abstract: Ceramic materials with relatively high resistance to wetting by various liquids, such as water, are presented, along with articles made with these materials, methods for making these articles and materials, and methods for protecting articles using coatings made from these materials. One embodiment is a material comprising a primary oxide and a secondary oxide. The primary oxide comprises cerium and hafnium. The secondary oxide comprises a secondary oxide cation selected from the group consisting of the rare earth elements, yttrium, and scandium. Another embodiment is a material comprising a primary oxide and a secondary oxide. The primary oxide comprises cerium or hafnium. The secondary oxide comprises (i) praseodymium or ytterbium, and (ii) another cation selected from the group consisting of the rare earth elements, yttrium, and scandium.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: February 15, 2011
    Assignee: General Electric Company
    Inventors: Molly Maureen Gentleman, James Anthony Ruud, Mohan Manoharan
  • Publication number: 20110033239
    Abstract: Aspects of the invention include methods of contacting carbon dioxide with an aqueous mixture. In practicing methods according to certain embodiments, a subterranean brine may be contacted with carbon dioxide to produce a reaction product, which may or may not be further processed as desired. Also provided are methods in which a brine or minerals are contacted with an aqueous composition. Aspects of the invention further include compositions produced by methods of the invention as well as systems for practicing methods of the invention.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 10, 2011
    Inventors: BRENT CONSTANTZ, KYLE SELF, WILLIAM RANDALL SEEKER, MIGUEL FERNANDEZ, TREAVOR KENDALL
  • Publication number: 20110024926
    Abstract: A method for producing ytterbium phosphate fine particles includes adding phosphoric acid and water to an anhydrous ytterbium halide to cause a reaction between the anhydrous ytterbium halide and the phosphoric acid.
    Type: Application
    Filed: July 29, 2010
    Publication date: February 3, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Tetsushi Yamamoto
  • Patent number: 7879303
    Abstract: Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Cal0(P04)6(OH)2) and tricalcium phosphate (TCP,Ca3(P04)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: February 1, 2011
    Assignee: Eidgenossische Technische Hochschule Zurich
    Inventors: Wendelin Jan Stark, Sotiris-Emmanuel Pratsinis, Marek Maciejewski, Stefan Fridolin Loher, Alfons Baiker
  • Publication number: 20110016775
    Abstract: This invention relates to a method for improving the efficiency with which fuel is burnt in a fuel burning apparatus, particularly all internal combustion engine, comprising dispersing an amount of at least one particulate lanthanide oxide, particularly cerium oxide, in the fuel. This invention further relates to tablets, capsules, compositions and liquid fuel additives suitable for dispersing a lanthanide oxide in fuel.
    Type: Application
    Filed: August 16, 2010
    Publication date: January 27, 2011
    Applicant: Neuftec Limited
    Inventors: Ronen Hazarika, Bryan Lawrence Morgan
  • Publication number: 20110014107
    Abstract: Processes of preparing anhydrous rare earth metal halides are provided. In some embodiments, the rare earth metal halide is cerium (III) chloride. In other embodiments, the rare earth metal halide is lanthanum chloride.
    Type: Application
    Filed: December 24, 2008
    Publication date: January 20, 2011
    Inventors: Ganesh Gurpur Pai, Ajay Anant Audi, Ramchandran Velayudaan Nair, Nagaraj Ramappa Bhagoji
  • Publication number: 20110006251
    Abstract: A cerium salt wherein, when 20 g of the cerium salt is dissolved in a mixed liquid of 12.5 g of 6N nitric acid and 12.5 g of a 30% hydrogen peroxide aqueous solution, a concentration of an insoluble component present in the solution is 5 ppm or less by mass ratio to the cerium salt before dissolution and cerium oxide produced by processing the cerium salt at high temperatures. Scratch on a surface to be polished can be reduced when a cerium based polishing slurry containing the cerium oxide particles is used, since an amount of impurities in cerium oxide particles and cerium salt particles, raw material thereof, is reduced for high purification.
    Type: Application
    Filed: September 20, 2010
    Publication date: January 13, 2011
    Applicant: HITACHI CHEMICAL CO., LTD.
    Inventors: Kanshi CHINONE, Seiji MIYAOKA
  • Patent number: 7867471
    Abstract: A process of producing a ceramic powder including providing a plurality of precursor materials in solution, wherein each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of a ceramic powder, combining the plurality of precursor materials in solution with an onium dicarboxylate precipitant solution to cause co-precipitation of the ceramic powder precursor in a combined solution; and separating the ceramic powder precursor from the combined solution. The process may further include calcining the ceramic powder precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 11, 2011
    Assignee: SACHEM, Inc.
    Inventor: Wilfred Wayne Wilson
  • Patent number: 7867461
    Abstract: The present invention relates to a method of preparing a cerium oxide powder for a CMP slurry and a method of preparing a CMP slurry using the same, and more particularly, to a method of preparing a cerium oxide powder for a CMP slurry and a method of preparing a CMP slurry using the same in which the specific surface area of the powder is increased by preparing a cerium precursor, and then decomposing and calcinating the prepared cerium precursor. The pore distribution is controlled to increase the chemical contact area between a polished film and a polishing material, thereby reducing polishing time while the physical strength of powder is decreased, which remarkably reduces scratches on a polished film.
    Type: Grant
    Filed: October 13, 2006
    Date of Patent: January 11, 2011
    Assignee: LG Chem, Ltd.
    Inventors: Myoung-hwan Oh, Jun-seok Nho, Jang-yul Kim, Jong-pil Kim, Seung-beom Cho, Min-Jin Ko
  • Patent number: 7867463
    Abstract: The present invention provides a new method for the production of cerium oxide (CeO2) nanocrystals having various sizes and various shapes via hydrolytic sol-gel reactions or non-hydrolytic sol-gel reactions. More specifically, the method synthesizing cerium oxide nanocrystals comprises; i) preparing a cerium-surfactant complex by reacting a cerium precursor and a surfactant in a organic solvent; and ii) aging said cerium-surfactant complex in an ether at a temperature of 100° C.-360° C.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: January 11, 2011
    Inventors: Taeg-Hwan Hyeon, Taekyung Yu
  • Patent number: 7867472
    Abstract: An insulating target material for obtaining a conductive complex oxide film represented by a general formula ABO3. The insulating target material includes: an oxide of an element A; an oxide of an element B; an oxide of an element X; and at least one of an Si compound and a Ge compound, the element A being at least one element selected from La, Ca, Sr, Mn, Ba, and Re, the element B being at least one element selected from Ti, V, Sr, Cr, Fe, Co, Ni, Cu, Ru, Ir, Pb, and Nd, and the element X being at least one element selected from Nb, Ta, and V.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: January 11, 2011
    Assignee: Seiko Epson Corporation
    Inventors: Koji Ohashi, Takeshi Kijima, Setsuya Iwashita
  • Publication number: 20110002832
    Abstract: Disclosed is a superconducting compound which has a structure obtained by partially substituting oxygen ions of a compound, which is represented by the following chemical formula; LnTMOPh [wherein Ln represents at least one element selected from Y and rare earth metal elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), TM represents at least one element selected from transition metal elements (Fe, Ru, Os, Ni, Pd and Pt), and Pn represents at least one element selected from pnictide elements (N, P, As and Sb)] and has a ZrCuSiAs-type crystal structure (space group P4/nmm), with at least one kind of monovalent anion (F?, Cl? or Br?). The superconducting compound alternatively has a structure obtained by partially substituting Ln ions of the compound with at least one kind of tetravalent metal ion (Ti4+, Zr4+, Hf4+, C4+, Si4+, Ge4+, Sn4+ or Pb4+) or a structure obtained by partially substituting Ln ions of the compound with at least one kind of divalent metal ion (Mg2+, Ca2+, Sr2+ or Ba2+).
    Type: Application
    Filed: February 17, 2009
    Publication date: January 6, 2011
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Hideo Hosono, Yoichi Kamihara, Masahiro Hirano, Toshio Kamiya, Hiroshi Yanagi
  • Publication number: 20110002831
    Abstract: A sol-gel process for preparing a mixture of metal-oxide-metal compounds wherein at least one metal oxide precursor is subjected to a hydrolysis treatment to obtain one or more corresponding metal oxide hydroxides, the metal oxide hydroxides so obtained are subjected to a condensation treatment to form the metal-oxide-metal compounds, which process is carried out in the presence of an encapsulated catalyst, whereby the catalytically active species is released from the encapsulating unit by exposure to an external stimulus, and wherein the catalytically active species released after exposure to such external stimulus is capable of catalyzing the condensation of the metal-hydroxide groups that are present in the metal oxide hydroxides so obtained.
    Type: Application
    Filed: December 15, 2008
    Publication date: January 6, 2011
    Inventors: Nanning Joerg Arfsten, Pascal Jozef Paul Buskens, Jens Christoph Thies
  • Publication number: 20110003085
    Abstract: A porous metal oxide is formed by creating a metal oxide material with a hydrolysis reaction in solution. The hydrolysis reaction or reaction products of a metal oxide precursor react simultaneously or in conjunction with a metal salt or a disassociation species of a metal salt. The metal oxide material is conditioned, and is refined to produce metal oxide particles having a porous structure containing crystallites.
    Type: Application
    Filed: September 7, 2010
    Publication date: January 6, 2011
    Applicant: CARRIER CORPORATION
    Inventors: Treese Hugener-Campbell, Thomas Henry Vanderspurt, Wayde R. Schmidt, Steven M. Zhitnik